高磷铸铁金相分析

合集下载

铸铁金相图谱赏析

铸铁金相图谱赏析

铸铁金相图谱赏析(一)时间:2010-01-23 08:05:02来源:作者:点击: 1次铸铁金相图谱赏析(二)时间:2010-01-23 10:59:27来源:作者:点击: 1次铸铁金相图谱赏析(三)时间:2010-01-23 11:01:59来源:中国金相网作者:点击: 1次金相组织解析时间:2009-12-01 19:36:11来源:作者:点击: 247次金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在α-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

金相检测标准汇总(2018年更新版)【精选文档】

金相检测标准汇总(2018年更新版)【精选文档】
现行
49
JB/T 7709—2007
渗硼层显微组织、硬度及层深检测方法
现行
50
JB/T 7710-2007
薄层碳氮共渗或薄层渗碳钢件 显微组织检测
现行
51
JB/T 9198-2008
盐浴硫氮碳共渗
现行
52
JB/T 9200-2008
钢铁件的火焰淬火回火处理
现行
53
JB/T 9204—2008
钢件感应淬火金相检验
金相检测标准目录
序号
标准编号
标准名称
标准状态
1
CB/T 3380-2013
船用钢材焊接接头宏观组织及缺欠酸蚀试验方法
现行
2
GB/T 226-2015
钢的低倍组织及缺陷酸蚀检验法
现行
3
GB 1814—1979
钢材断口检验法
现行
4
GB/T 1979—2001
结构钢低倍组织缺陷评级图
现行
5
GB/T 4236—2016
变形镁合金显微组织检验方法
现行
130
GB/T 4297—2004
变形镁合金低倍组织检验方法
现行
131
GB/T 5168-2008
α-β钛合金高低倍组织检验方法
现行
132
GB/T 6611-2008
钛及钛合金术语和金相图谱
现行
133
GB 8756—1988
锗晶体缺陷图谱
现行
134
GB/T 8760-2006
铸造高锰钢金相
现行
36
B/T 2450-1993
ZG230-450铸钢金相检验
现行
37

实验三 铸铁与有色金属的显微组织分析

实验三  铸铁与有色金属的显微组织分析

实验三铸铁与有色金属的显微组织分析一、实验目的1. 观察和分析各种灰口铸铁的显微组织。

2. 熟悉常用的铝合金、铜合金及轴承合金的显微组织。

二、实验内容观察分析下列金相组织。

表3—1(一)灰口铸铁的组织分析:1. 普通灰口铸铁:灰口铸铁显微组织与白口铸铁的显微组织不同,白口铸铁中的碳全部以化合物渗碳体的形式存在,在组织中有共晶莱氏体,其断口白亮。

性质硬而脆,故工业上很少应用,主要作炼钢原料。

普通灰口铸铁中碳全部或部分以自由碳—片状石墨形式存在,断口呈现灰色。

其显微组织根据石墨化程度的不同为铁素体或珠光体或铁素体+珠光体基体上分布片状石墨。

由于片状石墨无反光能力,故试样未经腐蚀即可看出呈灰黑色。

石墨性脆,在磨制时容易脱落,此时在显微镜下只能见到空洞。

为了研究石墨的形状和分布,一般均先观察未经腐蚀的试片。

灰口铸铁的基体在未经腐蚀的试片上呈白亮色,经过硝酸酒精腐蚀后和碳钢一样。

在铁素体基体的灰口铸铁中看到晶界清晰的等轴铁素体晶粒。

在珠光体基体的灰口铸铁中,珠光体片的大小随冷却速度而异。

由于石墨的强度和塑性几乎等于零,这样可以把铸铁看成是布满裂纹和空洞的钢,因此铸铁的抗拉强度与塑性远比钢低。

且石墨数量越多,尺寸越大,石墨对基体的削弱作用也愈大。

在铸铁中由于含磷较高,在实际铸造条件下磷常以Fe3P的形式与铁素体和Fe3C形成硬而脆的磷共晶。

因此在灰铸铁的显微组织中,除基体和石墨外,还可以见到具有菱角状沿奥氏体晶界连续或不连续分布的磷共晶(又叫斯氏体)。

磷共晶主要有三种类型,即二元磷共晶(在Fe3P的基体上分布着粒状的奥氏体分解产物—铁素体或珠光体)、三元磷共晶(在Fe3P的基体上分布着呈规则排列的奥氏体分解产物的颗粒及细针状的渗碳体)和复合磷共晶(二元或三元磷共晶基体上嵌有条块状渗碳体)。

