树结构习题及答案
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是()A. 树形结构的特点是一个结点可以有多个直接前趋B. 线性结构中的一个结点至多只有一个直接后继C. 树形结构可以表达(组织)更复杂的数据D. 树(及一切树形结构)是一种”分支层次”结构E. 任何只含一个结点的集合是一棵树2. 下列说法中正确的是()A. 任何一棵二叉树中至少有一个结点的度为2B. 任何一棵二叉树中每个结点的度都为2C. 任何一棵二叉树中的度肯定等于2D. 任何一棵二叉树中的度可以小于23. 讨论树、森林和二叉树的关系,目的是为了()A. 借助二叉树上的运算方法去实现对树的一些运算B. 将树、森林按二叉树的存储方式进行存储C. 将树、森林转换成二叉树D. 体现一种技巧,没有什么实际意义4.树最适合用来表示()A. 有序数据元素 B .无序数据元素C.元素之间具有分支层次关系的数据 D .元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B .11 C .15 D .不确定6. 设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1, M2和M3与森林F对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B .M1+M2 C .M3 D .M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A.250 B .500 C .254 D .505 E .以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为()A. 不确定 B . 2n C . 2n+1 D . 2n-19.二叉树的第I 层上最多含有结点数为()I I-1 I-1 IA.2IB .2I-1-1 C .2I-1D .2I-110.一棵二叉树高度为h, 所有结点的度或为0,或为2,则这棵二叉树最少有()结点A.2h B .2h-1 C .2h+1 D .h+111. 利用二叉链表存储树,则根结点的右指针是()。
数据结构-树习题
数据结构-树习题第六章树⼀、选择题1、⼆叉树的深度为k,则⼆叉树最多有( C )个结点。
A. 2kB. 2k-1C. 2k-1D. 2k-12、⽤顺序存储的⽅法,将完全⼆叉树中所有结点按层逐个从左到右的顺序存放在⼀维数组R[1..N]中,若结点R[i]有右孩⼦,则其右孩⼦是(B )。
A. R[2i-1]B. R[2i+1]C. R[2i]D. R[2/i]3、设a,b为⼀棵⼆叉树上的两个结点,在中序遍历时,a在b前⾯的条件是( B )。
A. a在b的右⽅B. a在b的左⽅C. a是b的祖先D. a是b的⼦孙4、设⼀棵⼆叉树的中序遍历序列:badce,后序遍历序列:bdeca,则⼆叉树先序遍历序列为()。
A. adbceB. decabC. debacD. abcde5、在⼀棵具有5层的满⼆叉树中结点总数为(A)。
A. 31B. 32C. 33D. 166、由⼆叉树的前序和后序遍历序列( B )惟⼀确定这棵⼆叉树。
A. 能B. 不能7、某⼆叉树的中序序列为ABCDEFG,后序序列为BDCAFGE,则其左⼦树中结点数⽬为( C )。
A. 3B. 2C. 4D. 58、若以{4,5,6,7,8}作为权值构造哈夫曼树,则该树的带权路径长度为( C )。
A. 67B. 68C. 69D. 709、将⼀棵有100个结点的完全⼆叉树从根这⼀层开始,每⼀层上从左到右依次对结点进⾏编号,根结点的编号为1,则编号为49的结点的左孩⼦编号为( A )。
A. 98B. 99C. 50D. 4810、表达式a*(b+c)-d的后缀表达式是( B )。
A. abcd+-B. abc+*d-C. abc*+d-D. -+*abcd11、对某⼆叉树进⾏先序遍历的结果为ABDEFC,中序遍历的结果为DBFEAC,则后序遍历的结果是( B )。
A. DBFEACB. DFEBCAC. BDFECAD. BDEFAC12、树最适合⽤来表⽰( C )。
树据结构 第5章答案(已核 )
