三坐标测量机测量原理

合集下载

三坐标测量机的原理及应用

三坐标测量机的原理及应用

三坐标测量机的原理及应用1. 三坐标测量机的基本原理1.1 三坐标测量机的定义和作用三坐标测量机是一种高精度测量设备,它能够通过测量工件表面上的各种点的坐标来了解工件的几何形状和尺寸。

它的主要作用是用来检测工件的几何形状和尺寸是否符合设计要求,以实现工件的质量控制。

1.2 三坐标测量机的工作原理三坐标测量机通过夹具固定工件,并由数控系统控制探头在三个坐标轴上移动,测量工件表面上各个点的坐标值。

具体的工作原理如下:1.夹具固定工件:首先,将需要测量的工件夹在测量机的工作台上,固定工件的位置。

2.移动探头:测量机的数控系统会根据设定的测量路径,控制探头在三个坐标轴上进行移动。

探头可以实现旋转、抬升、下降等运动。

3.测量点坐标:当探头接触到工件的表面时,测量机会采集探头的坐标值,并记录下来。

通过多次测量不同的点,可以得到工件的整体几何形状。

4.数据处理:测量的数据会被送入三坐标测量机的计算机系统中。

计算机系统会对数据进行处理和分析,生成测量报告和测量结果。

2. 三坐标测量机的应用三坐标测量机在制造业中有广泛应用,特别是在需要高精度测量的行业。

以下是三坐标测量机的一些主要应用领域:2.1 航空航天工业三坐标测量机被广泛应用于航空航天工业中。

在航空航天工业中,各种零部件和组件的尺寸和形状对于正常的工作至关重要。

三坐标测量机可以快速、精确地测量各种复杂曲面的形状和尺寸,保证了飞机和航天器的质量。

2.2 汽车制造业在汽车制造业中,三坐标测量机被广泛应用于汽车零部件的测量和质量控制。

利用三坐标测量机可以对发动机、车身、底盘等关键部件进行精确的测量,确保汽车的质量和性能符合设计要求。

2.3 机械制造业在机械制造业中,三坐标测量机被用于测量各种机械零部件的尺寸和形状。

机械制造业对于零部件的尺寸精度要求很高,使用三坐标测量机可以快速、准确地测量各种复杂形状的零部件。

2.4 其他领域除了上述应用领域外,三坐标测量机还被广泛应用于电子制造、仪器仪表、模具制造等行业。

三坐标机的测量原理

三坐标机的测量原理

三坐标机的测量原理
三坐标测量机是一种用于测量物体三维坐标的仪器设备。

其测量原理主要包括以下几个步骤:
1. 位置设置:首先需要在测量范围内设置三个坐标轴,通常为X轴、Y轴和Z 轴,并确定原点。

这些坐标轴由机器上的感应器负责检测和定位。

2. 探头接触:将测量物体放置在机器的工作台上,手动或自动控制探头与测量物体接触。

探头通常是一种灵活的机械手臂,可以移动并接触物体表面。

3. 探头测量:一旦探头接触到测量物体,它会沿着预设的路径移动,并通过感应器测量每个点的相对位置。

这些相对位置根据已知的坐标轴和原点确定。

4. 数据计算:测量机会收集并记录所有采集到的位置数据。

通过将这些相对位置数据与坐标轴和原点的绝对位置进行计算,可以得出物体的三维坐标。

5. 数据分析:得到物体的三维坐标后,可以进行数据分析和比较。

可以将测量结果与预期尺寸进行对比,以判断物体的几何形状是否满足要求。

需要注意的是,不同型号的三坐标测量机在具体实现上可能存在细微的差异,但其基本的测量原理是相似的。

三坐标测量仪的原理

三坐标测量仪的原理

三坐标测量仪的原理
三坐标测量仪是一种用于测量物体三维形状和位置的精密测量设备。

它通过测量物体在三个不同坐标轴上的位置和方向,从而确定物体的空间位置和尺寸。

