数学二级结论
高中数学常用二级结论大全
高中数学常用二级结论大全一、基础常用结论1. 立方差公式:a³-b³=(a-b)(a²-ab+b²);立方和公式:a³+b³=(a+b)(a²-ab+b²).2. 任意的简单n 面体内切球半径为是简单n面体的体积,S 表是简单n 面体的表面积).3. 在Rt △ABC 中,C 为直角,内角A,B,C 所对的边分别是a,b,c, 则△ABC 的内切圆半径为4. 斜二测画法直观图面积为原图形面积的倍.5. 平行四边形对角线平方之和等于四条边平方之和.6. 函数ʃ(x)具有对称轴x= a,x=b(a≠b),则ʃ(x)为周期函数且一个正周期为2 |a-b|.7. 导数题常用放缩e'≥x+1,e^>ex(x>1).8. 点(x,y) 关于直线Ax+By+C=0 的对称点坐标9. 已知三角形三边x,y,z, 求面积可用下述方法(一些情况下比海伦公式更实用,如√27, √28, √29):,二、圆锥曲线相关结论10. 若圆的直径端点A(x₁,yi),B(x₂,y₂), 则圆的方程为 ( x - x ) ( x - x₂) + (y-y)(y-y₂)=0.11. 椭区的面积S 为S =πab.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导 . 推论:①过圆( x -a)²+(y-b)²=r²上任意一点P(xo,y。
) 的切线方程为 ( x o-a)(x-a)+(y 。
-b)(y-b)=r²;②过椭圆) 上任意一点P(xo,y。
) 的切线方程为③过双曲) 上任意一点P(x₀,y 。
) 的切线方程为 1.14. 任意满足ax"+by"=r 的二元方程,过曲线上一点 (x₂,y₁) 的切线方程为ax₁x"¹+by₂y"-1=r.15. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.①过圆 x ² +y²+Dx+Ey+F=0 外一点P(x₀,o) 的切点弦方程②过椭圆O) 外一点P(xo,y。
重点高中高考数学所有二级结论《完整版》
重点高中高考数学所有二级结论《完整版》————————————————————————————————作者:————————————————————————————————日期:高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+byy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则: ①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin41cos cos cos CB AC B A +=++ ③2sin 2sin 2sin 212sin 2sin 2sin222CB AC B A -=++ ④4sin 4sin 4sin 412sin 2sin 2sinC B A C B A ---+=++πππ ⑤2sin 2sin 2sin4sin sin sin CB AC B A =++ ⑥2cot 2cot 2cot 2cot 2cot 2cotCB AC B A =++ )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++⑦12tan 2tan 2tan 2tan 2tan 2tan=++A C C B B A ⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin222≥++C B A ⑩12tan 2tan 2tan222≥++CB A ⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2H h =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=-立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e Λ 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心 (4)OC OB OA ==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M nX D 49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心 (3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心第 11 页 (4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅ 55.m >n 时,22n m nm n m e nm e e e e +>-->+。
高中高考数学所有二级结论《[完整版]》
高中高考数学所有二级结论《[完整版]》一、几何结论1、关于点1.1 同一直线上三点,若其中两点间距相等,则三点共线;1.2 直线平分线定理:若直线Ⅰ平分线段AB,则AM/MB=1;1.3 直线的垂直平分线定理:若直线Ⅰ对AB的垂直平分线,则M是A、B中点;1.4 同一直线出发点,夹萝卜角度相等,终足点也在同一直线上;1.5 同一直线上三点,至少有2点共线;1.6 若任意一点位于AB的延长线上,则距AB同侧的距离相等;2、关于直线2.1 齐次直线:若直线上所有点满足y=ax+b,则直线称为齐次直线;2.2 相交线定理:若两条直线相交,则它们的夹角一定是锐角;2.3 相等的夹角可以定位:若两条直线的夹角为有限尺寸夹角,则它们可以定位;2.4 两平行线定理:若两条直线平行,则它们过同一直线上的任意一点都相等;2.5 同一实轴向非相交点所在直线定理:由两条实轴向非相交的直线,所形成的不规则四边形,相较相邻的两边的夹角度数之和为180°;3、关于三角形3.1 相等的边角定理:若两角的大小相等,则它们两理封闭的边也相等;3.2 对角线定理:若一个多边形的对角线相交,则其论线的和为360°;3.3 相等的三角形定理:若三角形的两边和它们之间的夹角相等,则三角形中的任何一点到另外两点的距离也相等;3.4 含有相同角的三角形定理:若两个三角形包含有相同大小的角,则其面积之比,与相应边的比值的平方成正比;3.5 三角形角度和定理:若三角形的三边的长度都不相等,那么它的三内角之和等于180°;3.6 斜边长度定理:若一个三角形的两边长度相等,那么它们所构成的内角一定是锐角;4、关于圆4.1 直径定理:若任意直线与圆相交,则此直线必经过圆心;4.2 垂足定理:若圆上存在一点,使得其到圆心的距离(即圆上点P到垂足M)尽可能的小,则M为圆上某一点P的垂足;4.3 旋转定理:把椭圆上的任意一点A旋转一定的角度,得到的椭圆上的点B,满足AB距离的平方等于AB分别到圆点的距离的积;二、代数结论1、关于一元二次方程1.1 一元二次方程的解:解一元二次方程ax2+bx+c=0(a≠0)的两个解是:x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a;1.2 求解实数解:若b2-4ac>0,那么它有实数解,若b2-4ac=0,那么它有重根,若b2-4ac<0,则无实数解;2、关于一元三次方程2.1 三次方程的解:一元三次方程ax3+bx2+cx+d=0(a ≠ 0)的三个实数解为:x1 = [-b + √(b2-3ac)]/3ax2 = [-b - √(b2-3ac)]/6a + i√3/6ax3 = [-b - √(b2-3ac)]/6a - i√3/6a;2.2 求解实数解:若b2-3ac>0,它有三个不同的实数解;若b2-3ac=0,它有重根;若b2-3ac<0,它有三个不同的实数解;3、关于系数代数方程3.1 二次代数方程:若一个二次代数方程ax2+bx+c=0有实数解,则它的解为x1=(-b+√(b2-4ac)/2a,x2=(-b-√(b2-4ac)/2a;3.2 