信息论与信源编码实验报告

合集下载

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告信息论与编码实验报告实验一:英文文本信息量的计算一、实验目的及要求a)实验目的1、通过本实验熟悉Matlab 软件编程环境2、编写M 文件实现对英文文本信息量的统计,掌握信息量、信源熵的计算方法b)实验要求1、了解matlab 中M 文件的编辑、调试过程2、编写程序实现对给定英文文本信息量的统计3、英文文本中字母不区分大小写,考虑空格的信息量,但不考虑标点符号的信息量4、建议英文文本采用txt 格式二、实验步骤及运行结果记录a)实验步骤1、查找各个英文字母及空格出现的频率2、在Matlab 中读取给定的英文文章3、计算英文文章的长度4、统计在该文章中各个字母及空格出现的次数并放入数组N 中5、计算各个字母和空格的信息量及整篇文章的信息量6、计算信源熵b)实验结果sumI = +003;H = 三、程序流程图四、程序清单,并注释每条语句五、实验小结通过本次实验熟悉了Matlab 软件编程环境和一些函数的功能及使用,掌握了信息量、信源熵的计算方法。

1 附一:开始读取英文文章计算文章的长度嵌套的for 循环语句假判断是否符合循环条件真if 否elseif 判断字是否为大写母输入相应的频率否elseif 判断是否为小写字母计算各个字母、空格及整篇文章的信息量是判断是否为小写字母是计算信源熵是放入数组N 中对应的位置放入数组N 中对应的位置放入数组N 中对应的位置结束附二: wenzhang=textread(‘实验一:english ‘,’\’); M=size(wenzhang); row=M(1,1); line=M(1,2); N=zeros(1,27); for i=1:row for j=1:line %读取英文文章%文章的长度ifdouble(wenzhang(i,j))>96&&double(wenz hang(i,j))double(wenzhang(i,j))>64&&double(wenz hang(i,j))N(1,double(wenzhang(i,j))-64)=N(1,doubl e(wenzhang(i,j))-64)+1; elseif double(wenzhang(i,j))==32N(1,27)=N(1,27)+1; end end end %统计各字母和空格出现的个数并存入N数组中。

信源编码的实验报告

信源编码的实验报告

一、实验目的1. 理解信源编码的基本原理和过程。

2. 掌握几种常见的信源编码方法,如哈夫曼编码、算术编码等。

3. 分析不同信源编码方法的编码效率。

4. 培养动手实践能力和分析问题、解决问题的能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 实验工具:PyCharm IDE三、实验内容1. 哈夫曼编码2. 算术编码四、实验步骤1. 实验一:哈夫曼编码(1)读取信源数据,统计每个字符出现的频率。

(2)根据字符频率构建哈夫曼树,生成哈夫曼编码表。

(3)根据哈夫曼编码表对信源数据进行编码。

(4)计算编码后的数据长度,并与原始数据长度进行比较,分析编码效率。

2. 实验二:算术编码(1)读取信源数据,统计每个字符出现的频率。

(2)根据字符频率构建概率分布表。

(3)根据概率分布表对信源数据进行算术编码。

(4)计算编码后的数据长度,并与原始数据长度进行比较,分析编码效率。

五、实验结果与分析1. 实验一:哈夫曼编码(1)信源数据:{a, b, c, d, e},频率分别为{4, 2, 2, 1, 1}。

(2)哈夫曼编码表:a: 0b: 10c: 110d: 1110e: 1111(3)编码后的数据长度:4a + 2b + 2c + 1d + 1e = 4 + 2 + 2 + 1 + 1 = 10(4)编码效率:编码后的数据长度为10,原始数据长度为8,编码效率为10/8 = 1.25。