第5章习题答案一、选择1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2,以下说法错误的是 ( BC )A.二叉树可以是空集B.二叉树的任一结点都有两棵子树(是“最多有”两棵子树)C.二叉树与树具有相同的树形结构(二叉树的孩子必有左右之分,只有一个孩子时也要分出左右,而树即使是有序树, 只有一个孩子时部分左右)D.二叉树中任一结点的两棵子树有次序之分3、以下说法错误的是( )A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好4、以下说法错误的是 ( )A.一般在哈夫曼树中,权值越大的叶子离根结点越近B.哈夫曼树中没有度数为1的分支结点C.若初始森林中共有n裸二叉树,最终求得的哈夫曼树共有2n-1个结点D.若初始森林中共有n裸二叉树,进行2n-1次合并后才能剩下一棵最终的哈夫树5.深度为6的二叉树最多有( )个结点 ( )A.64B.63C.32D.316.将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双结点编号为 ( )A.42B.40C.21D.207.设二叉树有n个结点,则其深度为( )A.n-1B.nC.5floor(log2n)D.无法确定注:完全二叉树才能确定其深度。
8.设深度为k的二叉树上只有度为0 和度为2 的节点,则这类二叉树上所含结点总数最少()个A.k+1B.2kC.2k-1D.2k+1注:单支数含结点个数最少,但题目规定该二叉树中不存在度为1的结点。
所以,在单支树的基础上把结点补齐,使之度数为2 或 0,结果就是有2k-1个结点。
计算机存储和组织数据方式之《数据结构》关于“树”的习题(PPT内含答案)
• 12.已知二叉树的先序遍历和后序遍历不能唯一确定这棵 二叉树,这是因为不知道根结点是哪一个。
•
(T )
• 7.树结构中的每个结点最多只有一个直接前驱。 (T )
• 8.完全二叉树一定是满二叉树。 (F)
• 9.由树转换成二叉树,其根结点的右子树一定为空。 (T )
• 10.在先序遍历二叉树的序列中,任何结点的子树的所有 结点都是直接跟在该结点之后。( F )
• 11.一棵二叉树中序遍历序列的最后一个结点,发家是该 二叉树先序遍历的最后一个结点。 ( T )
B.CBDGFEA D.CBEGFDA
• 8.某二又树的后序遍历序列为DABEC,中序遍历序列为
DEBAC,则先序遍历序列为( D )。
• A.ACBED C.DEABC
B.DECAB D.CEDBA
• 9.在完全二叉树中,如果一个结点是叶子结点,则它没 有( C )。
• A.左孩子结点
B.右孩子结点
• 5.对于二叉树来说,第i层上最多有___2i-1______个结点。 • 6.由三个结点构成的二叉树,共有____5_____种不同的
结构。
• 7.由一棵二叉树的先序序列和___中序____序列可唯一 确定这棵二叉树。
习题6
• 9.先序序列和中序序列相同的二叉树为单右枝二叉树或 孤立结点。
• 10.设一棵二叉树共有50个叶子结点(终端结点),则有 ______49______度为2的结点。
• A. 5
B. 6
• C. 7
D. 8
• 6.二叉树的先序遍历序列为ABC的不同二叉树有( C ) 种形态。
• A. 3
B. 4
• C. 5
D.6
习题6
数据结构习题及答案与实验指导(树和森林)7
第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
数据结构练习题--树(题)
第六章树一.名词解释:1 树 2。
结点的度 3。
叶子 4。
分支点 5。
树的度6.父结点、子结点 7兄弟 8结点的层数 9树的高度 10 二叉树11 空二叉树 12 左孩子、右孩子 13孩子数 14 满二叉树 15完全二叉树16 先根遍历 17 中根遍历 18后根遍历 19二叉树的遍历 20 判定树21 哈夫曼树二、填空题1、树(及一切树形结构)是一种“________”结构。
在树上,________结点没有直接前趋。
对树上任一结点X来说,X是它的任一子树的根结点惟一的________。
2、一棵树上的任何结点(不包括根本身)称为根的________。