用硝酸酒精或苦味酸腐蚀时Fe3P不受腐蚀,呈白亮色,铁素体光泽较暗,在磷共晶周围通常总是珠光体。

由于磷共晶硬度很高,故当二元或三元磷共晶以少量均匀孤立分布时,有利于提高耐磨性,而并不影响强度。

金相检验标准大全

金相检验标准大全

****************(1) 低倍检验1 GB/T226-1991 钢的低倍组织及缺陷酸蚀检验法2 GB/T1979-2001 结构钢低倍组织缺陷评级图3 GB/T 4236-1984 钢的硫印检验方法4 GB/T 1814-1979 钢材断口检验法5 GB/T 2971-1982 碳素钢和低合金钢断口检验方法6 YB/T 731-19870 塔型车削发纹检验法7 YB/T 4002-1992 连铸钢方坯低倍组织缺陷评级图8 YB/T 4003-1991 连铸钢板坯缺陷硫印评级图9 YB/T 4061-1991 铁路机车、车轴用车轴(含硫印缺陷评级图)10 YB/T 153-1999 优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图11 TB/T 3031-2002 铁路用辗钢整体车轮径向全截面低倍组织缺陷的评定12 CB/T 3380-1991 船用钢材焊接接头宏观组织缺陷酸蚀试验法13 HB/Z 210-1991 涡喷型发动机涡轮内、外轴锻件低倍组织标准14 QJ 2541-1993 不锈钢棒低倍锭型偏析检验方法****************(2) 基础标准1 GB/T13298-1991 金属显微组织检验方法2 GB/T224-1987 钢的脱碳层深度测定法3 GB/T10561-1988 钢中非金属夹杂物显微评定方法4 GB/T 6394-2002 金属平均晶粒度测定方法5 GB/T/T13299-1991 钢的显微组织(游离渗碳体、带状组织及魏氏组织)评定方法6 GB/T/T13302-1991 钢中石黑碳显微评定方法7 GB/T4335-1984 低碳钢冷轧薄板铁素体晶粒度测定法8 JB/T/T5074-1991 低、中碳钢球化体评级9 ZBJ36016-1990 中碳钢与中碳合金结构钢马氏体等级10 DL/T 652-1998 金相复型技术工艺导则****************(3) 不锈钢1 GB/T6401-1986 铁素体奥氏体型双相不锈钢α-相面积含量金相测定法2 GB/T1223-1975 不锈耐酸钢晶间腐蚀倾向试验方法3 GB/T1954-1980 铬镍奥氏体不锈钢焊缝铁素体含量测量方法4 GB/T/T13305-1991 奥氏体不锈钢中α-相面积含量金相测定法****************(4) 铸钢1 GB/T8493-1987 一般工程用铸造碳钢金相2 TB/T/T2451-1993 铸钢中非金属夹杂物金相检验3 TB/T/T2450-1993 ZG230-450铸钢金相检验4 GB/T/T13925-1992 高锰钢铸件金相5 GB/T5680-1985 高锰钢铸件技术条件(含金相组织检验)6 YB/T/T036.4-1992 冶金设备制造通用技术条件高锰钢铸件(高锰钢金相组织检验)7 JB/T/GQ0614-1988 熔模铸钢ZG310-570正火组织金相检验****************(5) 化学热处理及感应淬火1 GB/T11354-2005 钢铁零件渗氮层深度测定和金相组织检验2 GB/T9450-1988 钢件渗碳淬火有效硬化层深度的测定和校核3 QCn29018-1991 汽车碳氮共渗齿轮金相检验4 JB/T4154-1985 25MnTiBXt钢碳氮共渗齿轮金相检验标准5 NJ251-1981 20MnTiBRe钢渗碳齿轮金相组织检验6 ZB/T04001-1988 汽车渗碳齿轮金相检验7 TB/T/T2254-1991 机车牵引用渗碳淬硬齿轮金相检验8 JB/T/T6141.1-1992 重载齿轮渗碳层球化处理后金相检验9 JB/T/T6141.3-1992 重载齿轮渗碳金相检验10 JB/T/T6141.4-1992 重载齿轮渗碳表面碳含量金相判别法11 GB/T5617-1985 钢的感应淬火或火焰淬火有效硬化层深度的测定12 GB/T9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定13 ZB/J36009-1988 钢件感应淬火金相检验14 ZB/J36010-1988 珠光体球墨铸铁零件感应淬火金相检验15 NJ304-1983 渗碳齿轮感应加热淬火金相检验16 JB/T2641-1979 汽车感应淬火零件金相检验17 CB/T3385-1991 钢铁零件渗氮层深度测定方法****************(6) 轴承钢1. YJZ84 高碳铬轴承钢(含酸浸低倍组织、非金属夹杂物、显微孔隙、退火组织、碳化物不均匀性、碳化物带状、碳化物液析评级图)2. GB/T9-68 铬轴承钢技术条件(含低倍缺陷、非金属夹杂物、退火组织、碳化物网状、碳化物液析评级图)3 GB/T3086-82 高碳铬不锈轴承钢技术条件(含酸浸低倍组织、火组织、共晶碳化物不均匀度、非金属夹杂物、微孔隙评级图)4 YB/T688-76 高温轴承钢Cr4Mo4V技术条件(含碳化物不均匀度评级图)5 JB/T1255-91 高碳铬轴承钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、碳化物网状、断口评级图)6 ZB/J36001-86 滚动轴承零件渗碳热处理质量标准(含粗大碳化物、渗碳表面层淬回火组织、心部组织、网状碳化物评级图)7 JB/T1460-92 高碳铬不锈钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、断口评级图)8 JB/T2850-92 Cr4Mo4V高温轴承钢滚动轴承零件热处理技术条件(含淬火组织、淬回火组织评级图)9 JB/T/T6366-92 55SiMoVA钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、渗碳淬回火组织评级图)****************(7) 工具钢1 GB/T1298-77 碳素工具钢技术条件(含珠光体组织、网状碳化物评级图)2 GB/T1299-85 合金工具钢技术条件(含珠光体组织、网状碳化物、共晶碳化物不均匀)3 YB/T12-77 高速工具钢技术条件(含低倍碳化物剥落、共晶碳化物不均匀度评级图)4 ZB/J36003-87 工具热处理金相检验标准5 GB/T4462-84 高速工具钢大块碳化物评级图****************(8) 零部件专用标准1 GB/T/T13320-91 钢质模锻件金相组织评级图及评定方法2 ZB/J18004-89 传动用精密滚子链和套筒链零件金相检验3 ZB/J26001-88 60Si2Mn钢螺旋弹簧金相检验4 ZB/J94007-88 柴油机喷嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验5 JB/T3782-84 汽车钢板弹簧金相检验标准6 NJ309-83 内燃机连杆螺柱金相检验标准7 NJ326-84 内燃机活塞销金相检验标准8 JB/T/T6720-93 内燃机排气门金相检验标准9 JB/T/NQ180-88 内燃机气门座金相检验10 JB/T/GQ1050-84 45、40Cr钢淬火马氏体金相检验11 JB/T/GQ1148-89 机床用40Cr钢调质组织金相检验12 JB/T/GQ•T1150-89 机床用38CrMoAl钢验收技术条件及调质后金相检验13 JB/T/GQ•T1151-89 机床用45钢调质组织金相检验14 NJ396-86 低淬透性含钛优质碳素结构钢齿轮金相检验15 JB/T/T5664-91 重载齿轮失效判据16 CJ/T 31-1999 液化石油气钢瓶金相组织评定─────────────────────────────────二.铸铁***************(1) 基础标准1 GB/T7216-87 灰铸铁金相2 GB/T9441-88 球墨铸铁金相检验3 JB/T3892-84 蠕墨铸铁金相标准4 JB/T2212-77 铁素体可锻铸铁金相标准5 JB/T3021-81 稀土镁球墨铸铁等温淬火金相标准6 JB/T/Z303-87 灰铸铁与球墨铸铁断口扫描电镜分析图谱7 CB/T1165-88 船用灰铸铁金相标准8 CB/T1030-83 蠕虫状石墨铸铁金相检验9 TB/T/T2255-91 高磷铸铁金相10 TB/T/T2449-93 蠕墨铸铁金相检验****************(2) 零部件专用标准1 GB/T2805-81 内燃机单体铸造活塞环金相检验(JB/T/T6016-92)2 GB/T3509-83 内燃机筒体铸造活塞环金相检验(JB/T/T6290-92)3 JB/T2330-93 内燃机高磷铸铁缸套金相标准4 NJ325-84 内燃机硼铸铁单体铸造活塞环金相标准5 JB/T/T5082-91 内燃机硼铸铁气缸套金相检验6 JB/T/Z179-82 中锰抗磨球墨铸铁金相标准7 JB/T/NQ100-86 内燃机钒钛铸铁气缸套金相检验8 JB/T/NQ178-88 内燃机钒钛铸铁单体铸造活塞环金相检验9 JB/T/T6724-93 内燃机球墨铸铁活塞环金相检验10 JB/T3934-85 汽车、摩托车发动机单体铸造活塞环金相检验11 ZB/T T12007-89 汽车、摩托车发动机球墨铸铁活塞环金相标准12 ZB/T T06002-89 汽车发动机镶耐磨圈活塞金相标准13 ZB/U05004-89 中、大功率柴油机离心铸造气缸套金相检验14 TB/T/T2253-91 球墨铸铁活塞金相检验15 TB/T/T2448-93 合金灰铸铁单体铸造活塞环金相检验16 YB/T4052-91 高镍铬无限冷硬离心铸铁轧辊金相检验17 JB/T/T6954-93 灰铸铁接触电阻加热淬火质量检验和评级18 CB/T/T 3903-1999 中、大功率柴油机离心铸造气缸套金相检验─────────────────────────────────三.