三次代数方程:若一个三次代数方程ax3+bx2+cx+d=0有实数解,则它的解为x1=(-b+√(b2-3ac)/3a,x2=(-b-√(b2-3ac)/6a + i√3/6a,x3=(-b-√(b2-3ac)/6a - i√3/6a;4、关于函数4.1 闭区间:函数定义域上下端点其值皆有效,叫闭区间;4.2 周期:当变量满足周期函数关系,即变量与函数之间存在正反循环吻合关系时,称其为“周期函数”;4.3 偶函数:若变量x在定义域内变换了一倍角度,f(x)应等于自己,叫作偶函数;4.4 奇函数:若变量x在定义域内变换了一倍定义域,而f(x)值改变了符号,叫作奇函数;5、关于初等函数5.1 线性函数的定义:当关系式为y=ax+b,a、b为有理常数,b≠0时,它称为“线性函数”;5.2 二次曲线的定义:当关系式为y=ax2+bx+c(a≠0),a、b、c 为有理常数时,它称为“二次曲线”;5.3 对称性:定义域内一点同它的对称点在函数图像上所对应的点总是具有相同的函数值,称为函数具有“对称性”;5.4 反函数定义:当函数f(x)在它的定义域内是一一對應的,可以反求f(x)的值的函数,称为“反函数”;。
高中常用数学二级结论
高中常用数学二级结论高中常用数学二级结论涉及到很多方面,如三角函数、数列、平面几何等。
下面我将就其中一些结论进行详细阐述。
一、三角函数1.极角余弦定理对于任何一个三角形ABC,P点是其内部的一点,则有:cos PAC + cos PAB + cos PBC = 1 + cos ABC这个结论表明,对于任何一个三角形的内部一点P,它到三个角的余弦值之和等于常数1加上余弦值对应的角的和。
2.半角公式对于任意一个角A,在A/2的两遍,设AB,AC分别为A/2的角平分线,有:sin A/2 = √[1-cosA]/2cos A/2 = √[1+cosA]/2tan A/2 = sin A/(1+cosA)这个结论广泛应用于三角函数的计算中,可简化计算过程。
二、数列1. 常见数列的通项公式对于一些经常出现的数列,如等差数列、等比数列、斐波那契数列等,它们都有一个通项公式,来表示第n项的值。
等差数列公式:an = a1 + (n-1)d等比数列公式:an = a1 * q^(n-1)斐波那契数列公式:Fn = Fn-1 + Fn-2这些公式是高中数学里比较基础的知识,掌握它们可以方便我们在求解数列问题时,快速得出所需的值。
2. 递推数列的通项公式对于一些递推数列,其前一项或前几项的值与后一项或后几项的值有一定的联系,可以借助这些联系来求出通项公式。
如Fibonacci数列通项公式:Fn = [φ^n - (1-φ)^n]/√5,其中φ=(1+√5)/2,称为黄金分割数,是一个十分有趣的数学结论,其出现在音乐、美术、建筑等多个领域中。
三、平面几何1. 垂线分割线段对于平面上的一条线段AB,它的中垂线CD,将线段分成两部分,有:AC²- CD²= BC²- CD²这个结论可以应用于平面几何中的很多问题,如求线段的长度、判定三角形的性质等。
2. 等角平分线定理对于任意三角形ABC,AE是其内角BAC的平分线,则有:AB/AC = EB/EC这个结论表明,内角的平分线的性质与外接圆密切相关,在平面几何中有重要的应用。
高中数学二级结论大全和推导过程
高中数学二级结论大全和推导过程高中数学二级结论是指高中数学中一些重要的结论或定理,这些结论和定理是学习和理解高中数学知识的基础,也是解题的重要工具。
本文将给出一些常见的数学二级结论,并对其推导过程进行简要介绍。
(一)代数运算法则1.加法运算的交换律:对于任意两个实数a和b,有a + b = b + a。
推导过程:根据实数加法的定义,a + b = b + a。
2.加法运算的结合律:对于任意三个实数a、b和c,有(a + b) +c = a + (b + c)。
推导过程:将(a + b) + c按照加法运算定义进行展开,得(a + b) + c = ((a + b) + c)。
将a + (b + c)按照加法运算定义进行展开,得a + (b + c) =(a + (b + c))。
3.加法运算的存在零元:对于任意实数a,有a + 0 = a。
推导过程:根据实数加法的定义,a + 0 = a。
4.加法运算的存在负元:对于任意实数a,存在一个实数-b,使得a + (-b) = 0。
推导过程:根据实数加法的定义,a + (-a) = 0。
5.乘法运算的交换律:对于任意两个实数a和b,有a · b =b · a。
推导过程:根据实数乘法的定义,a · b = b · a。
6.乘法运算的结合律:对于任意三个实数a、b和c,有(a · b) · c = a · (b · c)。
推导过程:将(a · b) · c按照乘法运算定义进行展开,得(a · b) · c = ((a · b) · c)。
将a · (b · c)按照乘法运算定义进行展开,得a ·(b · c) = (a · (b · c))。
7.乘法运算的存在单位元:对于任意实数a,有a · 1 = a。
高中数学常用二级结论汇总
高中数学常用二级结论汇总1.数列相关的二级结论:(1)等差数列的常用二级结论:-等差数列的前n项和公式:Sn = (a1 + an) * n / 2;-等差数列通项公式:an = a1 + (n - 1)d;-等差数列前n项和与末项的关系:Sn = (a1 + an) * n / 2 = an * n - (n - 1) * d / 2(2)等比数列的常用二级结论:-等比数列的前n项和公式:Sn=a1*(q^n-1)/(q-1),其中q≠1;-等比数列前n项和与末项的关系:Sn=a1*(1-q^n)/(1-q)。
2.几何相关的二级结论:(1)平行线与三角形的二级结论:-平行线分割三角形的比线段互等;-平行线分割三角形的比面积互等;-平行线分割三角形的比任意两条边互等。
(2)相似三角形的二级结论:-三角形内部的直线与角平分线的交点分割三角形的比线段互等;-三角形内部的直线与角平分线的交点分割三角形的比面积互等。
(3)圆的二级结论:-圆心角的度数等于其所对弧的度数;-同弧所对的圆心角相等;-两圆相交弧的度数等于相对的圆心角的度数。
3.解析几何相关的二级结论:(1)直线的方程二级结论:-斜率相等的两条直线平行;-两直线相交于一点的充要条件是斜率不相等。
(2)圆的方程二级结论:-到圆心距离等于半径的点在所述圆上;-圆心到直线的距离等于半径的相交点所对的弦的中点到圆心的距离。
(3)抛物线的二级结论:-在对称轴上等距离的两点与焦点和顶点的距离相等;-抛物线的顶点坐标为(h,k),则焦点的坐标为(h,k+p),其中p为焦距。
4.概率与统计相关的二级结论:(1)事件的二级结论:-随机事件A的对立事件记为A',则P(A')=1-P(A);-若A与B互斥,则P(AUB)=P(A)+P(B)。
(2)条件概率的二级结论:-若事件B发生的条件下,事件A发生的概率为P(A,B),则P(A,B)=P(A∩B)/P(B);(3)独立事件的二级结论:-若事件A与事件B相互独立,则P(A∩B)=P(A)*P(B)。
高中高考数学所有二级结论《完整版》
高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于123.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则tan θ=24.A 、B 、C 三点共线⇔nm n m +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法x x f =)()(x f )(x f )(1-=n n a f a定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABCcb a -+35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e Λ 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心 (3)O c b a ⇔=++为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M nX D 49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。