2. 实验二:算术编码(1)信源数据:{a, b, c, d, e},频率分别为{4, 2, 2, 1, 1}。

(2)概率分布表:a: 0.4b: 0.2c: 0.2d: 0.1e: 0.1(3)编码后的数据长度:2a + 2b + 2c + 1d + 1e = 2 + 2 + 2 + 1 + 1 = 8(4)编码效率:编码后的数据长度为8,原始数据长度为8,编码效率为8/8 = 1。

六、实验总结1. 哈夫曼编码和算术编码是两种常见的信源编码方法,具有较好的编码效率。

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告信息论与编码实验 2 实验报告一、实验目的本次信息论与编码实验 2 的主要目的是深入理解和应用信息论与编码的相关知识,通过实际操作和数据分析,进一步掌握信源编码和信道编码的原理及方法,提高对信息传输效率和可靠性的认识。

二、实验原理(一)信源编码信源编码的目的是减少信源输出符号序列中的冗余度,提高符号的平均信息量。

常见的信源编码方法有香农编码、哈夫曼编码等。

香农编码的基本思想是根据符号出现的概率来分配码字长度,概率越大,码字越短。

哈夫曼编码则通过构建一棵最优二叉树,为出现概率较高的符号分配较短的编码,从而实现平均码长的最小化。

(二)信道编码信道编码用于增加信息传输的可靠性,通过在发送的信息中添加冗余信息,使得在接收端能够检测和纠正传输过程中产生的错误。

常见的信道编码有线性分组码,如汉明码等。

三、实验内容与步骤(一)信源编码实验1、选取一组具有不同概率分布的信源符号,例如:A(02)、B (03)、C(01)、D(04)。

2、分别使用香农编码和哈夫曼编码对信源符号进行编码。

3、计算两种编码方法的平均码长,并与信源熵进行比较。

(二)信道编码实验1、选择一种线性分组码,如(7,4)汉明码。

2、生成一组随机的信息位。

3、对信息位进行编码,得到编码后的码字。

4、在码字中引入随机错误。

5、进行错误检测和纠正,并计算错误纠正的成功率。

四、实验结果与分析(一)信源编码结果1、香农编码的码字为:A(010)、B(001)、C(100)、D (000)。

平均码长为 22 比特,信源熵约为 184 比特,平均码长略大于信源熵。

2、哈夫曼编码的码字为:A(10)、B(01)、C(111)、D (00)。

平均码长为 19 比特,更接近信源熵,编码效率更高。

(二)信道编码结果在引入一定数量的错误后,(7,4)汉明码能够成功检测并纠正大部分错误,错误纠正成功率较高,表明其在提高信息传输可靠性方面具有较好的性能。

信息论与编码技术实验报告

信息论与编码技术实验报告

《信息论与编码技术》实验报告实验一:请根据公式-plogp ,说明小概率事件和大概率事件对熵的贡献。

解:先做图,然后分析。

将公式写为)(log )(2p p p f -=对它编写计算和画图程序如下:p=0:0.01:1;x=-p.*log2(p);plot(p,x);从图中曲线看出,小概率事件和大概率事件的情况下,熵值都很低,贡献很小,在概率为0.5附近时熵值最大,故此时对熵的贡献最大。