表面处理1 GB/T4677.6-84 金属和氧化覆盖厚度测试方法-截面金相法2 GB/T5929-86 轻工产品金属镀层和化学处理层的厚度测试方法-金相显微镜法3 GB/T6462-86 金属和氧化物覆盖层-横断面厚度显微镜测量方法4 GB/T6463-86 金属和其他无机覆盖层-厚度测量方法评述5 GB/T9790-88 金属覆盖层及其他有关覆盖层维氏和努氏显微硬度试验6 GB/T11250.1-89 复合金属覆盖层厚度测定-金相法7 JB/T/T5069-91 钢铁零件渗金属层金相检验方法8 JB/T/T6075-92 氧化钛涂层金相检验方法9 ZBJ92004-87 内燃机精密电镀减摩层轴瓦检验标准─────────────────────────────────四.铝合金及铜合金1 GB/T3246-82 铝及铝合金加工制品显微组织检验方法2 GB/T3247-82 铝及铝合金加工制品低倍组织检验方法3 GB/T10849-89 铸造铝硅合金变质4 GB/T10850-89 铸造铝合金过烧5 GB/T10851-89 铸造铝合金针孔6 GB/T10852-89 铸造铝铜合金晶粒度7 GB/T7998-87 铝合金晶间腐蚀测定法8 GB/T8014-87 铝及铝合金阳极氧化阳极氧化膜厚度的定义和有关测量厚度的规定9 GB/T3508-83 内燃机铸造铝活塞金相检验10 QJ1675-89 变形铝合金过烧金相试验方法11 JB/T3932-85 汽车、摩托车发动机铸造铝活塞金相标准12 JB/T/NQ179-88 内燃机稀土共晶铝硅合金金相检验13 JB/T/T5108-91 铸造黄铜金相14 QJ2337-92 铍青铜的金相检验方法15 YB/T797-71 单相铜合金晶粒度测定法16 YB/T731-70 电真空器件用无氧铜含氧量金相检验法17 ZB/T12003-87 汽车发动机轴瓦铜铅合金金相标准18 NJ355-85 内燃机铸造铜铅合金轴瓦金相检验标准19 CB/T1196-88 船舶螺旋浆用铜合金金相含量金相测定方法─────────────────────────────────五.粉未冶金及硬质合金1 GB/T9095-88 烧结铁基材料-渗碳或碳氮共渗硬化层深度的测定2 JB/T2798-81 铁基粉未冶金烧结制品金相标准3 JB/T2869-81 烧结金属材料密度的测定4 JB/T2867-81 烧结金属材料表观硬度的测定5 ZBH72007-89 烧结金属摩擦材料金相检验法6 ZBH72012-90 碳化钨钢结硬质合金金相试样制备方法7 GB/T3488-83 硬质合金-显微组织的金相测定8 GB/T3489-83 硬质合金-孔隙度和非化合碳的金相测定─────────────────────────────────六.有色合金及稀有金属1 GB/T4296-84 镁合金加工制品显微组织检验方法2 GB/T4297-84 镁合金加工制品低倍组织检验方法3 GB/T1554-79 硅单晶(111)晶面位错蚀坑显示测量方法4 GB/T3490-83 含铜贵金属材料氧化亚铜金相检验方法5 GB/T4194-84 钨丝蠕变试验、高温处理及金相检验方法6 GB/T4197-84 钨钼及其合金的烧结坯条、棒材晶粒度测试方法7 GB/T5168-1985 两相钛合金高、低倍组织检验方法8 GB/T5594.8-85 电子元器件结构陶瓷材料性能测试方法-显微结构的测定9 GB/T6623-86 抛光硅片表面热氧化层错的测试方法10 GB/T8755-88 钛及钛合金术语和金相图谱11 GB/T8756-88 锗单晶缺陷图谱12 GB/T8760-88 砷化镓单晶位错密度的测量方法13 GB/T11809-89 核燃料棒焊缝金相检验14 YB/T935-78 贵金属及其合金的金相试样制备方法15 YB/T732-71 铜、镍及其合金管材和棒材断口检验方法16 JB/T3657-84 汽车发动机轴瓦锡基和铅基合金金相标准17 GB/T1156-87 ChSnSb11-6合金轴瓦金相评级18 CB/T1156-92 锡基轴承合金金相检验─────────────────────────────────七.其他有关标准1 GB/T14999.1-1994 高温合金棒材纵向低倍组织酸浸试验法高温合金棒材纵向低倍组织酸浸试验法GB/T14999.2-1994 高温合金横向低倍组织酸浸试验法高温合金横向低倍组织酸浸试验法GB/T14999.5-1994 高温合金低倍、高倍组织标准评级图谱YB/T 4093-1993 GH4133B合金盘形锻件纵向低倍组织标准─────────────────────────────────八.其他有关标准1 ZB/N33002.1-1988 金相显微镜系列2 ZB/N33002.2-1988 金相显微镜技术条件3 GB/T6846-1986 确定暗室照明安全时间的方法4 GB/T/T4342-1991 金属显微维氏硬度试验方法5 GB/T/T15749-1995 定量金相手工测定方法6 GB/T/T17359-1998 电子探针和扫描电镜,X射线能谱定量分析通则7 GB/T 18876.1-2002 应用自动图像分析测定钢和其它金属中金相组织、夹杂物含量和级别的标准试验方法第1部分:钢和其它金属中夹杂物或第二相组织含量的图像分析与体视学测定我国现行常用热处理标准(zz)序号标准级别号标准名称01 JB/T 10174-2000 钢铁零件强化喷丸的质量检验方法02 JB/T 10175-2000 热处理质量控制要求03 JB/T 3999-1999 钢件的渗碳与碳氮共渗淬火回火04 JB/T 4155-1999 气体氮碳共渗05 JB/T 4202-1999 钢的锻造余热淬火回火处理06 JB/T 4390-1999 高、中温热处理盐浴校正剂07 JB/T 7951-1999 淬火介质冷却性能试验方法08 JB/T 8929-1999 深层渗碳09 JB/T 9197-1999 不锈钢和耐热钢热处理10 JB/T 9198-1999 盐浴硫氮碳共渗11 JB/T 9199-1999 防渗涂料技术要求12 JB/T 9200-1999 钢铁件的火焰淬火回火处理13 JB/T 9201-1999 钢铁件的感应淬火回火处理14 JB/T 9202-1999 热处理用盐15 JB/T 9203-1999 固体渗碳剂16 JB/T 9204-1999 钢件感应淬火金相检验17 JB/T 9205-1999 珠光体球墨铸铁零件感应淬火金相检验18 JB/T 9206-1999 钢件热浸铝工艺及质量检验19 JB/T 9207-1999 钢件在吸热式气氛中的热处理20 JB/T 9208-1999 可控气氛分类及代号21 JB/T 9209-1999 化学热处理渗剂技术条件22 JB/T 9210-1999 真空热处理23 JB/T 9211-1999 中碳钢与中碳合金结构马氏体等级24 JB/T 8555-1997 热处理技术要求在零件图样上的表示方法25 JB/T 4215-1996 渗硼(代替JB4215-86和JB4383-87)26 JB/T 8418-1996 粉末渗金属27 JB/T 8419-1996 热处理工艺材料分类及代号28 JB/T 8420-1996 热作模具钢显微组织评级29 JB/T 7709-1995 渗硼层显微组织、硬度及层深测定方法30 JB/T 7710-1995 薄层碳氮共渗或薄层渗碳钢铁显微组织检验31 JB/T 7711-1995 灰铸铁件热处理32 JB/T 7712-1995 高温合金热处理33 JB/T 7713-1995 高碳高合金钢制冷作模具用钢显微组织检验34 JB/T 4218-1994 硼砂熔盐渗金属(代替JB/Z235-85和JB4218-86)35 JB/T 7500-1994 低温化学热处理工艺方法选择通则36 JB/T 7519-1994 热处理盐浴(钡盐、硝盐)有害固体废物分析方法37 JB/T 7529-1994 可锻铸铁热处理38 JB/T 7530-1994 热处理用氩气、氮气、氢气一般技术条件39 JB/T 6954-1993 灰铸铁件接触电阻淬火质量检验和评级40 JB/T 6955-1993 热处理常用淬火介质技术要求41 JB/T 6956-1993 离子渗氮(代替JB/Z214-84)42 JB/T 6047-1992 热处理盐浴有害固体废物无害化处理方法43 JB/T 6048-1992 盐浴热处理44 JB/T 6049-1992 热处理炉有效加热区的测定45 JB/T 6050-1992 钢铁热处理零件硬度检验通则46 JB/T 6051-1992 球墨铸铁热处理工艺及质量检验47 JB/T 5069-1991 钢铁零件渗金属层金相检验方法48 JB/T 5072-1991 热处理保护涂料一般技术要求49 JB/T 5074-1991 低、中碳钢球化体评级50 GB/T 18177-2000 钢的气体渗氮51 GB/T 7232-1999 金属热处理工艺术语52 GB/T 17358-1998 热处理生产电能消耗定额及其计算和测定方法53 GB/T 16923-1997 钢的正火与退火处理54 GB/T 16924-1997 钢的淬火与回火处理55 GB15735 - 1995 金属热处理生产过程安全卫生要求56 GB/T 15749-1995 定量金相手工测定方法57 GB/T 13321-1991 钢铁硬度锉刀检验方法58 GB/T 13324-1991 热处理设备术语59 GB/T 12603-1990 金属热处理工艺分类及代号60 GB/T 11354-1989 钢铁零件渗氮层深度测定和金相组织检验61 GB/T 9450-1988 钢铁渗碳淬火有效硬化层深度的测定和校核62 GB/T 9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定63 GB/T 9452-1988 热处理炉有效加热区测定方法64 GB/T 8121-1987 热处理工艺材料名词术语65 GB/T 5617-1985 钢的感应淬火或火焰淬火后有效硬化层深度的测定。