若B是A的子孙,则称A是B的________3、一般的,二叉树有______二叉树、______的二叉树、只有______的二叉树、只有______ 的二叉树、同时有______的二叉树五种基本形态。
4、二叉树第i(i>=1)层上至多有______个结点。
5、深度为k(k>=1)的二叉树至多有______个结点。
6、对任何二叉树,若度为2的节点数为n2,则叶子数n0=______。
7、满二叉树上各层的节点数已达到了二叉树可以容纳的______。
满二叉树也是______二叉树,但反之不然。
8、具有n个结点的完全二叉树的深度为______。
9、如果将一棵有n个结点的完全二叉树按层编号,则对任一编号为i(1<=i<=n)的结点X有:(1)若i=1,则结点X是______;若i〉1,则X的双亲PARENT(X)的编号为______。
(2)若2i>n,则结点X无______且无______;否则,X的左孩子LCHILD(X)的编号为______。
(3)若2i+1>n,则结点X无______;否则,X的右孩子RCHILD(X)的编号为______。
10.二叉树通常有______存储结构和______存储结构两类存储结构。
11.每个二叉链表的访问只能从______结点的指针,该指针具有标识二叉链表的作用。
数据结构(树和二叉树)练习题与答案1
1、树最适合用来表示()。
A.元素之间无联系的数据B.元素之间具有层次关系的数据C.无序数据元素D.有序数据元素正确答案:B2、现有一“遗传”关系,设x是y的父亲,则x可以把他的属性遗传给y。
表示该遗传关系最适合的数据结构为()。
A.线性表B.树C.数组D.图正确答案:B3、一棵节点个数为n、高度为h的m(m≥3)次树中,其分支数是()。
A.n+hB.h-1C.n-1D.nh正确答案:C4、若一棵3次树中有2个度为3的节点,1个度为2的节点,2个度为1的节点,该树一共有()个节点。
A.11B.5C.8D.10正确答案:A解析: A、对于该3次树,其中有n3=2,n2=1,n1=2,总分支数=总度数=n-1,总度数=1×n1+2×n2+3×n3=10,则n=总度数+1=11。
5、设树T的度为4,其中度为1、2、3、4的节点个数分别为4、2、1、1,则T中的叶子节点个数是()。
A.6B.8C.7D.5正确答案:B解析: B、这里n1=4,n2=2,n3=1,n4=1,度之和=n-1=n1+2n2+3n3+4n4=15,所以n=16,则n0=n-n1-n2-n3-n4=16-8=8。
6、有一棵三次树,其中n3=2,n2=1,n0=6,则该树的节点个数为()。
A.9B.12C.大于等于9的任意整数D.10正确答案:C解析: C、n=n0+n1+n2+n3=6+n1+1+2=9+n1。
7、假设每个节点值为单个字符,而一棵树的后根遍历序列为ABCDEFGHIJ,则其根节点值是()。
A.JB.BC.以上都不对D.A正确答案:A8、一棵度为5、节点个数为n的树采用孩子链存储结构时,其中空指针域的个数是()。
A.4nB.4n-1C.4n+1D.5n正确答案:C解析: C、总指针数=5n,非空总指针数=分支数=n-1,空指针域的个数=5n-(n-1)=4n+1。
9、有一棵三次树,其中n3=2,n2=2,n1=1,该树采用孩子兄弟链存储结构时,则总的指针域数为()。
数据结构(树与二叉树)习题与答案
一、单选题1、已知一算术表达式的中缀形式为 A-B/C+D*E,前缀形式为+-A/BC*DE,其后缀形式为( )。
A.ABC/-DE*+B.AB/C-D*E+C. A-BC/DE*+D. ABCDE/-*+正确答案:A2、有关二叉树下列说法正确的是()。
A.二叉树中任何一个结点的度都为2B.一棵二叉树的度可以小于2C.二叉树中每个结点的度都为2D.二叉树中至少有一个结点的度为2正确答案:B3、在一棵高度为k的满二叉树中,结点总数为()。
A.2k-1B. 2k-1C. 2k-1+1D.2k正确答案:B4、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A.不确定B.60C.59D.61正确答案:C解析:任意二叉树中,n0=n2+15、高度为7的完全二叉树,最少有()个结点。
A.127B.128C.63D.64正确答案:D解析:前6层都是满的,最后一层(第7层)近1个结点。