实验二:请对a 、b 、c 霍夫曼编码,它们的概率是0.6、0.3、0.1。

并以此对符号串ababaacbaa 编码和译码。

解:编码步骤分为:事件排序,符号编码,信源编码,信道编码。

MATLAB 程序:clc;a=0.3;b=0.3;c=0.4; %%%霍夫曼编码A=[a,b,c];A=fliplr(sort(A)); %%%降序排序if (a==b)&(a>c), %%实现了当a,b,c 其中两概率相同时的编码,及3值均不同时的编码 u='a';x=a;v='b';y=b;w='c';z=c;elseif (a==b)&(a<c),u='c';x=c;v='a';y=a;w='b';z=b;elseif (c==b)&(c>a),u='b';x=b;v='c';y=c;w='a';z=a;elseif (c==b)&(c<a),u='a';x=a;v='b';y=b;w='c';z=c;elseif(a==c)&(a>b),u='a',x=a;v='c',y=c;w='b',z=b;elseif(a==c)&(a<b),u='b';x=b;v='a';y=a;w='c';z=c;elseif A(1,1)==a,u='a';x=a;elseif A(1,1)==b,u='b';x=b;elseif A(1,1)==c,u='c';x=c;endif A(1,2)==a,v='a';y=a;elseif A(1,2)==b,v='b';y=b;elseif A(1,2)==c,v='c';y=c;endif A(1,3)==a,w='a';z=a;elseif A(1,3)==b,w='b';z=b;elseif A(1,3)==c,w='c';z=c;endend %%%x,y,z按从大到小顺序存放a,b,c的值,u,v,w存对应字母if x>=(y+z),U='0';V(1)='0';V(2)='1';W(1)='1';W(2)='1';else U='1';V(1)='0';V(2)='0';W(1)='1';W(2)='0';enddisp('霍夫曼编码结果:')if u=='a',a=fliplr(U),elseif u=='b',b=fliplr(U),else c=fliplr(U),end if v=='a',a=fliplr(V),elseif v=='b',b=fliplr(V),else c=fliplr(V),end if w=='a',a=fliplr(W),elseif w=='b',b=fliplr(W),else c=fliplr(W),end %%%编码步骤为:信源编码,信道编码disp('信源符号序列:')s='ababaacbaa' %%%信源编码q=[];for i=s;if i=='a',d=a;elseif i=='b';d=b;else d=c;end;q=[q,d];endm=[]; %%%符号变数字for i=q;m=[m,str2num(i)];endP=[1,1,1,0;0,1,1,1;1,1,0,1];G=[eye(3),P];%%%信道编码%%%接下来的for循环在程序中多次使用,此处作用是将已编码组m每3个1组放入mk中进行运算之后存入Ck数组中,每次mk中运算结束之后清空,再进行下一组运算,而信道编码结果数组C则由C=[C,Ck]存入每组7个码。

信息论与编码实习报告

信息论与编码实习报告

信息论与编码实习报告一、引言信息论与编码是通信工程、计算机科学和电子工程等领域的重要基础课程。

本次实习旨在通过实际操作,深入理解和掌握信息论与编码的基本原理和技术,提高我们的实际操作能力和问题解决能力。

二、实习内容1、信息论基础:实习的第一部分,我们通过自学和讨论的方式,深入学习了信息论的基本概念和原理,包括信息的度量、熵、信道容量等。

2、编码理论:在这一阶段,我们重点学习了线性编码、循环编码、哈夫曼编码等编码方法,并了解了编码的效率及其可靠性。

3、模拟与数字通信系统:我们通过模拟软件,设计和实现了简单的模拟通信系统,同时,也通过实验箱,了解了数字通信系统的基本原理和技术。

4、无线通信和网络:在这一部分,我们重点学习了无线通信和网络的基础知识,包括无线信道模型、无线调制解调技术、无线网络协议等。

5、实习项目:最后,我们根据所学的知识,完成了一个实习项目——设计并实现一个具有高可靠性和高效率的通信系统。

三、实习收获通过这次实习,我们收获颇丰。

首先,我们对信息论与编码的基本概念和原理有了更深入的理解和掌握,能够更好地将理论知识应用到实际中。

其次,我们提高了自己的实际操作能力和问题解决能力,能够在实践中发现和解决问题。

最后,我们了解了通信系统的基本原理和技术,对未来的学习和工作有了更好的准备。

四、结论本次实习是我们学习信息论与编码的重要环节,我们通过实际操作,深入理解和掌握了信息论与编码的基本原理和技术,提高了自己的实际操作能力和问题解决能力。

我们也发现了自己的不足之处,将在未来的学习和工作中更加努力,不断提高自己的能力和水平。

信息论与编码曹雪虹课后习题答案随着科技的发展,信息已经成为现代社会中不可或缺的一部分。

在大学中,信息论与编码作为一门重要的学科,已经成为了计算机科学、通信工程、电子工程等专业的必修课程。

而在这门课程中,曹雪虹教授的教材《信息论与编码》被广泛使用。

本文将介绍一些该教材的课后习题答案,以帮助读者更好地掌握信息论与编码的相关知识。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告一、实验目的本实验主要目的是通过实验验证信息论与编码理论的基本原理,了解信息的产生、传输和编码的基本过程,深入理解信源、信道和编码的关系,以及各种编码技术的应用。