第八章铸钢和铸铁的金相检验

第八章铸钢和铸铁的金相检验

二、灰铸铁
1.灰口铸铁的石墨类型 灰 口铸铁中石墨的大小、数量和分 布对机械性能有很大的影响。为 了便于比较,对铸铁中石墨进行 了分类评级,我国按石墨的形成 原因和分布特征,将其分为A、B、 C、D、E和F六种类型
A型石墨:
石墨片的尺寸和分布都比较均匀, 且无方向性。这种石墨是碳当量为 共晶成份或接近共晶成分的铁水在 共晶温度范围内从铁水中和奥氏体 同时析出的,其生成条件是具有较 小的过冷度,这样才能造成均匀生 核和长大,使各处的结晶和生长速 度相差不大,最后得到大小和分布 均匀的A型石墨。
0.2 MPa
5
ak
% kJ/m2
HB
QT400-17 F 400 250 17 600 179
QT420-10 F 420 270 10 300 207
QT500-5 F+P 500 350 5
- 147-241
QT600-2
P 600 420 2
- 229-302
QT700-2
P 700 490 2
由于石墨的存在,使铸铁具备下列特殊性能: ①优良的切削加工性; ②铸造性能好; ③减磨性及耐磨性很高; ④优异的消振性; ⑤低的缺口敏感性。
二、常用的铸铁
1、灰口铸铁(80%)
(1)牌号 “HT”—“灰铁”,数字—最低抗拉强度。
HT100、HT200、HT300(表3-22) 性能:强度较低,韧性较差 应用:承压件,如床身,机架,箱体,缸体,壳体 等 F、P和F+P三种基体
2、铸钢的组织特征和热处理
◆粗大的奥氏体晶粒
形成 “魏氏组织”:冷却时,铁 素体沿奥氏体晶界网状析出,沿一定 方向以片状生长,呈针状插入珠光体 内,塑性和韧性下降,不能直接使用。

铸铁的金相组织图

铸铁的金相组织图

灰口铸铁 可锻铸铁 球墨铸铁 蠕墨铸铁
片状石墨(未浸蚀) 团絮状石墨(未浸蚀) 球状石墨(未浸蚀) 蠕虫状石墨(未浸蚀) 放大倍数400× 放大倍数400× 放大倍数400× 放大倍数400×
灰口铸铁 灰口铸铁 灰口铸铁
F 基+片状石墨 (F +P )基+片状石墨 P 基+片状石墨
放大倍数400× 放大倍数400× 放大倍数400×
可锻铸铁
可锻铸铁 球墨铸铁 F 基+团絮状石墨
P 基+团絮状石墨 F 基+球状石墨 放大倍数400×
放大倍数400× 放大倍数400×
球墨铸铁
球墨铸铁 高磷铸铁 (F +P )基+球状石墨
P 基+球状石墨 P 基+片状石墨+磷共晶 放大倍数400× 放大倍数400× 放大倍数400×。