三坐标测量仪的原理基于光学干涉和精密机械结构。

它通常由一个底座、测量平台、测头和测量软件组成。

在测量过程中,物体被安放在测量平台上。

测头通过精密机械结构可以在三个坐标轴(X、Y、Z轴)上自由移动。

当开始测量时,测头会向物体表面移动,同时发射出一束光线。

光线首先通过一个凸透镜,并被聚焦成一束平行光。

然后光线被分成两束,一束射向物体,另一束射向参考平面(通常是一个标准平面)。

当光线射向物体表面时,部分光线会被物体表面反射回来并返回到测头。

反射光线会再次通过凸透镜,并最终汇聚成一点。

而参考平面上的光线则会直接穿过透镜。

通过比较反射光线和参考光线的相位差,测量软件可以计算出光线的路径差,从而得到物体表面与参考平面之间的距离。

由于测头可以在三个坐标轴上自由移动,所以通过不断测量物体表面的距离,可以得到物体在三维空间中的位置和形状。

测量软件会接收并处理测量数据,并生成对应的三维模型或测量报告。

这些数据可以用于分析物体的形状精度、尺寸偏差等
信息,为产品设计、制造以及质量控制提供重要参考。

综上所述,三坐标测量仪利用光学干涉和精密机械结构的原理,通过测量物体表面反射光线和参考光线的相位差,实现对物体三维位置和尺寸的精确测量。

它在工业生产、科研等领域具有重要的应用价值。

三坐标测量机的工作原理【详解】

三坐标测量机的工作原理【详解】

三坐标测量机,也称为CMM,是典型的现代化仪器设备,它由机械系统和电子系统两大部分组成。

涵盖了几乎所有的普通尺寸测量,数据处理,外形分析等现代测量任务。

1、三坐标测量机的工作原理三坐标测量机是基于坐标测量的通用化数字测量设备。

它首先将各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学处理方法求出其尺寸和形位误差。

如图所示,要测量工件上一圆柱孔的直径,可以在垂直于孔轴线的截面I内,触测内孔壁上三个点(点1、2、3),则根据这三点的坐标值就可计算出孔的直径及圆心坐标OI;如果在该截面内触测更多的点(点1,2,…,n,n为测点数),则可根据最小二乘法或最小条件法计算出该截面圆的圆度误差;如果对多个垂直于孔轴线的截面圆(I,II,…,m,m为测量的截面圆数)进行测量,则根据测得点的坐标值可计算出孔的圆柱度误差以及各截面圆的圆心坐标,再根据各圆心坐标值又可计算出孔轴线位置;如果再在孔端面A上触测三点,则可计算出孔轴线对端面的位置度误差。

由此可见,CMM的这一工作原理使得其具有很大的通用性与柔性。

从原理上说,它可以测量任何工件的任何几何元素的任何参数。

2、三坐标测量机的使用范围2.1.几何尺寸测量:可完成点、线、面、孔、球、圆柱、圆锥、槽、抛物面、环的几何尺寸测量,同时可测出相关的形状误差。

2.2.几何元素构造:通过测量相关尺寸,可构造出未知的点、线、面、孔、球、圆柱、圆锥、槽、抛物面、环等,并计算出它们的几何尺寸和形状误差。

2.3.计算元素间的关系:通过测量一些相关尺寸,可计算出元素间的距离、相交、对称、投影、角度等关系。

2.4.位置误差检测:可完成平行度、垂直度、同轴度、位置度等位置误差的测量。

2.5.几何形状扫描:用DEA公司提供的SCAN3D软件包可对工件进行扫描测量。

3、三坐标测量机的优劣势3.1. 优点:非常适合普通尺寸的测量;测量简单,精确,可靠,柔性较好;通过后续不同的数据处理软件包可以实现不同的分析功能;3.2. 缺点:造价比较昂贵;不适合做大范围的动态测量;频响不可能太快。