可保证题目条件。
6、高度为7的二叉树,最少有()个结点。
A.7B.127C.13D.64正确答案:A解析:每层只有1个结点。
共7个即可构成一个高度为7的二叉树。
7、对任意一棵有n个结点的树,这n个结点的度之和为( )。
A.n-1B.2*nC.n+2D.n正确答案:A解析:所有结点的度之和为分支个数,分支个数即为结点个数-18、在下列存储形式中,()不是树的存储形式。
A.双亲表示法B.孩子-兄弟表示法C.孩子链表表示法D.顺序存储表示法正确答案:D9、对二叉树中的结点进行编号,要求根结点的编号最小,左孩子结点编号比右孩子结点编号小。
则应该采用()遍历方法对其进行编号。
A.层次B.先序C.后序D.中序正确答案:B10、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A. 59B.61C.60D.不一定正确答案:A11、树的后根遍历,相当于对应二叉树的()遍历。
A.中序B.后序C.层次D.先序正确答案:A二、判断题1、完全二叉树一定存在度为1的结点。
第六章树的习题
六、树和二叉树一、选择题:1、在具有n个结点的完全二叉树中,结点i(i>1)的父结点是(D )A.2i B.不存在C.2i+1 D.⌊ i/2⌋3、下列陈述中正确的(A )A.二叉树是度为2的有序树B.二叉树中结点只有一个孩子时无左右之分C.二叉树中必有度为2的结点D.二叉树中最多只有两棵子树,并且有左右之分4、以二叉链表作为二叉树的存储结构,在具有n个结点的二叉链表中(n>0),空链域的个数为( C )A.2n - 1 B.n - 1 C.n + 1 D.2n + 15、将一棵有100个结点的完全二叉树从上到下,从左到右依次对结点进行编号,根结点的编号为1,则编号为49的结点的左孩子编号为(B )A.99 B.98 C.50 D.486、在一棵具有五层的满二叉树中,结点总数为( A )A.31 B.32 C.33 D.167、在一棵二叉树中,第5层上的结点数最多为(C )A.8 B.15 C.16 D.328、由二叉树的(B)遍历,可以惟一确定一棵二叉树A.前序和后序B.前序和中序C.后序D.中序9、具有35个结点的完全二叉树的深度为( B )。
A.5B.6C.7D.810、已知一棵二叉树的先序遍历序列为EFHIGJK,中序遍历序列为HFIEJGK,则该二叉树根的右子树的根是( C )。
A.E B. F C. G D. J11、由4个结点构造出的不同的二叉树个数共有( C )。
A.8 B. 10 C.12 D.1412、在完全二叉树中,如果一个结点是叶子结点,则它没有(D )。
A.左孩子结点B. 右孩子结点C.左、右孩子结点D.左、右孩子结点和兄弟结点13、深度为6的二叉树最多有( B )个结点。
A.64 B.63 C.32 D.3114、二叉树使用二叉链表存储,若p指针指向二叉树的一个结点,当p->lchild=NULL时,则( A )。
A.p结点左儿子为空B.p结点有右儿子C.p结点右儿子为空D.p结点有左儿子15、在具有n个结点的完全二叉树中,若结点i有左孩子,则结点i的左孩子编号为( A )。
数据结构(树)习题与答案
一、单选题1、树最适合用来表示()。
A.元素之间具有分支层次关系的数据B.有序数据元素C.元素之间无联系的数据D.无序数据元素正确答案:A2、在树结构中,若结点A有三个兄弟,且B是A的双亲,则B的度是()。
A.5B.4C.3D.2正确答案:B3、下列陈述中正确的是()。
A.二叉树是度为2的有序树B.二叉树中结点只有一个孩子时无左右之分C.二叉树中每个结点最多只有两棵子树,并且有左右之分D.二叉树中必有度为2的结点正确答案:C4、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至少为()。
A.2h-1B.2h+1C.h+1D.2h正确答案:A解析: A、除根之外,每层只有两个结点,且互为兄弟。
5、设深度为h的二叉树中只有度为0和度为2的结点,则此类二叉树中所包含结点数至多为()。
A.2h-1B. 2h+1-1C. 2h-1-1D. 2h+1正确答案:A解析: A、构成完全二叉树。
6、具有n(n>0)个结点的完全二叉树的深度为()。