球铁铸造实验结果汇报

球铁铸造实验结果汇报

出铁水要迅速,避免小流倒出,以免热量损耗过多 致使球化剂、孕育剂粘附在炉底,造成球化不良。 球化反应完成后迅速取样,浇注。 实验浇注的铸型为U型试块
采用以上的的处理工艺生产的铸件,分别对其化学 成分,力学性能以及金相组织进行了观察和测定。 所使用的设备为:华银布氏硬度计(HB-3000)、 电子光学显微镜( Nikon eclipse MA 100 )、摆锤式 冲击试验机(JB-300B)、电液伺服万能拉力机,光谱 仪、游标卡尺,中频感应电炉,热分析仪
为此在铸态条件下获得各种性能的铸件是 社会生产所急需的。所以我们期望通过此 次试验在铸态下获得金属基体为铁素体的 QT400-18的铸件,铁素体和珠光体混合基 体的QT600-3的铸件以及珠光体基体的 QT700-2的铸件。同事也希望通过这次实 验加深大家对球铁相关知识的认识以及锻 炼大家的创新能力,动手能力,理论联系 实际的能力以及团队合作能力等一些综合 实践能力。
(2)抛光: 采用机械抛光,抛光时先将抛光织物长毛 绒或丝绒用水浸湿,然后平整地装在抛光机的抛光 盘上。将配好的抛光液(AL2O3或Cr2O3或MgO溶液) 倒在抛光盘上(以在试样上形成的水膜5~10秒钟 干为宜),打开电源,手握试样试磨面朝下,轻轻 地放在抛光盘的2/3半径处,使细磨的划痕方向与 抛光盘的旋转方向垂直,且沿与抛光盘旋转方向相 反旋转,直至磨面光亮无痕为止,一般为3~5分钟 。抛光时宜选用润滑性良好的煤油作润滑剂,这样 不但容易得到光亮无痕的金相磨面,而且还能清晰 、真实地显示出石墨球的光学性能。
冲击韧性实验实验原理和方法
将加工好的试样放在试验 机的支座上,再将具有一 定重量 m 的摆锤举至一定 的高度 H1,使其获得一定 的位能mgH1,再将其释放 ,冲断试样。摆锤的剩余 能量为 mgH2。摆锤冲断 试样所失去的能量( mgH1- mgH2 ),此即冲击 负荷使试样破断所作的功 ,称冲击功,单位为J, 以 Ak表示。则有 Ak= (mgH1mgH2 )。

铸铁的金相检验

铸铁的金相检验
二.灰铸铁 灰铸铁是一种断口呈灰色、碳主要以片状 石墨出现的铸铁。片状石墨是灰铸铁特有的 石墨形态。GB/T7216《灰铸铁金相》将片状 石墨的二维形态分成A、B、C、D、E、F六 种类型。
铸铁的金相检验
㈠灰铸铁的牌号和基体组织 GB/T9439-1988《灰铸铁件》根据的单铸 试棒的抗拉强度分级,规定了HT100,HT150, HT200,HT250,HT300,HT350六级灰铸铁的 牌号。牌号中的数字为其单铸试棒具有的抗 拉强度(MPa)。按Fe-C状态图,灰铸铁的 平衡组织为铁素体+石墨。受化学成分和冷却 速度等的影响,则可能出现碳化物和磷共晶。 因此铸铁的基体可能是P+F或全部是P。
铸铁的金相检验
⒉白口铸铁的淬火与回火 主要应用于Mn-Mo,Mn-Si,Mn-Cr,Cr-Mo, Ni-Cr-Mo等合金白口铸铁,奥氏体化后在风 冷甚至空冷时就可以获得马氏体+碳化物+残 留奥氏体或获得贝氏体+碳化物+残留奥氏体 的基体组织。再通过低温回火来提高综合力 学性能。
高铬合金铸铁,1050℃x1h后空冷, 4%硝酸酒精溶液浸蚀. 白色针状短条状及块状为共晶碳化物,黑色基体为淬火马 氏体及残余奥氏体.
铸铁的金相检验
①片状(A型)石墨: 特 征是片状石墨均匀 分布。这种石墨一 般是共晶或接近共 晶成分的铁水在不 大的过冷度下均匀 形核和长大而成。
铸铁的金相检验
②菊花状(B型)石墨:特 征是片状与点状石墨 聚集成菊花状。其心 部为少量点状石墨, 外围为卷曲片状石墨。 这种石墨一般是接近 共晶成分的铁水经孕 育处理后在较大的过 冷度下形成。
铸铁的金相检验
⑤枝晶片状(E型)石墨: 特征是短小片状枝晶 间石墨呈有方向分布。 这种石墨是亚共晶成 分的铁水在比形成D 型石墨为小的过冷度 下形成。