二、实验设备及原理实验设备:计算机、编码器、解码器、信道模拟器、信噪比计算器等。

实验原理:信息论是由香农提出的一种研究信息传输与数据压缩问题的数学理论。

信源产生的消息通常是具有统计规律的,信道是传送消息的媒体,编码是将消息转换成信号的过程。

根据信息论的基本原理,信息的度量单位是比特(bit),一个比特可以表示两个平等可能的事件。

信源的熵(Entropy)是用来衡量信源产生的信息量大小的物理量,熵越大,信息量就越多。

信道容量是用来衡量信道传输信息的极限容量,即信道的最高传输速率,单位是比特/秒。

编码是为了提高信道的利用率,减少传输时间,提高传输质量等目的而进行的一种信号转换过程。

常见的编码技术有霍夫曼编码、香农-费诺编码、区块编码等。

三、实验步骤1.运行编码器和解码器软件,设置信源信息,编码器将信源信息进行编码,生成信道输入信号。

2.设置信道模拟器的信道参数,模拟信道传输过程。

3.将信道输出信号输入到解码器,解码器将信道输出信号进行解码,恢复信源信息。

4.计算信道容量和实际传输速率,比较两者的差异。

5.改变信道参数和编码方式,观察对实际传输速率的影响。

四、实验结果与分析通过实验,我们可以得到不同信道及编码方式下的信息传输速率,根据信道参数和编码方式的不同,传输速率有时会接近信道容量,有时会低于信道容量。

这是因为在真实的传输过程中,存在信噪比、传输距离等因素导致的误码率,从而降低了实际传输速率。

在实验中,我们还可以观察到不同编码方式对传输速率的影响。

例如,霍夫曼编码适用于信源概率分布不均匀的情况,可以实现数据压缩,提高传输效率。

而区块编码适用于数据容量较大的情况,可以分块传输,降低传输错误率。

此外,通过实验我们还可以了解到信息论中的一些重要概念,如信源熵、信道容量等。

信息论与编码实验报告-Shannon编码

信息论与编码实验报告-Shannon编码

实验报告课程名称:信息论与编码姓名:系:专业:年级:学号:指导教师:职称:年月日实验三 Shannon 编码一、实验目的1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程二、实验原理给定某个信源符号的概率分布,通过以下的步骤进行香农编码 1、信源符号按概率从大到小排列;12.......n p p p ≥≥≥2、确定满足下列不等式的整数码长i K 为()()1i i i lb p K lb p -≤<-+3、为了编成唯一可译码,计算第i 个消息的累加概率:4、将累加概率i P 变换成二进制数;5、取i P 二进制数的小数点后i K 位即为该消息符号的二进制码字。