三坐标测量原理

三坐标测量原理

三坐标测量原理三坐标测量是一种精密的测量方法,它可以用来测量物体的三维空间坐标,通常用于工程制造领域。

三坐标测量原理是基于三坐标测量机的工作原理,通过测量机的运动和传感器的反馈,实现对物体坐标的精确测量。

在三坐标测量原理中,有几个重要的概念需要了解:1. 三坐标测量机。

三坐标测量机是用于进行三坐标测量的专用设备,它通常由机床、测头和计算机控制系统组成。

机床用于支撑和移动测头,测头用于接触或非接触式测量物体,计算机控制系统用于控制机床和测头的运动,并处理测量数据。

2. 测头。

测头是三坐标测量机上的核心部件,它可以根据测量需求选择不同的探测方式,如接触式测头、光学测头、激光测头等。

测头通过与物体接触或非接触,获取物体表面的数据,然后传输给计算机进行处理。

3. 坐标系。

在三坐标测量中,通常会建立一个三维直角坐标系,用于描述物体的位置和姿态。

坐标系的建立需要选择一个参考点和三个相互垂直的坐标轴,通常选择物体的特征点或者测量机的固定点作为参考点。

4. 测量原理。

三坐标测量原理是基于三角测量和几何测量的原理,通过测量物体表面的特征点或者轮廓,计算出物体的三维坐标。

在测量过程中,需要考虑测头的精度、测量机的稳定性、环境因素等因素,以保证测量结果的准确性。

5. 应用领域。

三坐标测量在工程制造领域有着广泛的应用,可以用于测量零件的尺寸、形状、位置等参数,用于检验产品的质量和精度。

同时,三坐标测量也可以用于逆向工程、产品设计、模具制造等领域。

总结。

三坐标测量原理是一种基于测量机和测头的精密测量方法,它可以实现对物体三维坐标的精确测量。

通过了解三坐标测量机的工作原理、测头的特点、坐标系的建立和测量原理,可以更好地理解三坐标测量的原理和应用。

在实际应用中,需要注意测头的选择、测量机的校准和环境因素的影响,以保证测量结果的准确性和可靠性。

三坐标工作原理

三坐标工作原理

三坐标工作原理
三坐标工作原理是通过空间坐标测量方法来实现三维物体的测量和分析。

它主要是由三个坐标轴组成,分别是X轴、Y轴
和Z轴。

其中,X轴和Y轴是水平方向的,Z轴是垂直方向的。

三坐标测量机的工作原理如下:
1. 机械结构:三坐标测量机的机械结构由基座、移动梁和测量头组成。

基座用于固定机械结构,移动梁可以在X轴和Y轴
方向上进行平移,测量头则负责测量物体的尺寸和形状。

2. 数据采集:在进行测量前,需要将待测物体固定在测量平台上。

然后,通过操纵机械结构,将测量头移动到待测物体的特定位置。

测量头上装有传感器,可以实时采集物体表面的坐标数据。

3. 坐标计算:测量头采集到的坐标数据会通过数据线传输给计算机,计算机会根据这些数据进行坐标计算。

根据三坐标测量机的工作原理,计算机会分别计算待测物体在X轴、Y轴和Z 轴方向上的测量值。

4. 结果输出:计算机会将测量结果以数值、图像或报告的形式输出,供用户进行分析和判断。

根据测量结果,用户可以得知待测物体的尺寸、形状、位置等信息。

通过以上的工作原理,三坐标测量机可以实现对三维物体的精确测量,广泛应用于制造业、航空航天、汽车等领域。

三坐标测量机的工作原理及适用范围

三坐标测量机的工作原理及适用范围

三坐标测量机的工作原理及适用范围三坐标测量机,也称为CMM ,是典型的现代化仪器设备,它由机械系统和电子系统两大部分组成。

涵盖了几乎所有的普通尺寸测量,数据处理,外形分析等现代测量任务。

1、三坐标测量机的工作原理三坐标测量机是基于坐标测量的通用化数字测量设备。

它首先将各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学处理方法求出其尺寸和形位误差。

如图所示,要测量工件上一圆柱孔的直径,可以在垂直于孔轴线的截面I 内,触测内孔壁上三个点(点1、2、3),则根据这三点的坐标值就可计算出孔的直径及圆心坐标O I ;如果在该截面内触测更多的点(点1,2,…,n ,n 为测点数),则可根据最小二乘法或最小条件法计算出该截面圆的圆度误差;如果对多个垂直于孔轴线的截面圆(I ,II ,…,m ,m 为测量的截面圆数)进行测量,则根据测得点的坐标值可计算出孔的圆柱度误差以及各截面圆的圆心坐标,再根据各圆心坐标值又可计算出孔轴线位置;如果再在孔端面A 上触测三点,则可计算出孔轴线对端面的位置度误差。