A.⌊ log2(n)⌋ +1B.⌈log2(n)⌉C.⌊ log2(n)⌋D.⌈log2(n)+1⌉正确答案:A7、具有32个结点的完全二叉树有()个叶子结点。
A.16B.14C.15D.17正确答案:A解析: A、对结点按层序编号,32号结点的双亲结点编号为16,则17至32号结点都为叶子,共16个。
8、一棵完全二叉树的第6层上有23个叶子结点,则此二叉树最多有()结点。
A.81B.78C.80D.79正确答案:A解析: A、完全二叉树的叶子结点只能在最下两层,要使结点最多,这棵二叉树深度为7,前6层结点数共为63,第6层有32个结点,其中叶子为23个,非叶子为9个,它们的度都为2,第7层只有18个结点,故整棵二叉树结点数为81.9、具有3个结点的二叉树有()种。
A.6B.3C.5D.4正确答案:C10、若一棵二叉树有9个度为2的结点,5个度为1的结点,则叶子结点的个数为()。
数据结构树和二叉树习题(有答案)
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
数据结构树和二叉树习题及答案
数据结构树和二叉树习题及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
数据结构(树与图部分)练习题
数据结构(树与图部分)练习题数据结构(树与图部分)练习题⼀、填空题1.不考虑顺序的3个结点可构成种不同形态的树,种不同形态的⼆叉树。
2.已知某棵完全⼆叉树的第4层有5个结点,则该完全⼆叉树叶⼦结点的总数为:。
3.已知⼀棵完全⼆叉树的第5层有3个结点,其叶⼦结点数是。
4.⼀棵具有110个结点的完全⼆叉树,若i=54,则结点i的双亲编号是;结点i的左孩⼦结点的编号是,结点i的右孩⼦结点的编号是。
5.⼀棵具有48个结点的完全⼆叉树,若i=20,则结点i的双亲编号是______;结点i的左孩⼦结点编号是______,右孩⼦结点编号是______。
6.在有n个叶⼦结点的Huffman树中,总的结点数是:______。
7.图是⼀种⾮线性数据结构,它由两个集合V(G)和E(G)组成,V(G)是______的⾮空有限集合,E(G)是______的有限集合。
8.遍历图的基本⽅法有优先搜索和优先搜索两种⽅法。
9.图的遍历基本⽅法中是⼀个递归过程。
10.n个顶点的有向图最多有条弧;n个顶点的⽆向图最多有条边。
11.在⼆叉树的⼆叉链表中,判断某指针p所指结点是叶⼦结点的条件是。
12.在⽆向图G的邻接矩阵A中,若A[i,j]等于1,则A[j,i]等于。
⼆、单项选择题1.树型结构的特点是:任意⼀个结点:()A、可以有多个直接前趋B、可以有多个直接后继C、⾄少有1个前趋D、只有⼀个后继2.如下图所⽰的4棵⼆叉树中,()不是完全⼆叉树。
3.深度为5的⼆叉树⾄多有()个结点。
A、16B、32C、31D、104.64个结点的完全⼆叉树的深度为:()。
A、8B、7C、6D、55.将⼀棵有100个结点的完全⼆叉树从根这⼀层开始,每⼀层从左到右依次对结点进⾏编号,根结点编号为1,则编号为49的结点的左孩⼦的编号为:()。
A、98B、99C、50D、486.在⼀个⽆向图中,所有顶点的度之和等于边数的()倍。
A、1/2B、1C、2D、47.设有13个值,⽤它们组成⼀棵Huffman树,则该Huffman树中共有( )个结点。
树结构习题及答案
第5章树【例5-1】写出如图5-1所示的树的叶子结点、非终端结点、每个结点的度及树深度。
AB C D EF G H I J图5-1解:(1)叶子结点有:B、D、F、G、H、I、J。
(2)非终端结点有:A、C、E。
(3)每个结点的度分别是:A的度为4,C的度为2,E的度为3,其余结点的度为0。
(4)树的深度为3。
【例5-2】一棵度为2的树与一棵二叉树有什么区别?解:度为2的树有两个分支,但分支没有左右之分;一棵二叉树也有两个分支,但有左右之分,左右子树的次序不能交换。
【例5-3】树与二叉树有什么区别?解:区别有两点:(1)二叉树的一个结点至多有两个子树,树则不然;(2)二叉树的一个结点的子树有左右之分,而树的子树没有次序。
【例5-4】分别画出具有3个结点的树和三个结点的二叉树的所有不同形态。
解:如图5-2(a)所示,具有3个结点的树有两种不同形态。