高考数学必备的98个二级结论
,k N *
22 2
4 cos sin nA cos nB cos nC , n 4k 3 22 2
(2)若 A B C ,则
① sin 2 A sin 2B sin 2C 8sin A sin B sin C
sin A sin B sin C
222
② cos A cos B cosC 1 4sin A sinB sinC 222
③ tan 2 A tan 2 B tan 2 C 9 ④ cot2 A cot2 B cot2 C 1
39、帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆,双曲线,抛物线),那么 它的三对对边的焦点在同一条直线上 40、三余弦定理:设 A 为面上一点,过 A 的斜线 AO 在面上的射影为 AB,AC 为面上的一 条直线,那么∠OAC,∠BAC,∠OAB 三角的余弦关系为 cos∠OAC=cos∠BAC·cos∠OAB( ∠BAC 和∠OAB 只能是锐角)
an f an1,n 1,则 an p a an1 p ,即 a n p 是公比为 a 的等比数列。
定理
2:设
f
x
ax b cx d
c
0, ad
bc
0
, an 满足递推关系
an
f
an1,n 1初
值条件 a1 f a1
(1)若 f
x
有两个相异的不动点
p, q ,则
an an
a 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于 1 且为常数 e 的点的
轨迹称为双曲线
29、反比例函数 y k (k 0) 为双曲线,其焦点为 x
2k,2k 和 2k,- 2k , k 0
30、到角公式:若把直线 l1依逆时针方向旋转到与l2第一次重合时所转得角是 ,则
高中数学常用二级结论
高中数学常用二级结论在高中数学的学习中,掌握一些常用的二级结论,往往能够帮助我们在解题时节省时间,提高效率。
下面就为大家介绍一些常见且实用的高中数学二级结论。
一、函数部分1、若函数\(f(x)\)的图像关于直线\(x = a\)对称,则\(f(a + x) = f(a x)\);反之,若\(f(a + x) = f(a x)\),则函数\(f(x)\)的图像关于直线\(x = a\)对称。
这个结论在解决函数对称性问题时非常有用,例如判断函数的对称轴或者根据对称性来简化函数表达式。
2、若函数\(f(x)\)是偶函数,则\(f(x) = f(x)\);若函数\(f(x)\)是奇函数,则\(f(x) = f(x)\)。
利用奇偶性可以简化函数的运算和分析函数的性质。
3、对于函数\(f(x) = ax^2 + bx + c\)(\(a \neq 0\)),当\(a > 0\)时,函数在\(x =\frac{b}{2a}\)处取得最小值;当\(a < 0\)时,函数在\(x =\frac{b}{2a}\)处取得最大值。
这有助于快速找到二次函数的最值点。
二、三角函数部分1、在三角形\(ABC\)中,\(A + B + C =\pi\),则\(sin(A + B) = sinC\),\(cos(A + B) = cosC\)。
这对于在三角形中求解三角函数值很有帮助。
2、\(sin^2\alpha + cos^2\alpha = 1\),\(tan\alpha =\frac{sin\alpha}{cos\alpha}\)(\(cos\alpha \neq 0\))。
这是三角函数中最基本的恒等式,许多问题的解决都基于此。
3、\(sin(2k\pi +\alpha) = sin\alpha\),\(cos(2k\pi +\alpha) = cos\alpha\)(\(k \in Z\))。
周期性是三角函数的重要性质之一,这个结论可以帮助我们快速化简一些复杂的三角函数表达式。
高中数学二级结论(经典实用)
高中数学二级结论(经典实用)1、余弦定理:在任何三角形中,$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
2、正弦定理:在任何三角形中,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中$R$为该三角形的外接圆半径。
3、勾股定理:对于任意直角三角形,斜边的平方等于两条直角边平方和。
4、解二元一次方程组:当方程组$ax+by=c$,$dx+ey=f$的系数矩阵的行列式不为零时,解得$x=\frac{ce-bf}{ae-bd}$,$y=\frac{af-cd}{ae-bd}$。
5、解二次方程:对于方程$ax^2+bx+c=0$,当$\Delta=b^2-4ac>0$时,有两个不同实根$x_1=\frac{-b+\sqrt{\Delta}}{2a}$,$x_2=\frac{-b-\sqrt{\Delta}}{2a}$;当$\Delta=0$时,有一个实根$x=-\frac{b}{2a}$;当$\Delta<0$时,有两个虚根$x_1=\frac{-b+\sqrt{-\Delta}}{2a}i$,$x_2=\frac{-b-\sqrt{-\Delta}}{2a}i$。
6、二次函数的解析式:对于二次函数$y=ax^2+bx+c$,它的顶点坐标为$\left(-\frac{b}{2a},-\frac{\Delta}{4a}\right)$,其中$\Delta=b^2-4ac$;当$a>0$时,开口向上,当$a<0$时,开口向下。
7、解一元高次方程:对于方程$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$,如果存在有理根$p/q$,则必有$p\mid a_0$,$q\mid a_n$,且$p,q$互质。
高中高考数学所有二级结论《完整版》Word版
高中高考数学所有二级结论《完整版》Word版1. 余弦定理:对于任意三角形ABC,有$a^2=b^2+c^2-2bc\cos{A},b^2=a^2+c^2-2ac\cos{B}, c^2=a^2+b^2-2ab\cos{C}$2. 正弦定理:对于任意三角形ABC,有$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}$3. 高线定理:对于任意三角形ABC,设D为BC上的垂足,则AD为该三角形的高线,有$AD=\dfrac{2S}{a}, BD=\dfrac{2S}{c},CD=\dfrac{2S}{b}$,其中S为该三角形的面积。
4. 中线定理:对于任意三角形ABC,设E,F为AB,AC上的中点,则BE,CF为该三角形的中线,有$BE=\dfrac{1}{2}AC, CF=\dfrac{1}{2}AB$5. 角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A的平分线,则$\dfrac{BD}{CD}=\dfrac{AB}{AC}$。
6. 高尔夫球定理:一条直线与圆相切时,从切点到圆心的距离就是该直线的斜率。
7. 根号2定理(勾股定理):对于直角三角形ABC,设$\angle A=90^{\circ}$,BC 为斜边,则$AB^2+AC^2=BC^2$8. 等腰三角形的角平分线定理:对于等腰三角形ABC,设D为AB,AC的交点,则AD 为角A的平分线。
9. 任意三角形的角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A 的平分线,则$\dfrac{AB}{AC}=\dfrac{BD}{CD}$。