由此可见,CMM 的这一工作原理使得其具有很大的通用性与柔性。

从原理上说,它可以测量任何工件的任何几何元素的任何参数。

21 ZY X3OIAO I2、三坐标测量机的使用范围2.1.几何尺寸测量:可完成点、线、面、孔、球、圆柱、圆锥、槽、抛物面、环的几何尺寸测量,同时可测出相关的形状误差。

2.2.几何元素构造:通过测量相关尺寸,可构造出未知的点、线、面、孔、球、圆柱、圆锥、槽、抛物面、环等,并计算出它们的几何尺寸和形状误差。

2.3.计算元素间的关系:通过测量一些相关尺寸,可计算出元素间的距离、相交、对称、投影、角度等关系。

2.4.位置误差检测:可完成平行度、垂直度、同轴度、位置度等位置误差的测量。

2.5.几何形状扫描:用DEA公司提供的SCAN3D软件包可对工件进行扫描测量。

三坐标测量机的测量原理是怎样的呢

三坐标测量机的测量原理是怎样的呢

三坐标测量机的测量原理是怎样的呢三坐标测量机,也叫做三坐标测量器,是一种高精度测量设备。

其测量原理主要基于几何方面的原理,其工作原理简单明了,下面就来逐个击破。

一、什么是三坐标测量机三坐标测量机是一种精密测量设备,通常用于测量复杂零件或产品的形状、位置、尺寸等各项参数,广泛应用于工程界、生产制造领域以及科学研究等多个领域。