图5-2(a)如图5-2(B)所示,具有3个结点的二叉树有以下五种不同形态。
图5-2(b)【例5-5】如图5-3所示的二叉树,试分别写出它的顺序表示和链接表示(二叉链表)。
解:(1)顺序表示。
(2)该二叉树的二叉链表表示如图5-4所示。
【例5-6】试找出满足下列条件的所有二叉树:(1)先序序列和中序序列相同; (2)中序序列和后序序列相同; (3)先序序列和后序序列相同。
解:(1)先序序列和中序序列相同的二叉树为:空树或者任一结点均无左孩子的非空二叉树;(2)中序序列和后序序列相同的二叉树为:空树或者任一结点均无右孩子的非空二叉树;(3)先序序列和后序序列相同的二叉树为:空树或仅有一个结点的二叉树。
【例5-7】如图5-5所示的二叉树,要求:(1)写出按先序、中序、后序遍历得到的结点序列。
(2)画出该二叉树的后序线索二叉树。
解: (1) 先序遍历序列:ABDEFC 中序遍历序列:DEFBAC 后序遍历序列:FEDBCA (2)其后序线索二叉树如图5-6所示。
树结构习题
1) 逻辑结构:
2) 前序遍历:a b c e d f h g I j
同时发生的方格内打“✓”
n 在 m 左边 n 在 m 右边 n 是 m 的祖先
前序遍历 n 先被访问 中序遍历 n 先被访问 后序遍历 n 先被访问
√
√
√
√
n 是 m 的儿子Fra bibliotek√10、假设二叉树采用二叉链表存储,编写一个后序遍历二叉树的非递
归算法
struct binTreeNode{
value_type data;
Huffman 编码: a 0001 b 10 c 000000 d 00001 e 01 f 000001 g 11 h 001
}
}
11、 在二叉树中查找值为 X 的结点,设计打印值为 X 的结点的双亲
的算法
struct binTreeNode{
value_type data;
binTreeNode* left, right, parent;
};
binTreeNode* search(BinTreeNode* root, const value_type value)
binTreeNode* left, right, parent;
};
void posOrder ( binTreeNode* root )
{
if ( root != NULL )
{
数据结构第6章 树习题+答案
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( D )A .-A+B*C/DE B. -A+B*CD/E C .2. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( C ) A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 3. 在下述结论中,正确的是( D )①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④4. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( A )A .m-nB .m-n-1C .n+1D .条件不足,无法确定5.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是( D )。
A .M1B .M1+M2C .M3D .M2+M36. 设给定权值总数有n 个,其哈夫曼树的结点总数为( D )A .不确定B .2nC .2n+1D .2n-17.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A .2hB .2h-1C .2h+1D .h+18. 一棵具有 n 个结点的完全二叉树的树高度(深度)是( A )A .⎣logn ⎦+1B .logn+1C .⎣logn ⎦D .logn-19.深度为h 的满m 叉树的第k 层有( A )个结点。
(1=<k=<h)A .m k-1B .m k -1C .m h-1D .m h -110. 一棵树高为K 的完全二叉树至少有( C )个结点A .2k –1 B. 2k-1 –1 C. 2k-1 D. 2k11. 利用二叉链表存储树,则根结点的右指针是( C )。