金相分析实验标准

金相分析实验标准

金相分析实验标准金相检测常用标准如下:1、钢中非金属夹杂物含量的测定(gb/t 10561-2005)2、金属平均晶粒度测定法(gb/t 6394-2002)3、钢的显微组织评定方法(gb/t 13299-1991)4、钢的脱碳层深度测定法(gb/t 224-2008)5、中碳钢与中碳合金结构钢马氏体等级(jb/t 9211-2008)6、球墨铸铁金相检验(gb 9441-88)一、钢材(1) 低倍检验1 gb/t226-1991 钢的低倍组织及缺陷酸蚀检验法2 gb/t1979-2001 结构钢低倍组织缺陷评级图3 gb/t 4236-1984 钢的硫印检验方法4 gb/t 1814-1979 钢材断口检验法5 gb/t 2971-1982 碳素钢和低合金钢断口检验方法6 yb/t 731-19870 塔型车削发纹检验法7 yb/t 4002-1992 连铸钢方坯低倍组织缺陷评级图8 yb/t 4003-1991 连铸钢板坯缺陷硫印评级图9 yb/t 4061-1991 铁路机车、车轴用车轴(含硫印缺陷评级图)10 yb/t 153-1999 优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图11 tb/t 3031-2002 铁路用辗钢整体车轮径向全截面低倍组织缺陷的评定12 cb/t 3380-1991 船用钢材焊接接头宏观组织缺陷酸蚀试验法13 hb/z 210-1991 涡喷型发动机涡轮内、外轴锻件低倍组织标准14 qj 2541-1993 不锈钢棒低倍锭型偏析检验方法(2) 基础标准1 gb/t13298-1991 金属显微组织检验方法2 gb/t224-1987 钢的脱碳层深度测定法3 gb/t10561-1988 钢中非金属夹杂物显微评定方法4 gb/t 6394-2002 金属平均晶粒度测定方法5 gb/t/t13299-1991 钢的显微组织(游离渗碳体、带状组织及魏氏组织)评定方法6 gb/t/t13302-1991 钢中石黑碳显微评定方法7 gb/t4335-1984 低碳钢冷轧薄板铁素体晶粒度测定法8 jb/t/t5074-1991 低、中碳钢球化体评级9 zbj36016-1990 中碳钢与中碳合金结构钢马氏体等级10 dl/t 652-1998 金相复型技术工艺导则(3) 不锈钢1 gb/t6401-1986 铁素体奥氏体型双相不锈钢α-相面积含量金相测定法2 gb/t1223-1975 不锈耐酸钢晶间腐蚀倾向试验方法3 gb/t1954-1980 铬镍奥氏体不锈钢焊缝铁素体含量测量方法4 gb/t/t13305-1991 奥氏体不锈钢中α-相面积含量金相测定法(4) 铸钢1 gb/t8493-1987 一般工程用铸造碳钢金相2 tb/t/t2451-1993 铸钢中非金属夹杂物金相检验3 tb/t/t2450-1993 zg230-450铸钢金相检验4 gb/t/t13925-1992 高锰钢铸件金相5 gb/t5680-1985 高锰钢铸件技术条件(含金相组织检验)6 yb/t/t036.4-1992 冶金设备制造通用技术条件高锰钢铸件(高锰钢金相组织检验)7 jb/t/gq0614-1988 熔模铸钢zg310-570正火组织金相检验(5) 化学热处理及感应淬火1 gb/t11354-2005 钢铁零件渗氮层深度测定和金相组织检验2 gb/t9450-1988 钢件渗碳淬火有效硬化层深度的测定和校核3 qcn29018-1991 汽车碳氮共渗齿轮金相检验4 jb/t4154-1985 25mntibxt钢碳氮共渗齿轮金相检验标准5 nj251-1981 20mntibre钢渗碳齿轮金相组织检验6 zb/t04001-1988 汽车渗碳齿轮金相检验7 tb/t/t2254-1991 机车牵引用渗碳淬硬齿轮金相检验8 jb/t/t6141.1-1992 重载齿轮渗碳层球化处理后金相检验9 jb/t/t6141.3-1992 重载齿轮渗碳金相检验10 jb/t/t6141.4-1992 重载齿轮渗碳表面碳含量金相判别法11 gb/t5617-1985 钢的感应淬火或火焰淬火有效硬化层深度的测定12 gb/t9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定13 zb/j36009-1988 钢件感应淬火金相检验14 zb/j36010-1988 珠光体球墨铸铁零件感应淬火金相检验15 nj304-1983 渗碳齿轮感应加热淬火金相检验16 jb/t2641-1979 汽车感应淬火零件金相检验17 cb/t3385-1991 钢铁零件渗氮层深度测定方法(6) 轴承钢1. yjz84 高碳铬轴承钢(含酸浸低倍组织、非金属夹杂物、显微孔隙、退火组织、碳化物不均匀性、碳化物带状、碳化物液析评级图)2. gb/t9-68 铬轴承钢技术条件(含低倍缺陷、非金属夹杂物、退火组织、碳化物网状、碳化物液析评级图)3 gb/t3086-82 高碳铬不锈轴承钢技术条件(含酸浸低倍组织、火组织、共晶碳化物不均匀度、非金属夹杂物、微孔隙评级图)4 yb/t688-76 高温轴承钢cr4mo4v技术条件(含碳化物不均匀度评级图)5 jb/t1255-91 高碳铬轴承钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、碳化物网状、断口评级图)6 zb/j36001-86 滚动轴承零件渗碳热处理质量标准(含粗大碳化物、渗碳表面层淬回火组织、心部组织、网状碳化物评级图)7 jb/t1460-92 高碳铬不锈钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、断口评级图)8 jb/t2850-92 cr4mo4v高温轴承钢滚动轴承零件热处理技术条件(含淬火组织、淬回火组织评级图)9 jb/t/t6366-92 55simova钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、渗碳淬回火组织评级图)(7) 工具钢1 gb/t1298-77 碳素工具钢技术条件(含珠光体组织、网状碳化物评级图)2 gb/t1299-85 合金工具钢技术条件(含珠光体组织、网状碳化物、共晶碳化物不均匀)3 yb/t12-77 高速工具钢技术条件(含低倍碳化物剥落、共晶碳化物不均匀度评级图)4 zb/j36003-87 工具热处理金相检验标准5 gb/t4462-84 高速工具钢大块碳化物评级图(8) 零部件专用标准1 gb/t/t13320-91 钢质模锻件金相组织评级图及评定方法2 zb/j18004-89 传动用精密滚子链和套筒链零件金相检验3 zb/j26001-88 60si2mn钢螺旋弹簧金相检验4 zb/j94007-88 柴油机喷嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验5 jb/t3782-84 汽车钢板弹簧金相检验标准6 nj309-83 内燃机连杆螺柱金相检验标准7 nj326-84 内燃机活塞销金相检验标准8 jb/t/t6720-93 内燃机排气门金相检验标准9 jb/t/nq180-88 内燃机气门座金相检验10 jb/t/gq1050-84 45、40cr钢淬火马氏体金相检验11 jb/t/gq1148-89 机床用40cr钢调质组织金相检验12 jb/t/gq?t1150-89 机床用38crmoal钢验收技术条件及调质后金相检验13 jb/t/gq?t1151-89 机床用45钢调质组织金相检验14 nj396-86 低淬透性含钛优质碳素结构钢齿轮金相检验15 jb/t/t5664-91 重载齿轮失效判据16 cj/t 31-1999 液化石油气钢瓶金相组织评定二、铸铁(1) 基础标准1 gb/t7216-87 灰铸铁金相2 gb/t9441-88 球墨铸铁金相检验3 jb/t3892-84 蠕墨铸铁金相标准4 jb/t2212-77 铁素体可锻铸铁金相标准5 jb/t3021-81 稀土镁球墨铸铁等温淬火金相标准6 jb/t/z303-87 灰铸铁与球墨铸铁断口扫描电镜分析图谱7 cb/t1165-88 船用灰铸铁金相标准8 cb/t1030-83 蠕虫状石墨铸铁金相检验9 tb/t/t2255-91 高磷铸铁金相10 tb/t/t2449-93 蠕墨铸铁金相检验(2) 零部件专用标准1 gb/t2805-81 内燃机单体铸造活塞环金相检验(jb/t/t6016-92)2 gb/t3509-83 内燃机筒体铸造活塞环金相检验(jb/t/t6290-92)3 jb/t2330-93 内燃机高磷铸铁缸套金相标准4 nj325-84 内燃机硼铸铁单体铸造活塞环金相标准5 jb/t/t5082-91 内燃机硼铸铁气缸套金相检验6 jb/t/z179-82 中锰抗磨球墨铸铁金相标准7 jb/t/nq100-86 内燃机钒钛铸铁气缸套金相检验8 jb/t/nq178-88 内燃机钒钛铸铁单体铸造活塞环金相检验9 jb/t/t6724-93 内燃机球墨铸铁活塞环金相检验10 jb/t3934-85 汽车、摩托车发动机单体铸造活塞环金相检验11 zb/t t12007-89 汽车、摩托车发动机球墨铸铁活塞环金相标准12 zb/t t06002-89 汽车发动机镶耐磨圈活塞金相标准13 zb/u05004-89 中、大功率柴油机离心铸造气缸套金相检验14 tb/t/t2253-91 球墨铸铁活塞金相检验15 tb/t/t2448-93 合金灰铸铁单体铸造活塞环金相检验16 yb/t4052-91 高镍铬无限冷硬离心铸铁轧辊金相检验17 jb/t/t6954-93 灰铸铁接触电阻加热淬火质量检验和评级18 cb/t/t 3903-1999 中、大功率柴油机离心铸造气缸套金相检验三、表面处理1 gb/t4677.6-84 金属和氧化覆盖厚度测试方法-截面金相法2 gb/t5929-86 轻工产品金属镀层和化学处理层的厚度测试方法-金相显微镜法3 gb/t6462-86 金属和氧化物覆盖层-横断面厚度显微镜测量方法4 gb/t6463-86 金属和其他无机覆盖层-厚度测量方法评述5 gb/t9790-88 金属覆盖层及其他有关覆盖层维氏和努氏显微硬度试验6 gb/t11250.1-89 复合金属覆盖层厚度测定-金相法7 jb/t/t5069-91 钢铁零件渗金属层金相检验方法8 jb/t/t6075-92 氧化钛涂层金相检验方法9 zbj92004-87 内燃机精密电镀减摩层轴瓦检验标准四、铝合金及铜合金1 gb/t3246-82 铝及铝合金加工制品显微组织检验方法2 gb/t3247-82 铝及铝合金加工制品低倍组织检验方法3 gb/t10849-89 铸造铝硅合金变质4 gb/t10850-89 铸造铝合金过烧5 gb/t10851-89 铸造铝合金针孔6 gb/t10852-89 铸造铝铜合金晶粒度7 gb/t7998-87 铝合金晶间腐蚀测定法8 gb/t8014-87 铝及铝合金阳极氧化阳极氧化膜厚度的定义和有关测量厚度的规定9 gb/t3508-83 内燃机铸造铝活塞金相检验10 qj1675-89 变形铝合金过烧金相试验方法11 jb/t3932-85 汽车、摩托车发动机铸造铝活塞金相标准12 jb/t/nq179-88 内燃机稀土共晶铝硅合金金相检验13 jb/t/t5108-91 铸造黄铜金相14 qj2337-92 铍青铜的金相检验方法15 yb/t797-71 单相铜合金晶粒度测定法16 yb/t731-70 电真空器件用无氧铜含氧量金相检验法17 zb/t12003-87 汽车发动机轴瓦铜铅合金金相标准18 nj355-85 内燃机铸造铜铅合金轴瓦金相检验标准19 cb/t1196-88 船舶螺旋浆用铜合金金相含量金相测定方法五、粉未冶金及硬质合金1 gb/t9095-88 烧结铁基材料-渗碳或碳氮共渗硬化层深度的测定2 jb/t2798-81 铁基粉未冶金烧结制品金相标准3 jb/t2869-81 烧结金属材料密度的测定4 jb/t2867-81 烧结金属材料表观硬度的测定5 zbh72007-89 烧结金属摩擦材料金相检验法6 zbh72012-90 碳化钨钢结硬质合金金相试样制备方法7 gb/t3488-83 硬质合金-显微组织的金相测定8 gb/t3489-83 硬质合金-孔隙度和非化合碳的金相测定六、有色合金及稀有金属1 gb/t4296-84 镁合金加工制品显微组织检验方法2 gb/t4297-84 镁合金加工制品低倍组织检验方法3 gb/t1554-79 硅单晶(111)晶面位错蚀坑显示测量方法4 gb/t3490-83 含铜贵金属材料氧化亚铜金相检验方法5 gb/t4194-84 钨丝蠕变试验、高温处理及金相检验方法6 gb/t4197-84 钨钼及其合金的烧结坯条、棒材晶粒度测试方法7 gb/t5168-1985 两相钛合金高、低倍组织检验方法8 gb/t5594.8-85 电子元器件结构陶瓷材料性能测试方法-显微结构的测定9 gb/t6623-86 抛光硅片表面热氧化层错的测试方法10 gb/t8755-88 钛及钛合金术语和金相图谱11 gb/t8756-88 锗单晶缺陷图谱12 gb/t8760-88 砷化镓单晶位错密度的测量方法13 gb/t11809-89 核燃料棒焊缝金相检验14 yb/t935-78 贵金属及其合金的金相试样制备方法15 yb/t732-71 铜、镍及其合金管材和棒材断口检验方法简介mtt(美信检测)是一家从事材料及零部件品质检验、鉴定、认证及失效分析服务的第三方实验室,网址:,:。