三坐标测量机可以测量三维空间中所有点的坐标,并可以通过这些坐标的测量值计算出零件的尺寸、轮廓、表面性质等各项参数,其精度可达数十微米。

二、三坐标测量机的测量原理三坐标测量机的测量原理基于几何方面的原理。

通过测量被测物体上一系列点的坐标,进而计算出被测物体的尺寸、形状等相关参数。

三坐标测量机通常由三个互成直角的导轨(X、Y、Z轴)和一个测头组成。

通过测头移动在导轨上进行位置变化,可以测量被测物体上各个点的坐标。

三坐标测量机的测量原理主要包括以下几个方面:1. 激光测距法在测量过程中,三坐标测量机通常会采用激光尺进行测距。

激光尺指的是利用光学原理测量出物体相对位置的设备。

激光器发出一束光线,经过分光制波搬运产生一个激光光栅,用来实现精确的测量。

2. 光栅式测头光栅式测头是三坐标测量机的主要部件之一,也是其中最为重要的部件之一。

它采用光学原理进行测量,通过光电器件检测被测件表面的光栅信息,再反馈给计算机进行图像处理分析,最终计算出被测件的尺寸等相关参数。

3. 计算软件计算软件是三坐标测量机的核心部分之一,它负责将测量数据转化为实际尺寸或角度值。

计算软件通常具有数据处理、图形显示、数据存储等多种功能,可以直接将CAD图形数据进行导入,实现快速测量和数据处理。

三、三坐标测量机的应用三坐标测量机广泛应用于工程制造、航空航天、汽车、电子、仪表、制药、轴承等多个领域。

其主要作用是测试产品的形状尺寸、轮廓、平面度、垂直度、平行度等各项参数,以保证产品的质量和精度。

三坐标测量机不仅可以检测单一零件的尺寸和形状,还可以实现多个零件的比对,通过数据处理进行偏差分析,并对生产制造过程进行监控,并提供参考和支持。

三坐标测量仪工作原理

三坐标测量仪工作原理

三坐标测量仪工作原理
三坐标测量仪是一种用于测量物体三维形状和尺寸的精密测量设备。

它能够实现对物体的长度、宽度、高度、角度、半径等参数的测量,并能够生成与物体表面形状一致的三维模型。

三坐标测量仪的工作原理基于三个相互垂直的坐标轴,分别为X 轴、Y轴和Z轴,通过测量某一点与基准点的坐标差值,从而确定该点在三维空间中的位置。

三坐标测量仪内部包含一个高精度的测量传感器,用于探测物体表面的形状并输出其坐标数据。

当测量仪启动时,探针会移动到起点位置,并记录下该点的坐标。

随后,探针会按照预设的路径移动到待测点,并将其坐标数据与起点坐标进行比较,得出两点之间的坐标差值。

为了提高测量的准确性和稳定性,三坐标测量仪通常采用多点测量、多角度测量和多次测量的方法。

通过对同一点进行多次测量,测量仪可以减小由于传感器精度、机械系统误差等原因带来的测量误差,提高测量的可靠性。

同时,三坐标测量仪还内置了计算机系统,用于处理和分析采集到的数据。

通过对测量数据的分析和计算,三坐标测量仪可以生成物体的三维坐标数据和表面模型,并可将其转化为CAD文件或其他格式的数据输出。

总之,三坐标测量仪通过测量传感器和坐标轴的协同工作,实现对物体三维形状和尺寸的精确测量,并可生成与物体表面形
状相一致的三维模型。

它因其高精度、高效率的测量能力,被广泛应用于制造业领域的零部件测量、装配质量检验等方面。

三坐标测量仪工作原理

三坐标测量仪工作原理

三坐标测量仪工作原理
三坐标测量仪是一种用于测量物体的三维形状和位置的测量设备。

其工作原理主要包括以下几个方面:
1. 传感器测量:三坐标测量仪通过内置的传感器对被测物体进行测量。

传感器可以是光学传感器、激光传感器或机械传感器等。

传感器根据物体的形状和位置产生相应的信号。

2. 计算机控制:测量仪通过计算机控制系统控制传感器进行测量操作。

计算机接收传感器产生的信号,并通过计算对信号进行处理和分析。

3. 坐标系确定:在进行测量之前,需要将被测物体与测量仪的坐标系进行匹配。

通过将物体放置在测量仪的工作平台上,并进行坐标系校正,确保测量仪对物体的测量结果准确。

4. 三维数据采集:测量仪通过控制传感器在三个坐标轴上的移动,获取物体各个部位的三维坐标数据。

传感器可以按照设定的路径或划定的区域进行扫描,获取物体表面的数据点。

5. 数据处理:测量仪将获取的三维坐标数据传输给计算机,计算机根据数据进行图像重建和数学算法处理。

通过对数据进行处理和分析,可以获得物体的三维形状、尺寸以及位置关系等信息。

6. 结果输出:测量仪将处理后的结果通过显示器、打印机或数据接口等方式输出,供用户查看和使用。

总的来说,三坐标测量仪通过测量物体的三维坐标数据,结合计算机的数据处理和分析,可以实现对物体形状和位置的准确测量。

三坐标测量器工作原理

三坐标测量器工作原理

三坐标测量器工作原理
三坐标测量器工作原理:
三坐标测量器是一种用于测量物体尺寸和形状的仪器。

其工作原理主要包括以下几个步骤:
1. 校准:在进行测量之前,需要对测量器进行校准。

校准过程中通常会使用一些已知尺寸的标准件来确定测量器的精确度。

2. 定位:将待测物体放置在测量台上,并通过夹具或真空吸盘等方式进行固定。

保证待测物体的位置准确。

3. 传感器测量:三坐标测量器中的传感器一般包括接触式和非接触式两种。

接触式传感器通常是通过机械探针接触待测物体的表面,测量出各点的坐标位置。

非接触式传感器则通过像散斑干涉仪、光电测头等设备,利用光学原理测量出待测物体表面的形状和特性。

4. 坐标计算:三坐标测量器通过测量传感器得到的各点坐标数据,根据三维坐标系中的数学模型进行计算,以得到待测物体的尺寸和形状信息。

5. 数据分析与结果输出:测量完成后,三坐标测量器会将测量得到的数据进行分析和处理,生成测量报告或结果。

这些结果可以以图像、数字等形式进行展示和输出,方便用户进行数据分析和判断。

总结起来,三坐标测量器通过接触式或非接触式的传感器测量待测物体的坐标数据,并利用数学模型计算出物体的尺寸和形状信息,最终输出结果供用户分析和使用。

三坐标测量原理

三坐标测量原理

三坐标测量原理原理:三坐标测量机是由三个互相垂直的运动轴X,Y,Z建立起的一个直角坐标系,测头的一切运动都在这个坐标系中进行,测头的运动轨迹由测球中心来表示。

测量时,把被测零件放在工作台上,测头与零件表面接触,三坐标测量机的检测系统可以随时给出测球中心点在坐标系中的精确位置。

当测球沿着工件的几何型面移动时,就可以得出被测几何面上各点的坐标值。

将这些数据送入计算机,通过相应的软件进行处理,就可以精确地计算出被测工件的几何尺寸,现状和位置公差等。

组成:测量机硬件由主机(包括光栅尺),电气系统及测头组成,软件也是很重要的部分。

分类:移动桥式,固定桥式,固定工作台悬臂式,龙门式,L型桥式,移动工作台悬臂式,水平悬臂式,柱式三坐标工件装夹1.产品形状的保持确保装配体及其每个零件在测量状态下的形状与使用状态下一致,不得使产品在装夹时发生变形。