数据结构第6章树习题
第六章树习题1单项选择题1、若一棵二叉树具有10个度为2的结点,5个度为1的结点,则叶子结点个数是(B)。
A、9B、11C、15D、无法确定2、设给定权值总数有n个,其哈夫曼树的结点总数为( D )。
A、不确定B、2nC、2n+1D、2n–13、有关二叉树下列说法正确的是(B)。
A、二叉树的度为2B、一棵二叉树的度可以小于2C、二叉树中至少有一个结点的度为2D、二叉树中任何一个结点的度都为24、一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点。
A、2hB、2h-1C、2h+1D、h+15、对于有n个结点的二叉树, 其高度为()。
log D、不确定A、n log2nB、log2nC、⎣⎦n26、利用二叉链表存储树,则根结点的右指针是()。
A、指向最左孩子B、指向最右孩子C、空D、非空7、树的后根遍历序列等同于该树对应的二叉树的( )。
A、先序遍历B、中序遍历C、后序遍历D、层序遍历8、在下列存储形式中,哪一个不是树的存储形式?()A、双亲表示法B、孩子链表表示法C、孩子兄弟表示法D、顺序存储表示法9、已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
A、CBEFDAB、FEDCBAC、CBEDFAD、不定10、某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A、空的或只有一个结点B、任一结点无左子树C、高度等于其结点数D、任一结点无右子树11、一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是:( )。
A、不确定B、0C、1D、212、若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )。
A、X的双亲B、X的右子树中最左的结点C、X的左子树中最右结点D、X的左子树中最右叶结点13、引入二叉线索树的目的是().A、加快查找结点的前驱或后继的速度B、为了能在二叉树中方便的进行插入和删除C、为了能方便的找到双亲D、使二叉树的遍历结果唯一14、下述编码中哪一个不是前缀码()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章树
【例5-1】写出如图5-1所示的树的叶子结点、非终端结点、每个结点的度及树深度。
解:
(1)叶子结点有:B 、D 、F 、G 、H 、I 、
J 。
(2)非终端结点有:A 、C 、E 。
(3)每个结点的度分别是:A 的度为4,C 的度为2,E 的度为3,其余结点的度为0。
(4)树的深度为3。
【例5-7】如图5-5所示的二叉树,要求:
(1)写出按先序、中序、后序遍历得到的结点序列。
(2)画出该二叉树的后序线索二叉树。
解: (1) 先序遍历序列:ABDEFC 中序遍历序列:DEFBAC 后序遍历序列:FEDBCA b
a
c d
e
f 图5-5
A B C D E
F G H I J 图5-4
(2)其后序线索二叉树如图5-6所示。
5%、、G 、H 的
3.假定一棵三叉树的结点数为50,则它的最小高度为(3.C )。
A.3
B.4
C.5
D.6 4.在一棵二叉树上第4层的结点数最多为(4.D )。
第六步:
25 30 9
9
18
7
12 8
15 27 43 图5-13
A.2
B.4
C.6
D.8
5.用顺序存储的方法将完全二叉树中的所有结点逐层存放在数组中R[1..n],结点R[i]若有左孩子,其左孩子的编号为结点(5.B)。
A.R[2i+1]
B.R[2i]
C.R[i/2]
D.R[2i-1]
6.由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为(6.D)。
A.24
B.48
C.72
D.53
7.线索二叉树是一种(7.C)结构。
A.逻辑
B.逻辑和存储
C.物理
D.线性
8.线索二叉树中,结点p没有左子树的充要条件是(8.B)。
A.p->lc=NULL
B.p->ltag=1
C.p->ltag=1且p->lc=NULL
D.以上都不对
9.设
10.