10. 三角形内角和定理:在任意三角形ABC中,$\angle A+\angle B+\angleC=180^{\circ}$。
11. 垂直平分线定理:在平面上,对于任意两点A,B,所有到A,B的距离相等的点P 构成的直线为AB的垂直平分线。
初中数学二级结论
初中数学二级结论
1.对于任意两个正实数a和b,有以下公式成立:a×b=|a|×|b|,其中"|a|"表示a的绝对值。
2.三角形内角和定理:任意一个三角形内角的度数之和等于180度。
3.勾股定理:在一个直角三角形中,斜边的平方等于两直角边平方和。
即,若直角三角形的两条直角边长度分别为a和b,斜边长度为c,则有c²=a²+b²。
4.任意一个正整数可以因数分解成若干个素数的积。
5.两条平行线被一组平行线截断后,其对应的内角相等,对应的同旁角互补。
6.相似三角形的对应边成比例,对应角相等。
7.周长相等的正多边形中,边长越大,面积越大。
8.两个有理数相加,若它们的分母相等,则相加后的结果的分母不变。
9.两个正整数的最大公约数与最小公倍数的乘积等于这两个数的积。
即,对于正整数a和b,有gcd(a,b)×lcm(a,b)=a×b。
10.平行四边形对角线分割成的四个三角形互相相等。
高中数学的二级结论
高中数学的二级结论
高中数学的二级结论包括:
1. 三角形内角和定理:任何三角形的三个内角之和等于180度。
2. 相似三角形定理:如果两个三角形对应角度相等,则它们是相似的。
3. 圆的面积公式:圆的面积等于πr,其中r为半径。
4. 直角三角形勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
5. 平行线性质:两条平行线与一条横穿它们的第三条直线所构成的内角、外角关系。
6. 垂直平分线定理:垂直平分线将一条线段分成两个长度相等的部分,并且连线的垂直平分线还可以作为该线段两端点连线的中垂线。
7. 中线定理:三角形中,连接一个顶点和对立边中点的线段被称为中线,三角形的三条中线交于一点,这个点到三角形三个顶点的距离相等。
8. 三角形的高定理:三角形的高分别同底边和斜边构成的三角形相似,高与底边的乘积等于斜边上的中线长乘以半周长。
高中高考数学所有二级结论《完整版》 .
高中高考数学所有二级结论《完整版》 .一、最大值最小值和极值点1、若解三角形的函数图象上的最小值为 b,则其最大值和极值点为 (a,b)。
2、使函数 y=f(x) 在闭区间 [a, b] 内取得最小值时,有:f(x) 在区间 (a, b) 的极值点位于 x=a 或 x=b。
6、若曲线 y=f(x) 的各个极值点间段形成单调递增或递减区间,则函数 y=f(x) 在该区间上取得同一值,并且该值为最小值或最大值。
2、若函数 y=f(x) 在a≤x≤b 的范围内单调递增,则函数可能在 (a, b) 的范围内取得极大值 c,其中 a 和 b 可能也是极值点;若函数 y=f(x) 在a≤x≤b 范围内单调递减,则函数可能在 (a, b) 的范围内取得极小值 d,其中 a 和 b 可能也是极值点。
三、极限1、函数 y=f(x) 对某个数 x 求极限时,当lim x→a f(x) 存在时,就可以确定函数在 x=a 的极限值及其未定义点,即lim x→a f(x)=L。
四、不等式1、若 y=f(x) 是多元函数,则该函数满足两个单调的不等式的交汇处就是极大值点,而满足两个逆单调的不等式的交汇处就是极小值点。
2、若函数 y=f(x) 是不等式 y>f(x) 的解,则当y≤f(x) 时,函数 y=f(x) 就取得最小值,而当y≥f(x) 时,函数 y=f(x) 就取得最大值。
3、若函数有极值点,那么该函数的对应的不等式中的所有值介于函数的最大值和最小值之间。
2、当有限次多项式函数 y=f(x) 在 having T 公式的拟合函数中有极值时,Tarrance 公式会捕捉该函数的起伏特性。
3、当函数 y=f(x) 可以用 Taylor 公式进行估计时,该函数在 x=a 处可能取得最大值或最小值,即函数可能在 x=a 上取得极值。
高中数学二级结论(精)
高中数学二级结论一、函数性质1、奇偶函数概念的推广及其周期(1)对于函数f (x ),若存在常数a ,使得f (a -x )=f (a +x )(*),则称f (x )为广义型偶函数(图像关于直线a x =轴对称),且当有两个相异实数a ,b 同时满足(*)时,f (x )为周期函数T =2|b -a |;(2)对于函数f (x ),若存在常数a ,使得f (a -x )=—f (a +x )(*),则称f (x )为广义型奇函数(图像关于点()0a ,中心对称),当有两个相异实数a ,b 同时满足(*)时,f (x )为周期函数T =2|b -a |2、抽象函数的对称性(1)若f (x )满足f (a +x )+f (b -x )=c ,则函数关于(,)成中心对称(充要)(2)若f (x )满足f (a +x )=f (b -x ),则函数关于直线x =成轴对称(充要)3、()()f x k k f x =方程有解,则的取值范围为的值域4、有几个交点的图像与直线有几个解方程k y x f y k x f ==⇔=)()(5、()()恒成立,,恒成立,,k x f n m x k x x x f x f n m x x >'∈∀⇔>--∈∀)()()(,212121二、导数应用(一)常用不等式放缩①1+≥x e x 、1ln 11-≤≤-<-x x xx x、)1(>>x ex e x 、()2ln x e ax x a >>;②()11ln 10x x x x -<<->、2ln(1)2x x x x -<+<()0x >;③)2(≤≥--a ax e e x x 推论:)0(ln 21>≥-t t t t 、ln (002)axx x a x a≥>≤≤+,;④x x 2111+≈+;()11nx nx +≥+;⑤sin tan x x x <<)2,0(π∈x ;πx x 2sin >)2,0(π∈x .(二)洛必达法则法则1:若函数f (x )和g (x )满足下列条件:(1)()lim 0x a f x →=及()lim 0x a g x →=;(2)在点a 的去心邻域内,f (x )与g (x )可导且g '(x )≠0;(3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2:若函数f (x )和g (x )满足下列条件:(1)()lim x a f x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f (x )与g (x )可导且g '(x )≠0;(3)()()limx a f x l g x →'=',那么()()limx af xg x →=()()lim x af x lg x →'='.三、解三角形1、面积公式(1)111sin sin sin 222C S bc ab C ac ∆A B =A ==B (2)()()()122111221,,,2CS x y x y b x y c x y ∆A B ==-==其中r r (3)已知三角形三边,求面积可用下述方法:①海伦公式变式:如下图,图中的圆为大三角形的内切圆,大三角形三边长分别为a ,b ,c ,大三角形面积为縰 th ( t hᦙ縰②xz z y y x S z y x c x z b z y a y x ⋅+⋅+⋅==+=+=+21222再代入、、解得,,由2、外接圆半径3、任意三角形内切圆半径r =cb a S++2(S 为面积)(若C 为直角,则△ABC 的内切圆半径为2cb a -+)4、余弦定理推论:2222b c a AB AC +-⋅=5、射影定理:a =bc osC +cc os B ;b =cc osA +ac osC ;c =ac os B +bc os A6、正切定理:tanA +tanB +tan C=tanAtanBtan C7、三角形其它边角关系①()b c a a b c a +>⎧⎪⎨-<⎪⎩为最大边时②()222sin