对于刚性较好的装配体,应在装夹时自然放置在支架上,然后进行加固。

而对于柔性或已经产生变形的工件,则应用强行约束使其形状恢复至使用状态,然后再安装到支架上固定。

应用支架,垫块等辅助工具保证每一个零件的各部分以及整个装配体的刚性。

特别注意在对装配体逐层拆卸,逐层测量时,应确保每一零件不发生变形。

和任何一个物体在三维空间中占用六个自由度一样,汽车零部件在汽车总坐标系中的明确放置必须约束六个自由度,在实际操作中可采用3-2-1的法则,它规定了支撑位置的分配:Z方向3个支撑位,约束Z平动,X旋转和Y旋转Y方向2个支撑位,约束X平动和Y平动X方向1个支撑点,约束Z旋转1、在零件坐标系上编制的测量程序可以重复运行而不受零件摆放位置的影响,所以编制程序前首先要建立零件坐标系。

而建立坐标系所使用的元素不一定是零件的基准元素。

2、在测量过程中要检测位置度误差,许多测量软件在计算位置度时直接使用坐标系为基准计算位置度误差,所以要直接使用零件的设计基准或加工基准等等建立零件坐标系。

3、为了进行数字化扫描或数字化点作为CAD/CAM软件的输入,需要以整体基准或实物基准建立坐标系。

三坐标测量原理

三坐标测量原理

三坐标测量原理三坐标测量原理是现代制造业中非常重要的一项技术,它的应用范围涵盖了机械、电子、航空、航天等领域。

本文将从三坐标测量原理的定义、分类、测量误差、应用等方面进行详细介绍。

一、三坐标测量原理的定义三坐标测量原理是指通过三个坐标轴的测量来确定物体的三维空间坐标的一种测量方法。

它是一种高精度、高效率的测量手段,能够精确地测量出物体的形状、位置、尺寸、轮廓等信息。

二、三坐标测量原理的分类三坐标测量原理可以分为机械式和光学式两种。

机械式三坐标测量原理是通过机械部件的运动来实现测量的。

它的优点是精度高,能够测量大型、重型工件,但是测量速度较慢。

光学式三坐标测量原理是利用光学原理来测量物体的三维坐标。

它的优点是测量速度快,适用于测量小型、轻型工件,但是精度相对较低。

三、三坐标测量原理的测量误差三坐标测量原理的测量误差主要包括系统误差和随机误差。

系统误差是由于测量系统本身的不稳定性和不精确性引起的误差,它是可以预测和消除的。

随机误差是由于各种因素的随机性引起的误差,它是不可预测和消除的。

为了减小测量误差,需要采取一系列措施,如提高测量设备的精度、完善测量方法、优化测量环境等。

四、三坐标测量原理的应用三坐标测量原理在制造业中广泛应用,它可以用于测量各种工件的尺寸、形状、位置等参数,如机床、汽车、飞机、船舶等。

三坐标测量原理还可以用于检测和质量控制,如检测零件的误差、表面粗糙度、形状偏差等,确保产品的质量符合标准要求。

此外,三坐标测量原理还可以用于逆向工程,通过测量工件的三维坐标,重建出工件的三维模型,为产品的快速设计和制造提供了便利。

总之,三坐标测量原理是现代制造业中不可或缺的一项技术,它的应用范围广泛,能够提高生产效率和产品质量,推动制造业的发展。

三坐标测量机测量原理

三坐标测量机测量原理

三坐标测量机测量原理三坐标测量机是一种精密测量设备,广泛应用于制造业中的精密测量和品质控制过程中。

它可以通过测量物体的三维坐标,获取物体的尺寸、形状和位置等关键信息。

下面详细介绍三坐标测量机的测量原理。

三坐标测量机的测量原理基于三维坐标系。

它由三个互相垂直的坐标轴组成,通常表示为X轴、Y轴和Z轴,分别对应物体的长度、宽度和高度方向。

测量机通过测量物体在三轴上的坐标值,并结合探测器的运动和转动,计算出物体的三维坐标。

三坐标测量机主要由以下组成部分构成:1. 测头:测头是三坐标测量机的核心部件,负责测量物体的坐标值。

测头通常包括机械结构、接触或非接触传感器和信号处理单元等。

常见的测头有机械测头和光学测头两种类型。

2. 测量台:测量台是用于支撑待测物体的平台。

它通常具有精确的平面度和位置控制能力,以确保物体在测量过程中保持稳定的位置和姿态。

3. 运动系统:运动系统是用于控制测头在三维空间内移动和定位的部件。