A.
11.
A.
12.
A.
B.
C.
D.
13.
A.
C.
14.
A.
15.
A.
C.
1.
2.
3.
4.
5.由二叉树的先序序列和后序序列可以唯一确定一颗二叉树。
(5.×)
6.树的后序遍历与其对应的二叉树的后序遍历序列相同。
(6.√)
7.根据任意一种遍历序列即可唯一确定对应的二叉树。
(7.√)
8.满二叉树也是完全二叉树。
(8.√)
9.哈夫曼树一定是完全二叉树。
(9.×)
10.树的子树是无序的。
(10.×)
三、填空题
1.假定一棵树的广义表表示为A(B(E),C(F(H,I,J),G),D),则该树的度为_____,树的深度为_____,终端结点的个数为______,单分支结点的个数为______,双分支结点的个数为______,三分支结点的个数为_______,C结点的双亲结点为_______,其孩子结点为_______和_______结点。
1.3,4,6,1,1,2,A,F,G
2.设F 是一个森林,B 是由F 转换得到的二叉树,F 中有n 个非终端结点,则B 中右指针域为空的结点有_______个。
2.n+1
3.对于一个有n 个结点的二叉树,当它为一棵________二叉树时具有最小高度,即为_______,当它为一棵单支
树具有_______高度,即为_______。
3.完全,2log (1)n +⎡
⎤⎢⎥,最大,n 4.由带权为3,9,6,2,5的5个叶子结点构成一棵哈夫曼树,则带权路径长度为___。
4.55
5.在一棵二叉排序树上按_______遍历得到的结点序列是一个有序序列。
5.中序
6.对于一棵具有n 个结点的二叉树,当进行链接存储时,其二叉链表中的指针域的总数为_______个,其中_______个用于链接孩子结点,_______个空闲着。
6.2n ,n-1,n+1
7.在一棵二叉树中,度为0的结点个数为n 0,度为2的结点个数为n 2,则n 0=______。
7.n 2+1
8.一棵深度为k 的满二叉树的结点总数为_______,一棵深度为k 的完全二叉树的结点总数的最小值为_____,最大值为9.10.10.2h -1 11. 12.,右13.14.
15.结点的树
16.17.18.19.19.1,RChild
20. 1.,<c ,g>,<c ,f>,(1(2(3(4)哪些是结点g 的祖先? (5)哪些是结点g 的孩子? (6)哪些是结点e 的孩子?
(7)哪些是结点e 的兄弟?哪些是结点f 的兄弟? (8)结点b 和n 的层次号分别是什么? (9)树的深度是多少?
(10)以结点c 为根的子树深度是多少?
根据给定的边确定的树如图5-15所示。
其中根结点为a ; 叶子结点有:d 、m 、n 、j 、k 、f 、l ;
a
b c d
e g
f h i
j k
i
c是结点g的双亲;
a、c是结点g的祖先;
j、k是结点g的孩子;
m、n是结点e的子孙;
e是结点d的兄弟;
g、h是结点f的兄弟;
结点b和n的层次号分别是2和5;
树的深度为5。
ABCDEFGHIJKL,写出该二叉树的先序、中序和后序遍历序列。
先序序列:ABDHIEJKCFLG
6.
(1
(2
(3
(1
(2
(3
7.
序列。
8.
序列。
9.
10
图5-14。