cos sin cos sin cos sin cos sin cos sin cos A BA CB CABC b c a a B A C A C B>⎧⎪>⎪⎪>∆⇔+>⇔⎨>⎪⎪>⎪>⎩为锐角三角形为最大边时③()222tan tan tan 0a b c A a A B C a b c ⎧>+∠⇔⇔++<⎨<+⎩为钝角的三角形为最大边时四、平面向量1、三点共线定理:2、等和线定理:3、燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.4、奔驰定理已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=五、直线和圆的方程1、到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-23、直线向量式方程:(112121=x x y y x x y y ----,,或()()()()211211x x y y y y x x --=--4、点(x ,y )关于直线Ax +By +C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 5、以()()1122,,,A x y B x y 为直径端点的圆方程为()()()()12120x x x x y y y y --+--=6、过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--7、抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.8、切点弦方程(平面内一点),(00y x P 引曲线的两条切线,两切点所在直线的方程)①圆222)()(r b y a x =-+-的切点弦方程为200))(())((r b y b y a x a x =--+--②椭圆)0,0(12222>>=+b a by a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a by a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=六、圆锥曲线OFE DCBA1、e=2、椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+3、双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-4、若直线y=kx+m 与椭圆)0(12222>>=+b ab y a x 相交于两点,则2222212bk a mb y y +=+5、弦长公式:AB=6、椭圆的焦半径公式:1020,PF a ex PF a ex =+=-7、已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且,焦准距(焦点到对应准线的距离)为,则①22cos cos b b FA FB a c a c θθ==-+,,;②当焦点内分弦时,有;③当焦点外分弦时(此时曲线为双曲线),有.8、已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21PF F ,则221cos e -≥θ(P 点在y 轴上时,θ角最大)证明:()()222222222121221222121212122+42+422cos =1111222+2a c r r c r r r r c b b e r r r r r r a r r θ----==-≥-=-=-⎛⎫⎪⎝⎭9、()()111221sin 2,,sin sin sin sin sin r r cPF F PF F e αβαβαβαααβ+∠=∠===⇒=++若则()2222tan APB tan AP P 1a x a xab y y y H B H a x a x a b y y+-+-∠=∠+∠==+---⋅22PA PB b k k a ⋅=-)10、在椭圆22221x y a b+=(a >b >0),F 1,F 2分别为左、右焦点,P 为椭圆上一点,则△PF 1F 2的面积122tan 2PF F S b θ= ,其中θ=∠F 1PF 2.①()()222222121212121224=+2cos +421cos =1cos b c r r rr r r c rr rr θθθ-=-=+⇒+②11、在双曲线22221x y a b-=1(a >0,b >0)中,F 1,F 2分别为左、右焦点,P 为双曲线上一点,则△PF 1F 2的面积122tan2PF F b S θ=,其中θ=∠F 1PF 2.12、关于抛物线焦点弦的一些结论:设AB 为过抛物线22(0)y p x p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,斜率为k ,则⑴焦点F 对A B 、在准线上射影的张角为2π以AB 为直径的圆与准线相切.⑵2212121112=042222p p p p p x x y y p FA FB y y ⎛⎫⎛⎫⎛⎫==-⋅--⋅--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,uuu r uuu r ,y 1+y 2=;⑶()222221212442=2222p p p k px px p AB p y y ==+--+,221221sin p AB p k θ⎛⎫=+= ⎪⎝⎭;⑷21224==1+2FAp k FB x x p λλλ=+--当时,11212()22p p x x x x λλ⎛⎫⎧-=-⎪ ⎪⎨ ⎪ ⎪⎪=⎩⎝⎭;⑸112||||FA FB P +=.13、在椭圆E :22221x y a b+=(a >b >0)中:(1)如图①所示,若直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ',有l ∥l ',设其斜率为k 0,则k 0·k =22b a-.(2)如图②所示,若直线y =kx 与椭圆E 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线P A ,PB 的斜率存在,且分别为k 1,k 2,则k 1·k 2=22b a-.(3)如图③所示,若直线y =kx +m (k ≠0且m ≠0)与椭圆E 交于A ,B 两点,P 为弦AB 的中点,设直线P O 的斜率为k 0,则k 0·k =22b a-.推论:以椭圆22221x y a b+=内任意一点(x 0,y 0)为中点的弦AB 的斜率k =2020x b a y -⋅.14、在双曲线E :22221x y a b-=(a >0,b >0)中,类比上述结论有:(1)k 0·k =22b a .(2)k 1·k 2=22b a .(3)k 0·k =22b a.15、与双曲线12222=-b y a x 有相同渐近线的双曲线方程为λ=-2222by a x (0>λ时,焦点在x 轴上;0<λ时,焦点在y 轴上)七、立体几何1、棱长为a 的正四面体内切球半径r =612a ,外接球半径R =64a .2、任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积)3、斜二测画法直观图面积为原图形面积的42倍4、向量法判断位置关系(1)设直线l m 、的方向向量分别是 、a b ,平面αβ、的法向量分别是、u v ,则:①线线平行:l ∥m ⇔a ∥b ⇔=a kb②线面平行:l ∥α⇔a ⊥ u 0⇔= a u ③面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.