它通常由电动或气动驱动的滑块、导轨和伺服系统等组成,可实现高精度的物体定位和测量。

4. 控制系统:控制系统是整个三坐标测量机的核心,负责控制测量台和测头的运动,并接收和处理测量数据。

控制系统通常由计算机和相关软件组成,提供测量数据的显示、分析和存储等功能。

在进行测量时,首先需要校准三坐标测量机,确保其准确度和精度。

然后,将待测物体放置在测量台上,并根据测量需求调整物体的位置和姿态。

接下来,通过控制系统操纵测头,将测头移动到待测物体的特定位置,并在物体表面与测头接触时进行测量。

测量过程中,测头会收集物体在三轴上的坐标值,并将其转化为数字信号输入到控制系统进行处理。

控制系统会计算出物体的尺寸、形状和位置等关键信息,并以可视化的方式显示在计算机屏幕上。

根据测量需求,还可以进行数据分析、对比和存储等操作。

需要注意的是,三坐标测量机在测量过程中对物体具有一定的要求,如物体表面应平整、干净,以及尺寸适合测量台的尺寸等。

三坐标测量仪原理

三坐标测量仪原理

三坐标测量仪原理
三坐标测量仪是一种高精度的测量设备,可以测量复杂物体的形状、尺寸和位置等几何参数。

三坐标测量仪的原理基于三角测量原理,利用激光干涉仪技术和光电编码技术,实现测量。

三坐标测量仪通过一组激光干涉仪,测量物体的三维坐标值。

激光干涉仪是一种利用激光干涉现象进行测量的光学设备。

激光干涉仪由激光发射器、半反射镜、透镜、干涉板及光电转换器等组成。

当激光束从激光发射器发射后,经过透镜和半反射镜,射向干涉板。

干涉板具有两个平行的光学平面,光学平面间的空气由于存在微小的分子漂浮、流动导致光程长度或光路差略有变化,产生光束的相位差。

当两束光线经过干涉板后再次交叉时,干涉板将产生干涉条纹。

光电转换器采集干涉条纹的位置信息,可以计算出初始光线及反射光线之间的距离。

在三坐标测量仪中,通常需要在测试物体的表面贴上反光杆,并编码。

反光杆内部由光电编码器和反光杯组成,当反光杆发生偏移时,反光杯反射激光束,激光束到激光干涉仪的时间就可以计算出反光杆的位置信息。

三坐标测量仪通过测量不同位置的反光杆的坐标值,可以计算出物体表面的三维坐标值。

这样就可以得到物体的形状、尺寸和位置等几何参数。

综上所述,三坐标测量仪的测量原理基于激光干涉仪技术和光电编码技术,在测量时需要贴上编码的反光杆,通过测量不同位置的反光杆的坐标值,实现物体表面三维坐标值的测量。

它是一种高精度、高效、非接触式的测量手段,在制造、航空、汽车和医疗等领域有着广泛的应用。

三坐标测量机的测量原理

三坐标测量机的测量原理

三坐标测量机的测量原理
三坐标测量机(CMM)是利用球管、凸轮、蜗轮等物体的运动来反映被测零件的位置和形状的,并进行三维数据采集。

目前,CMM一般用于小尺寸零件的测量。

但是,对于复杂零件和大尺寸工件,由于体积太大,难以使用球管、凸轮、蜗轮等物体进行测量。

因此,还必须对其进行变形分析和形状分析,才能准确地获得被测零件的几何形状参数。

这种测量方法称为三维测量法。

CMM可以进行空间坐标测量和外形尺寸测量。

空间坐标测量是指利用CMM进行曲面被测物体的几何参数(如测头半径、球心高度、圆柱直径等)和外形尺寸(如长×宽)的测量,也可以对曲面进行形状分析。

对于曲面被测物体的尺寸可以用球管、凸轮等物体运动来反映,对于曲面形状可以用蜗轮、蜗杆等物体运动来反映。

当工件在三坐标测量机上移动时,工件上的传感器不断地向三坐标测量机发出位置信号。

根据传感器接收到的位置信号计算出工件坐标系中各点到三坐标测量机上某一点的距离。

—— 1 —1 —。

三坐标测量机工作原理

三坐标测量机工作原理

三坐标测量机工作原理
三坐标测量机是一种用于测量物体三维坐标的精密测量设备。

其工作原理基于机械、光学、电子等多个领域的原理和技术。

1. 机械部分:三坐标测量机包括一个桥式移动平台和一个垂直移动的探测器。

该平台可以在水平和垂直方向上自由移动,以定位待测物体。

同时,探测器也可以在水平方向上移动,以获得更大的测量范围。