铸铁的金相组织图

铸铁的金相组织图

灰口铸铁可锻铸铁球墨铸铁蠕墨铸铁
片状石墨(未浸蚀)团絮状石墨(未浸蚀)球状石墨(未浸蚀)蠕虫状石墨(未浸蚀)放大倍数400×放大倍数400×放大倍数400×放大倍数400×
灰口铸铁灰口铸铁灰口铸铁
F基+片状石墨(F+P)基+片状石墨P基+片状石墨
放大倍数400×放大倍数400×放大倍数400×
可锻铸铁可锻铸铁球墨铸铁
F基+团絮状石墨P基+团絮状石墨F基+球状石墨放大倍数400×放大倍数400×放大倍数400×
球墨铸铁球墨铸铁高磷铸铁
(F+P)基+球状石墨P基+球状石墨P基+片状石墨+磷共晶放大倍数400×放大倍数400×放大倍数400×。

铸铁的金相组织图

铸铁的金相组织图

灰口铸铁可锻铸铁球墨铸铁蠕墨铸铁
片状石墨(未浸蚀)团絮状石墨(未浸蚀)球状石墨(未浸蚀)蠕虫状石墨(未浸蚀)放大倍数400×放大倍数400×放大倍数400×放大倍数400×
灰口铸铁灰口铸铁灰口铸铁
F基+片状石墨(F+P)基+片状石墨P基+片状石墨
放大倍数400×放大倍数400×放大倍数400×
1 / 21 / 2
可锻铸铁可锻铸铁球墨铸铁F基+团絮状石墨P基+团絮状石墨F基+球状石墨放大倍数400×放大倍数400×放大倍数400×
球墨铸铁球墨铸铁高磷铸铁
(F+P)基+球状石墨P基+球状石墨P基+片状石墨+磷共晶放大倍数400×放大倍数400×放大倍数400×
2 / 22 / 2。

铸造技术:锰、磷、硫对球墨铸铁质量的影响

铸造技术:锰、磷、硫对球墨铸铁质量的影响

铸造技术:锰、磷、硫对球墨铸铁质量的影响锰锰扩大奥氏体相区,扩展相区的程度随锰含量上升而增加。

球墨铸铁中锰的凝固分配系数约为0.7,凝固时锰偏聚于液相。

在固态相变过程中,锰原子的扩散比碳原子困难,扩散速度远低于碳原子,导致含锰较高的铸件相变阻力增加,并阻碍铁原子扩散,减缓慢奥氏体分解速度,增加共析转变过冷度,加长转变孕育期,使避免珠光体转变的临界冷速降低。