(2)设直线l m 、的方向向量分别是m n 、,平面α内任意向量 、a b ,平面β内任意向量c,则:①线线垂直:⊥⇔l m 0m n =②线面垂直:α⊥⇔l 00m a m b ⎧⋅=⎪⎨⋅=⎪⎩u r ru r r③面面垂直:βα⊥⇔0c a c b ⎧⋅=⎪⎨⋅=⎪⎩r r r r 5、向量法求空间角(设直线l m 、的方向向量分别是 、a b ,平面αβ、的法向量分别是、u v )(1)直线l m 、所成的角(0)2πθθ≤≤满足:cos θ⋅=a b a b(2)直线l 与平面α所成的角(0)2πθθ≤≤满足:sin θ⋅=a u a u(3)平面α与平面β所成的二面角的平面角(0)θθπ≤≤满足:cos θ⋅=u vu v八、数列1、通项公式的求法类型一()1n n a a f n +-=的数列(逐差累加法)类型二:1n n a pa q +=+(法一)()()111111111,,,n n n n n n n n n n n n n n n q q a pa q a pa q p a p pb a b pb b b p a p a a a p 令解得再令,得l ll l l l l l l l l++---+++=+Þ+=++=+==+=\==+=+\=+-(法二)由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n nn n a a p a a +--=-则{}1n n a a +-构成以21a a -为首项,以p 为公比的等比数列,得到{}1n n a a +-的通项:()1n n a a f n +-=(类型一)1()n n a pa f n +=+两边同时除以1n p +可得到111()n n n n n a a f n p p p +++=+,令n n n a b p =,则11()n nn f n b b p ++=+(类型一)11n n n a pa qa +-=+()()()11111,()n n n n n n n n n p xy qa x y a xya a ya x a ya a ya f n 令类型三+-+-++==-=+-Þ-=-Þ-=11n n n n a a da a ---=⇒111n n d a a --=(等差数列)1n n n pa q a a k ++=+()()111+1111 ,11111,,=n n n n n n n n n n nn n n n n n q kp a p pa q pa qa a a k a ka ka k q kq k a p p a p k k b b a p a a p p 令解得再令得 类型二l l ll l l l ll l l l ll l l l l l l l++++++++++=Û+=+=+++++Þ=×=++++++--Þ=×+=+++++++2、放缩裂项求和211(1)k kk <-,211(1)k k k >+=<*,1)k N k >∈>()()()()()11111111111111111n n n n n n n n n k k k k k k k k k k k +++++-⎛⎫=<=⋅- ⎪--------⎝⎭九、随机变量的期望和方差1、二项分布:()k k n kn P X k p q-==C 2、几何分布:()1n P X k q p -==3、超几何分布:()K n k M N MnNC C P X k C --==4、数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=.(3)若ξ~(),g n p ,则1E pξ=.5、方差与标准差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+L L ,σξ=ξD .6、方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3)若ξ~(),g n p ,且()1k P k q p ξ-==,则2q D p ξ=.十、排列组合1、隔板法I把n 个元素放到m 个集合中,所得集合均非空,则有种,例如x 1+x 2+…+x m =n的正整数解个数为.2、隔板法II把n 个元素放到m 个集合中,所得集合可为空,则有种,例如x 1+x 2+…+x m =n的非负整数解个数为,例如(a 1x 1+a 2x 2+…+a m x m )n 展开式的项数为.3、圆排列从n 个元素中抽取m 个元素,按照一定的顺序排列成一圈,叫做一个圆排列,圆排列的个数4、重复组合从n 个元素中抽取m 个元素,元素可以重复选取,不管顺序,组成一组,叫重复组合,重复组合个数.5、(ax +by )n 展开式中,第k 项系数绝对值最大,则 縰其中[]表示高斯函数,即取整函数.十一、常用不等式1、三个正数的均值不等式3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).2绝对值不等式:a b a b a b-≤±≤+3、二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.4+1122(,,,).x y x y R ∈。
高中高考数学所有二级结论《完整版》
高中高考数学所有二级结论《完整版》-高中高考数学是高中学习的重点科目之一,也是考生们备战高考的重点科目之一。
在数学学习中,二级结论是非常重要的知识点,掌握好二级结论可以帮助我们更好地解题和理解数学知识。
下面是高中高考数学所有二级结论的完整版。
一、数列及数列的通项公式1. 等差数列的通项公式:an = a1 + (n-1)d2. 等差数列的前n项和公式:Sn = (a1 + an)n/23. 等比数列的通项公式:an = a1 * q^(n-1)4. 等比数列的前n项和公式:Sn = a1 * (q^n - 1)/(q - 1)二、平面几何1. 相似三角形的性质:对应角相等,对应边成比例2. 相似三角形的边长比例关系:ab/cd = ac/bd = bc/ad3. 相似三角形的高比例关系:ha/hb = ca/cb4. 相似三角形的面积比例关系:S1/S2 = a1^2/a2^25. 平行线与三角形的性质:平行线分割三角形的边,得到的线段成比例三、立体几何1. 圆柱的侧面积:S = 2πrh2. 圆柱的体积:V = πr^2h3. 圆锥的侧面积:S = πrl4. 圆锥的体积:V = 1/3πr^2h5. 球的表面积:S = 4πr^26. 球的体积:V = 4/3πr^3四、函数1. 一次函数的图像:直线2. 一次函数的性质:线性增长3. 一次函数的斜率:k = △y/△x = (y2 - y1)/(x2 - x1)4. 二次函数的图像:抛物线5. 二次函数的性质:开口方向,顶点坐标6. 二次函数的判别式:△ = b^2 - 4ac,△ > 0 有两个不相等的实根,△ = 0 有两个相等的实根,△ < 0 无实根7. 二次函数的顶点坐标:(h, k)8. 二次函数的对称轴:x = h9. 二次函数的最值:最大值 h = -b/2a,最小值 h = -b/2a五、概率统计1. 随机事件的概率:P(A) = n(A)/n(S)2. 互斥事件的概率:P(A∪B) = P(A) + P(B)3. 独立事件的概率:P(A∩B) = P(A) * P(B)4. 全概率公式:P(A) = P(A∩B1) + P(A∩B2) + . + P(A∩Bn)5. 条件概率公式:P(B|A) = P(A∩B)/P(A)六、解析几何1. 直线的斜率:k = △y/△x = (y2 - y1)/(x2 - x1)2. 直线的点斜式方程:y - y1 = k(x - x1)3. 直线的一般式方程:Ax + By + C = 04. 直线的截距式方程:x/a + y/b = 15. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2以上就是高中高考数学所有二级结论的完整版。
高考数学必背的二级结论
高考数学必背的二级结论1.函数的奇偶性(1)若函数的定义域关于原点对称,则有:f (x )是偶函数⇔f (-x )=f (x )=f (|x |);图象关于y 轴对称。