2. 光学部分:三坐标测量机通常使用激光干涉仪或视觉传感器等光学设备来测量物体表面的坐标。

激光干涉仪通过测量激光在物体表面上的干涉来确定坐标值。

视觉传感器则通过摄像头和图像处理算法来提取物体表面的特征点,然后计算其坐标。

3. 电子部分:三坐标测量机内部还包括电子传感器和控制系统。

电子传感器用于测量平台和探测器的位置,以提供坐标信息。

控制系统则根据测量需求和参数设置控制测量机的运动,并将测量结果传输给计算机进行处理和分析。

综上所述,三坐标测量机通过机械移动、光学测量和电子控制等多个方面的原理来测量物体的三维坐标,具有高精度、高效率的特点,广泛应用于制造业等领域。

三坐标测量原理

三坐标测量原理

三坐标测量原理
三坐标测量原理是通过测量目标物体上的三个坐标轴上的坐标值来确定目标物体在三维空间中的位置和形状的一种测量方法。

其原理主要包括以下几个方面:
1.测量原理:三坐标测量系统由测头、测控器和测量工作台组成。

测头通过探针接触目标物体表面,测量目标物体上的三个坐标轴上的坐标值,并将这些数据传输给测控器。

测控器根据接收到的数据计算出目标物体在三维空间中的位置和形状。

2.坐标系:三坐标测量系统一般采用笛卡尔坐标系,即三个坐
标轴相互垂直且形成右手坐标系。

其中,X轴通常指示水平方向,Y轴指示垂直于X轴的方向,Z轴指示垂直于XY平面的
方向。

3.基准点:三坐标测量系统需要事先设定一些基准点,作为测
量的参考点。

这些基准点可以事先通过其他测量手段确定,或者通过系统自动测量获得。

4.测量误差:三坐标测量系统中可能存在测量误差,如机械误差、传感器误差、环境误差等。

为了提高测量精度,需要进行误差校正和环境控制。

5.应用领域:三坐标测量广泛应用于制造业中的尺寸测量、形
状测量、位置测量等方面。

例如,汽车制造中用于测量车身外形尺寸;航空航天制造中用于测量航空发动机的尺寸和形状等。

总之,三坐标测量原理是一种通过测量目标物体上的三个坐标轴上的坐标值来确定目标物体在三维空间中的位置和形状的测量方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三坐标测量机测量原理
sally 2010-2-11 12:11:54
三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。

三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。

将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。

三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它);2,测头系统;3,电气控制硬件系统;4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。

广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。

正向工程:产品设计-->制造-->检验(三坐标测量机)逆向工程:早期:美工设计-->手工模型(1:1)-->3轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备:1,测量机:获得产品三维数字化数据(点云/特征);2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构;3,CAD/CAE/CAM软件;4,数控机床;逆向工程中的技术难点:1,获得产品的数字化点云(测量扫描系统);2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件);3,与CAD/CAE/CAM系统的集成;(通用
CAD/CAM/CAE软件)4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员);。

相关文档
最新文档