三、实验内容1、写出计算自信息量的Matlab 程序2、写出计算离散信源平均信息量的Matlab 程序。

3、将程序在计算机上仿真实现,验证程序的正确性并完成习题。

四、实验环境Microsoft Windows 7 Matlab 6.5五、编码程序计算如下信源进行香农编码,并计算编码效率:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.06543210a a a a a a a P X MATLAB 程序:(1) a=[0.2 0.18 0.19 0.15 0.17 0.1 0.01]; k=length(a);y=0; for i=1:k-111()i i k k P p a -==∑for n=i+1:kif (a(i)<a(n))t=a(i);a(i)=a(n);a(n)=t;endendends=zeros(k,1);b=zeros(k,1);for m=1:ks(m)=y;y=y+a(m);b(m)=ceil(-log2(a(m)));z=zeros(b(m),1);x=s(m);p=b2d10(x);for r=1:b(m)z(r)=p(r);enddisp('Êä³ö½á¹ûΪ£º')disp('³öʸÅÂÊ'),disp(a(m))disp('ÇóºÍ½á¹û'),disp(s(m))disp('±àÂëλÊý'),disp(b(m))disp('×îÖÕ±àÂë'),disp(z')end(2) function y=b2d10(x)for i=1:8temp=x.*2;if(temp<1)y(i)=0;x=temp;elsex=temp-1;y(i)=1;endend(3) p=[0.2 0.19 0.18 0.17 0.15 0.1 0.01]; sum=0;sum1=0;for i=1:7a(i)=-log2(p(i));K(i)=ceil(a(i));R(i)=p(i)*K(i);sum=sum+R(i);c(i)=a(i)*p(i);sum1=sum1+c(i);endK1=sum;H=sum1;Y=H/K1;disp('ƽ¾ùÐÅÏ¢Á¿'),disp(H)disp('ƽ¾ùÂ볤'),disp(K1)disp('±àÂëЧÂÊ'),disp(Y)六、实验结果输出结果为:出事概率0.2000,求和结果0,编码位数3,最终编码000出事概率0.1900,求和结果0.2000,编码位数3,最终编码001出事概率0.1800,求和结果0.3900,编码位数3,最终编码011出事概率0.1700,求和结果0.5700,编码位数3,最终编码100出事概率0.1500,求和结果0.7400,编码位数3,最终编码101出事概率0.1000,求和结果0.8900,编码位数4,最终编码1110出事概率0.0100,求和结果0.9900,编码位数7,最终编码1111110编码效率:平均信息量2.6087平均码长3.1400编码效率0.8308七、实验总结通过本次的实验,掌握了Shannon编码的实验原理以及编码过程。

信源编码实验报告

信源编码实验报告

电子科技大学实验报告课程名称信息论与编码实验名称信源编码任课教师姓名学号时间2018 年11月28 日一、实验目的和要求1.掌握对信源变长编码定理的理解;2.掌握信源编码技术,如香农编码,费诺编码,哈夫曼编码或其他无失真信源编码技术;3.对英文小说“Game of Thrones”中出现的26个英文字母和空格符号(一共27个符号)进行信源编码。

4.至少对前两章“Prologue”和“Bran”中出现的符号进行统计。

5.任意选择一种编程平台,C++,Java,Python,Matlab等等。

6.运行程序后,能够在屏幕上显示每一个符号对应的码字,原始信源的熵,平均码字长度,码字长度的方差,以及编码效率。

二、 实验内容1. 对英文小说“Game of Thrones ”中出现的26个英文字母和空格符号(一共27个符号)进行信源编码。

2. 在屏幕上显示每一个符号对应的码字,原始信源的熵,平均码字长度,码字长度的方差,以及编码效率。

三、 实验原理1. 采用哈夫曼编码完成实验要求2.哈夫曼(Haveman )编码算法是满足前缀条件的平均二进制码长最短的编-源输出符号,而将较短的编码码字分配给较大概率的信源输出。

算法是:在信源符号集合中,首先将两个最小概率的信源输出合并为新的输出,其概率是两个相应输出符号概率之和。

这一过程重复下去,直到只剩下一个合并输出为止,这个最后的合并输出符号的概率为1。

这样就得到了一张树图,从树根开始,将编码符号1 和0 分配在同一节点的任意两分支上,这一分配过程重复直到树叶。

从树根到树叶途经支路上的编码最后就构成了一组异前置码,就是霍夫曼编码输出。

离散无记忆信源:例如Uu 1u 2u 3u 4u 5P (U ) = 0.4 0.2 0.2 0.1 0.1通过上表的对信源缩减合并过程,从而完成了对信源的霍夫曼码。