在较低的共析温度下,共析转变速率加快,奥氏体中的碳原子迁移变得困难,因而锰抑制铁素体形成,从而提高基体中珠光体体积分数。

可以利用调节锰量来改变基体中铁素体和珠光体含量的比例,改变铸件性能。

锰使共析温度显著下降。

球墨铸铁中每增加1%锰,共析转变温度下降约20度。

表明锰增加奥氏体共析转变过冷度。

在较低温度下,转变阻力增大,奥氏体稳定性提高,并可使共析转变产物细化。

含锰量达到一定程度后,奥氏体能够保留到室温。

锰减少共析组织含碳量。

当基体含锰量不太高时,每1%的锰约可使共析组织含碳量减少0.05%--0.06%。

加锰使共析点移向相图左下方。

奥氏体共析转变中锰原子有助于较厚球墨铸铁件淬火硬化。

锰溶入铁并与碳化合形成渗碳体。

在此化合物中,锰原子部分取代铁原子,使化合物的结合键加强。

存在共晶组织或共析组织中的这种碳化物都是稳定R .微区分析结果表明:球状石墨周围含锰量比奥氏体晶界处的含锰量低数倍,这是因为锰原子的扩散速度低于碳的扩散速度,导致共晶转变结束后的晶间残留熔液相,锰浓度远高于铸件平均浓度。

共晶转变完成后,晶界上将会析出晶碳化物。

随着铸件含锰量增加,碳化物体积分数随之增大,甚至能形成断续网状或连续网状碳化物,降低铸件塑韧性。

因此制造塑韧性要求较高的铁素体球墨铸铁时,铸件含锰一般应限制在0.2%以下。

球墨铸铁的几种常存元素中,对珠光体体积分数影响显著的是锰。

长期生产珠光体球墨铸铁的经验表明,厚度25mm以下的镁球墨铸铁中锰=0.3%--0.5%时,基体中珠光体含量一般在60%--80%。

浅析直读光谱仪测定高磷铸铁中主要杂质元素含量

浅析直读光谱仪测定高磷铸铁中主要杂质元素含量

浅析直读光谱仪测定高磷铸铁中主要杂质元素含量作者:贺铭兰来源:《城市建设理论研究》2013年第03期摘要:本文介绍了利用直读光谱仪测定高磷铸铁中主要杂质元素含量,通过合理的取样、制样、优化光谱仪参数、采用控制试样法等措施,分析结果准确可靠,满足了炉前分析的需要。

关键词:高磷铸铁直读光谱仪制样控制试样中图分类号: O433 文献标识码: A 文章编号:前言随着人们产品质量意识的提高,采用快速准确的分析方法进行质量控制和产品检验变得尤为重要。

C、S、Mn、P、Si作为高磷铸铁中的主要元素,我公司以前主要采用化学分析方法进行测定,因化学分析方法为经典方法同时也是仲裁分析方法,该方法虽然测定的准确度和灵敏度都比较高,但检测速度慢,操作繁琐,成本高,从长远看不适应我公司分析要求,分析数据滞后不能及时指导生产。

为提高分析效率,将先进的科学技术应用到实际生产中,使分析检测及时为生产服务,我们采用德国生产的光电直读光谱仪分析高磷铸铁,通过一系列试验确定了适宜的分析参数,试验结果令人满意。

不但为公司炭素厂生产及时起到指导作用,同时也减轻了分析检测人员的的劳动强度。

试验部分2.1取样模具取样模具宜选用铸铁或铸钢材料,其形状规格一般为:模深70mm、顶部直径40-45mm、底部直径为25-35mm、壁厚10-30mm。

2.2 取样高磷铸铁的生产是一种复杂的热加工过程,即使化学成分相同,冷却速度不同,也会造成组织结构的差异。

我厂的磷生铁生产试样一般取成蘑菇状,由于炭含量较高再加上试样的急速水冷,造成试样难磨是一方面,另一方面也造成试样的组织结构产生很大变化。

如何快速磨制并保证试样的准确性和稳定性,成为分析准确与否的关键。

目前在生产工艺中,多采用取样急冷,形成白口化的铸铁进行快速分析,但样品在流水中急冷,易产生裂纹,影响测试结果的准确性。

经查验资料和这段时间试验证明,磷生铁试样的分析必须使分析样品进行充分的白口化,因为铸磨的形状和取样的条件使磷生铁中石墨碳析出,使在激发时出现的蒸发过程受到影响,从而导致分析结果产生偏差,为此取样要求比较严格,要求取样标准化,如取样温度、脱模时间、冷却速度。

铸铁金相组织分析

铸铁金相组织分析

球墨铸铁金相组织球墨铸铁金相组织球墨铸铁牌号球墨铸铁是指铁液经球化处置后,使石墨大部或全体呈球状形态的铸铁。

与灰铸铁比拟,球墨铸铁的力学性能有明显提高。

由于它的石石墨呈球状,对基体的切割作用最小,可有效地应用基体强度的70%~80%(灰铸铁-般只能应用基体强度的30%)。

球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。

球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了产业性生产。

而且,各个时代都有代表性的产品或技巧。

20世纪50年代的代表产品是动员机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。

如今,球墨铸铁已在汽车、铸管、机床、矿山和核产业等范畴获得普遍的利用。

据统计,2000年世界的球墨铸铁产量已超过1500万吨o球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。

表1 单铸试块球墨铸铁牌号牌号抗拉强度Rm(MPa)断后伸长率A(%)布氏硬度HBW重要金相组织QT400-1840018130~180铁素体QT400-15 40015130~180铁素体QT450-10 45010160~210铁素体QT500-7 5007170~230铁素体+珠光体QT600-3 6003190~270珠光体+铁素体QT700-27002225~305珠光体QT800-28002245~335珠光体或回火组织QT900-29002280~360贝氏体或回火组织球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。

其中,最具代表性的形态是球状。

在光学显微镜下察看球状石墨,低倍时,外形近似圆形;高倍时,为多边形,呈辐射状,构造清楚。

经深腐化的试样在SEM中视察,球墨表面不光滑,起伏不平,形成一个个泡状物。

铸铁金相图谱赏析

铸铁金相图谱赏析

铸铁金相图谱赏析(一)时间:2010-01-23 08:05:02来源:作者:点击: 1次铸铁金相图谱赏析(二)时间:2010-01-23 10:59:27来源:作者:点击: 1次铸铁金相图谱赏析(三)时间:2010-01-23 11:01:59来源:中国金相网作者:点击: 1次金相组织解析时间:2009-12-01 19:36:11来源:作者:点击: 247次金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在α-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

球墨铸铁金相检验

球墨铸铁金相检验

球墨铸铁金相检验
中国古代的铸铁金相检验是一种技术,可以检测各种金属的质量和性质。

早期的铸铁金相检验以球墨炉为基础,主要用于检验各种金属。

球墨炉是六角形的两组管(内、外)构成的炉灶,里面加入木炭,点燃之后,金属可以从小孔流出,受热后,金属就会汇合在一起,形成球型晶体。

在球墨炉发光的情况下,金属的质量和性质就可以在经验的基础上被发现,从而辨别金属的质量和性质。

铸铁金相检验的传统方法使用一种称为“球墨”的金属合金,由铸铁、锡、铅、硅、硫和磷组成,作为检验金属质量和性质的参考标准。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档