f (x )是奇函数⇔f (-x )=-f (x ).图象关于原点对称,若x ∈R ,则f (0)=0. 奇函数在对称区间上的最大值与最小值的和为0。
(2)奇函数×奇函数是偶函数, 偶函数×偶函数是偶函数, 奇函数×偶函数是奇函数。
2.函数图象的对称中心或对称轴(1)若函数f (x )满足关系式f (a +x )=2b -f (a -x ),则函数y =f (x )的图象关于点(a ,b )对称. (2)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.3. 函数的周期性结论(1)若函数f (x )为偶函数,且f (a +x )=f (a -x ),则2a 是函数f (x )的一个周期. (2)若函数f (x )为奇函数,且f (a +x )=f (a -x ),则4a 是函数f (x )的一个周期.(3)若函数f (x )满足f (a +x )=f (a -x ),且f (b +x )=f (b -x ),则2(b -a )是函数f (x )的一个周期. (4)若f (a +x )=- f (x ),则2a 是函数f (x )的一个周期。
(5)若f (a +x )=1f(x),则2a 是函数f (x )的一个周期。
(6)若f (a +x )=- 1f(x),则2a 是函数f (x )的一个周期。
4. 反函数结论(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况。
数学高中二级结论整理
数学高中二级结论整理一、数列和数列的性质等差数列•通项公式:a n=a1+(n−1)d•前n项和公式:$S_n = \\dfrac{n}{2}[2a_1 + (n-1)d]$•性质:每一项与前一项之差相等等比数列•通项公式:$a_n = a_1 \\cdot r^{n-1}$•前n项和公式:$S_n = \\dfrac{a_1(1-r^n)}{1-r} \\quad (r\ eq 1)$ 二、函数与函数的性质基本初等函数•常数函数:f(x)=c•一次函数:f(x)=ax+b•二次函数:f(x)=ax2+bx+c函数的奇偶性•奇函数:f(−x)=−f(x)•偶函数:f(−x)=f(x)函数的单调性•递增函数:$f(x_1) < f(x_2) \\implies x_1 < x_2$•递减函数:$f(x_1) > f(x_2) \\implies x_1 > x_2$三、三角函数基本关系•正弦函数:$\\sin{\\theta}$•余弦函数:$\\cos{\\theta}$•正切函数:$\\tan{\\theta}$周期性与奇偶性•周期性:$\\sin{(\\theta + 2\\pi)} = \\sin{\\theta}$•奇偶性:$\\sin{(-\\theta)} = -\\sin{\\theta}$四、数学问题求解数学建模•数学建模的基本步骤1.问题分析:明确问题需求与约束条件2.建立模型:选择合适模型描述问题3.求解模型:进行计算与分析4.验证与改进:验证结果合理性与模型改进概率统计•重点概念1.概率:事件发生的可能性2.统计:利用样本数据推断总体特征•常见分布1.正态分布2.均匀分布五、数学推理与证明数学归纳法•基本概念:证明命题对所有自然数成立•步骤:1.递归起始:证明n=1时命题成立2.递归假设:假设n=k时命题成立3.递归推论:推断n=k+1时命题成立几何证明•几何常用证明方法1.反证法2.直接证明3.数学归纳法结语数学高中二级结论的整理涉及了数列、函数、三角函数、数学建模、概率统计等多个知识领域。
高中高考数学所有二级结论《完整版》
高中数学二级结论1、任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积)2、在任意ABC △内,都有t a n A +t a n B +t a n C =t a n A ·t a n B ·t a n C3、若a 是非零常数,若对于函数y =f(x )定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x )是周期函数,且2|a |是它的一个周期。
①f(x +a )=f(x -a ) ②f(x +a )=-f(x ) ③f(x +a )=1/f(x ) ④f(x +a )=-1/f(x )4、若函数y =f(x )同时关于直线x =a 与x =b 轴对称,则函数f(x )必为周期函数,且T =2|a -b|5、若函数y =f(x )同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x )必为周期函数,且T =2|a -b|6、若函数y =f(x )既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x )必为周期函数,且T =4|a -b|7、斜二测画法直观图面积为原图形面积的42倍 8、过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点9、导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x、)1(>>x ex e x 10、椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =11、圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为1220=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为1220=-b yy a xx 12、切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E yy D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为0222000000=++++++++F y y E x x D y Cy x y y x Bx Ax 13、①椭圆)0,0(12222>>=+b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是||22222A a -B b =C14、椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±= (左加右减)15、双曲线的焦半径(双曲线上横坐标为x 的点P 到焦点的距离)公式,且F 1为左焦点,F 2为右焦点,e 为双曲线的离心率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=f(wx+a)和y=f(b-wx)关于x=(b-a)/2w对称
等差数列Sn=(d/2)n^2+(a1-d/2)n 这是二次函数表达式 很多小题就是以这个为基本命题的
S(2n-1)=(2n-1)an 你一看到等差数列和,下标又是奇数的 赶紧用啊……
由于是同边(右支右边) 所以绝对值开负号 r=ex0-a
过原点的两条线段r1 r2相互垂直时,A点可设为A(r1cos日,r1sin日) B(-r2sin日,r2cos日)
——因为AO BO垂直 这些关系可以用倾斜角表示
S(2n-1)=(2n-1)an
这种强大的公式不懂你就亏了
四面体体积公式
x1x2=a^2
无数小题用此结论减免思维强度
连10年解几第一问也可以用这个证明(三点共线那个) 你想想 过(-p/2,0)的直线交C于A(x1,y1)B(x2,y2) B'(x2,-y2) 让你证AB'过焦点
你想想 x1x2只和a^2有关,也就是在x1x2相同时 a有两个解 一个解已知是-p/2 另一个解必然是p/2啊……
此外,对给定函数 即便题目没有设问,也要从 单调性 奇偶性 周期性等角度对其全方位查体
在单调性中,增减性几何意义
增:离y轴越近,函数值越小
减:离y轴越近,函数值越大
注意是距离,距离怎么表达的? 想起来了?