四、实验步骤1.主函数为sourcecoding,用fopen打开text文本,并用fread读取文本,得到ASCII码向量seq;2.利用自己编写statistic.m函数统计seq向量中出现的符号和概率,并通过处理得到所需向量seq2. statistic函数采用了对seq处理的三种形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信息论与编码》实验报告
1 实验目的
(1) 理解信源编码的基本原理;
(2) 熟练掌握Huffman编码的方法;
(3) 理解无失真信源编码和限失真编码方法在实际图像信源编码应用中的差异。

2 实验设备与软件
(1) PC计算机系统
(2) VC++6.0语言编程环境
(3) 基于VC++6.0的图像处理实验基本程序框架imageprocessing
(4) 常用图像浏览编辑软件Acdsee和数据压缩软件winrar。

(5) 实验所需要的bmp格式图像(灰度图像若干幅)
3 实验内容与步骤
(1) 针对“图像1.bmp”、“图像2.bmp”和“图像3.bmp”进行灰度频率统计(即计算图像灰度直方图),在此基础上添加函数代码构造Huffman码表,针对图像数据进行Huffman编码,观察和分析不同图像信源的编码效率和压缩比。

(2) 利用图像处理软件Acdsee将“图像1.bmp”、“图像2.bmp”和“图像3.bmp”转换为质量因子为10、50、90的JPG格式图像(共生成9幅JPG图像),比较图像格式转换前后数据量的差异,比较不同品质因素对图像质量的影响;
(3) 数据压缩软件winrar将“图像1.bmp”、“图像2.bmp”和“图像3.bmp”分别生成压缩包文件,观察和分析压缩前后数据量的差异;
(4) 针对任意一幅图像,比较原始BMP图像数据量、Huffman编码后的数据量(不含码表)、品质因素分别为10、50、90时的JPG文件数据量和rar压缩包的数据量,分析不同编码方案下图像数据量变化的原因。

4 实验总结分析
实验步骤(1):
实验代码:
void CImageProcessingDoc::OnImageHuffman()
{
// TODO: Add your command handler code here
int m_Width, m_Height, m_SaveWidth;
int i,j,k;
int *b;
double *a,acl=0,size=0,ratio=0,ce=0,e=0;//acl:average code length(平均码长);ce:code efficiency(编码效率);e:entropy (信息熵);size:图像大小;ratio:压缩比;
long s=0;
b=new int[256];
a=new double[256];
for (i=0; i<256; i++)
{
b[i]=0;a[i]=0;
}
m_Width = m_pDibInit->GetWidth();
m_Height = m_pDibInit->GetHeight();
m_SaveWidth = m_pDibInit->GetSaveWidth();
for(j=0;j<m_Height;j++)
for(i=0;i<m_Width;i++)
{
k=m_pDibInit->m_pDibBits[j*m_SaveWidth + i];
b[k]+=1;
}//图像统计灰度个数
for (i=0; i<256; i++)
a[i]=(double)b[i]/((double)m_Width*m_Height);//灰度概率统计//霍夫曼编码程序段
Huffm huffm(256);
huffm.Huffman(a);
huffm.HuffmanCode();
for (i=0; i<256; i++)
{
acl+=a[i]*(256-huffm.code[i].start);//编码后的平均码长
s+=(256-huffm.code[i].start)*b[i];
}
for (i=0; i<256; i++)
{
if (a[i]>0.000001)
e+=-1.0*a[i]*log10(a[i])/log10(2.0);//图像信息熵
}
ce=e/acl;//霍夫曼编码效率
size=s/(1024.0*8.0);//图像大小
ratio=((double)m_Height*(double)m_Width*8.0)/s;//图像信源的压缩比
ss.Format("信息熵:%.3f 平均码长:%.3f 编码效率:%.3f%% 压缩比:%.3f 图像大小:%.3f kB ",e,acl,ce*100,ratio,size);
}
实验结果图:
图像1 图像2 图像3 名称
类型
信息熵(比特/符号) 5.928 4.410 6.709 编码效率99.468% 99.237% 99.628% 压缩比 1.342 1.800 1.188
实验分析:不同图像信源的霍夫曼编码效率都很高,都超过了99%,这与编码方式有关,因为霍夫曼编码是一种高效的编码方式,应用了最优码的构造方式,所得的是最短的平均码长的码字,是一种最优码;编码后的图像压缩比与图像信息熵有关,信息熵越大,图像的平均信息量较大,霍夫曼编码后压缩比越小。

实验步骤(2):
实验结果图:
图像1.bmp质量因子90、50、10的jpg格式图像依次分别为:
图像2.bmp质量因子90、50、10的jpg格式图像依次分别为:
图像3.bmp质量因子90、50、10的jpg格式图像依次分别为:
图像1 图像2 图像3 转换前后
数据量对比
质量因子10 301.1/34.5 301.1/31.8 301.1/51.9 质量因子50 301.1/52.0 301.1/94.9 301.1/78.0 质量因子90 301.1/141.4 301.1/113.2 301.1/174.1
一张图片作不同品质因素对图像质量的影响(相对图像1、2、3容易看出变化):原图像:
图像质量因子90、50、10依次分别为(为了便于比较图像质量已将其尺寸大小相同规格改变):
原图像质量因子10 质量因子50 质量因子90 数据量268kB 21.5kB 27.5kB 63.1kB
实验分析:由上可以看出质量因子小的与原图差距较大,得出结论:质量因子越小的图像,其数据量越小,其图像失真越大,图像的质量越差。

实验步骤(3):
实验结果图:
压缩前后数据量:
实验分析:由上表可以看出在数据量相同的图像中,熵越大,灰度分布比较均匀,可压缩的程度越小,winrar压缩压缩后的数据量越大。

实验步骤(4):
实验分析:
在各种压缩图像中,由于压缩(编码)原理不同,形成的图像数据量也各不相同。

在霍夫曼编码中,由于其采用无失真数据压缩,直接应用最优码的构造策略得到最优码,所得的平均码长最短,失真最少,但是数据量相对较大,如果信源符号集中的符号数目越大,则编码处理的复杂程度将急剧增加;
在JPEG压缩中,它是有损压缩,但压缩丢失的部分是人眼不容易察觉到的部分,由于一般人可感知的电磁波的波长为400到700纳米之间,故JPEG压缩利用了人眼对色彩中的高频信息部分不敏感而设计的,减少了处理的信息量,压缩后的数据也相对较少,属于限失真编码;
在winrar压缩中,将字典压缩技术应用其中,通过算法把重复的数据、文字信息信息归纳一个信息处理(用简短编码代替),尽可能地缩小文件大小,文件内部重复率越高,压缩比就越高。

故压缩后的量在无失真情况下比霍夫曼编码好。

5 实验心得
(1)实验加深了对C语言应用的理解,特别之前不怎么熟悉的结构体和指针等C语言实际常用类型,对变量的设置也比之前简单学习C更科学合理了,
否则后续实验将因为变量的混淆而发生错误;
(2)不足之处在于对新函数了解太少,对其英文帮助理解相对比较困难,而一些函数,犹如Format函数,搜很多资料也没有把如何显示换行,以原C
语言函数printf的方法大同小异,而就在这种不同之处无从下手,咨询
了同学,他们说的方法似乎有些麻烦,而且没有理解;
(3)实验中加注释用处较大,一是方便别人尽快地读懂程序,二是方便自己在操作中尽快地找到目标程序段;
(4)在实际操作过程中加深了对Huffman编码的掌握和理解,特别是其编码过程;
(5)无失真信源编码和限失真编码方法在实际图像信源编码应用中各不相同,在人眼识别范围内没有必要对图像无失真信源编码,既节省内存,
又减小运算量。

相关文档
最新文档