举个简单例子
y=x^2中函数值比4小的x的结集?
f(x0)=4 x0=2
|x|<2
a1-x<0所以a2-x<0....an+1-x<0
即an+1<x
即题目变成an<an+1<x<3恒成立求x的范围
解x<3得到答案
这是真正的通法 是所有考察数列通项问题的通法,这是高数内容 别忘了是谁出的题……大学教授,都带有高数味儿得
小结论
C:y^2=2px
过x轴上(a,0)点与C相交,存在
题目再现:a1=1 a(n+1)=c-1/an
求使不等式an<an+1<3的c的取值范围
解an=c-1/an 令an=x 得 x=(c+sqrt(c^-4))/2
显然就是证x<3嘛 ,但是不能直接书写,看以下书写通法
a(n+1)-x=c-1/an-x 化简 (注意化简技巧,目标是得到a(n+1)-1=k(an-1) ,注意化简的时候要用到cx-x^2=1)
sin75°=1/sqrt(6)-sqrt(2)
自己推15°的啊。。。。这个我做数学和物理真题的时候遇到过…… 物理尤其光学题……
对于R上的奇函数 如果周期为T 则有f(T/2+nT)=0
可以用奇X奇=偶函数 偶X奇=奇 来变幻函数性质
比如如果f(x)为偶 则 f(x)/x 为奇
注意这种构造法
有什么用途呢? 比如有OA OB 他们互相垂直
你会发现神奇的事情
详见2009年山东理22(2)
三次函数具有对城中心P((x1+x2)/2,(y1+y2)/2)
(x1<x2 他们都是极值点)
动态问题一般核心思想是:动中找静,双动则定一
找出题中定死不变的量,有可能它是显性的有可能是隐形的
V=1/6(abhsin日)
a,b是两条对楞的长,h是对棱的异面距离,日是对棱的夹角
这个公式异常重要,比如10年国一12题,用这题套公式秒杀
在O-xyz 坐标系中 某条过O的直线和x y z分别成 a b c 度角
有
cos^2 a + cos^2 b + cos^2 c =1
这个有什么用呢?
已知两个角 求第三个角 用于有些图形恶心的立几大题中建立坐标系
双曲线焦点到渐近线的距离=b
过双曲线两顶点作垂直于x轴的直线和渐近线交与四点 形成一个矩形
则 斜边为c 另一条直角边为b
意味着该圆锥母线和底面所成的角恒为定值
所以【研究线面成定角问题可以用圆锥面分析】
立体几何中解析几何中 凡涉及线段中点问题的 绝大多数和三角形中位线有关
下面讲个人觉得没什么道理的凑的技巧:
设xn=f(x[n-1])
a1-x=1-x
因为an+1>an a2=c-1/a1=c-1
c-1>1 所以c>2
所以a1-x=1-x<0
回头看这个:
即an+1 - x = [c(an-x)-x(an-x)]/an=(c-x)/an*(an-x)
(c-x)/an 是一个 正数 根据【同号性】(极其重要) an+1 - x和an - x同号
设x1<x2<x3....<xn
n为奇数时 x取中间点时f(x)有min值
n为偶数时,x取中间两点任意一点可以取min值
别以为这个没用,高考题有一些题是以这个为模型 的
模拟题这个见得太多了……一大把
面对有函数的试题,首先要毫不迟疑的确定其定义域,即使没有要求,也要这么做,即【定义与优先】
1.若PO=F1O=F2O 则<F1PF2为90°
2.PO<OF1 则<F1PF2为钝角
3.PO>OF1 则,,,,为锐角
导函数为二次函数时 注意原函数有极值的条件是在定义域内△>0
sqrt[(a^2+b^2)/2]>=(a+b)/2>=sqrt(ab)>=2/(1/a+1/b)
注意2/(1/a+1/b) 也就是2ab/a+b
f(a+x)+f(b-x)=2c f(x)有对城中心(a+b/2,c)
y=f(a+wx)
y=f(b-wx)
这俩函数关于x=b-a/2w对称
三角平移问题速解(就是那种已知一个三角函数 又知另一个三角函数问平移情况或者参数变化情况)
可以取特殊点——即原三角函数的第一个最值(不能取0点)
再对比新三角函数的第一最值,你就知道怎么移动了、、
这俩公式 尤其下面的,平时遇到分式类的题可以试着用用就上手了
已知过x轴上一点方程 一定要设为my=x-c
为什么? 它包括了斜率不存在的情况,可以避免讨论
对存在性问题,可以从特殊条件出发,进而再证明这个值就是一般情况下的值
平面上任意一点P(x,y)都可以表示为
x=|OP|cosθ
y=|OP|sinθ
不动点的求法:比如X(n+1)=f(Xn)
令f(Xn)=Xn 解出Xn=a或者a,b两解
那么a,b就为Xn不动点
不动点意义是什么呢? 就是Xn的极限 即Xn<a
高考里你只需要取大根就好,小根忽视
比如10年国一22(2) 看解法 你可以选08 07 的国一照套用
核心思想:有关数列通项的相关问题,先化简Xn-a(a为不动点)会得到很多Xn的性质
an+1 - x = (can-1-xan)/an
即an+1 - x = (can-cx+x^2-xan)/an
即an+1 - x = [c(an-x)-x(an-x)]/an=(c-x)/an*(an-x)
(c-x)/an 是一个 正数 根据【同号性】(极其重要) an+1 - x和an - x同号
极坐标:秒杀焦点弦
我们是大纲版 不学极坐标,所以考试小题常出焦点弦问题
没学过极坐标的别记专有名词 这样记以下公式
椭圆 过F作直线交C于AB,设AF=r1 BF=r2
目测谁比较长 如r1比较长则r1=ep/1-ecos日
日为过F的直线的倾斜角
p为焦准距
双曲线
单支和椭圆一样
交于两支时 r=ep/ecos日 +- 1 比较长的那个取负 短的那个取正
有关离心率问题 很多命题点在这里
椭圆离心率e^2=1-(b/a)^2
双曲线:e^2=1+(b/a)^2
看到了吧 都和一个参数t=(b/a) 有关
遇到排列组合难题 尤其是三个限制条件的 一定要用容斥原理
举个例子:
P要满足A,B,C,求P的方法数
画个韦恩图
U是全集 画个大框框 在上面画3个圈 非A 非B 非C (要看看他们是否有交集,一般是有的)
这个不等式链 在配凑性消元 正负对消上有很大用途
但是均值不等式一定是单向放缩的 一般求双最值问题 一定要涉及到求导【sqrt=根号】
平面中任意共起点的两条向量所组成的三角形面积为
设向量OA=(a,b)
向量OB=(c,d)
a b
( )
c d
即 ad-bc
证明可用S=1/2absin日 证
看到图你知道该怎么算了吧
P=U-(A+B+C)+A交B+A交C+B交C-A交B交C
两个条件的我就懒得打字啦
双曲线渐近线方程可设为b^2x^2-a^2y^2=0
看到了么 这可是二次方程形式哟 可以避免讨论一些东西
比如有两焦点 可以舍而不求的联立使用韦达定理2
画一个双曲线,比如P在右支上 连接PF1 PF2
等比数列Sn=m+mq^n 其中m=a1/1-q
这个是肯定要记的,很多放缩就是放缩到等比数列 然后选一个小于1的公比q 你观察,Sn的极限不就是a1/1-q可以用来证明(bn是等比)