【冰】北师大版八年级下册数学练习册答案
八年级下册数学课本北师大版答案
![八年级下册数学课本北师大版答案](https://img.taocdn.com/s3/m/18a26fcbc0c708a1284ac850ad02de80d4d806b1.png)
八年级下册数学课本北师大版答案每道错的八年级数学课本习题做三遍。
第一遍:讲评时;第二遍:一周后;第三遍:考试前。
以下是店铺为大家整理的北师大版八年级下册数学课本的答案,希望你们喜欢。
八年级下册数学课本北师大版答案(一)第20页练习1.解:(1)假命题.如图1-2-34所示,在Rt△ABC与Rt△A'B'C′中,∠A=∠A'=90°,∠B=∠C=45°=∠B′=∠C′,AB= AC≠A'B′=A'C′,则Rt△ABC与Rt△A'B'C′不全等,(2)真命题,已知:如图1-2-35所示,∠C=∠C′=90°,∠A=∠ A′,且AB=A'B'.求证:Rt△A BC≌Rt△A'B'C’.证明:∵∠C=∠C′= 90°,∠A=∠A′,且AB=A'B',∴ Rt△ABC≌Rt△A'B'C’(AAS).(3)真命题,已知:如图1-2-35所示,∠C=∠C′=90°,AC=A'C',BC=B'C'.求证:Rt△ABC≌Rt△A'B'C′.证明:∵AC=A'C′,∠C=∠C′=90°,BC=B′C′,∴Rt△ABC≌Rt△A′B'C′(SAS).(4)真命题已知:如图1-2-36所示,∠C=∠C′=90°,AC=A′C′,中线AD=A'D'.求证:Rt△ABC≌RtAA'B'C′.证明:∵∠C=∠C′=90°,AD=AD ′,AC=A'C′,∴Rt△ACD≌Rt△A'C'D'(HL).∴DC=D'C’.∵BC=2D,B'C'=2D'C',∴BC=B'C′∴Rt△ABC≌Rt△A'B'C(SAS).2.解:相等理由:∵AB=AC=12m.∴由三点A,B,C 构成的三角形是等腰三角形.又∵AO⊥BC.∴ AO是等腰△ABC底边BC上的中线,∴BO=CO,∴两十木桩离旃轩底部的距离相等.八年级下册数学课本北师大版答案(二)习题1.61.证明:∵D为BC的中点,∴BD=CD.在Rt△BDF和Rt△CDE中,∴Rt△BDF≌Rt△CDE(HL).∴∠B=∠C(全等三角形的对应边相等),∴AB=AC(等角对等边),∴△ABC是等腰三角形.2.证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL).∴AF=CE,∠A=∠C(全等三角形的对应边相等、对应角相等).∴AB//CD,AF-EF=CE-RF,∴AE=CF.3.证明:∵MP⊥OA,NP⊥OB,∴∠PMO=∠PNO=90°.又∵OM=ON,OP=OP,∴Rt△POM≌Rt△PON(HL).∴∠AOP=∠BOP,即OP平分∠AOP.4.解:(1)假命题.当一个直角三角形的两边直角与另一个直角三角形的一条直角边和斜边分别相等时,两个直角三角形不全等.(2)假命题.当一个直角三角形的锐角和一条直角边与另一个直角三角形的一个锐角和一条斜边分别相等时,两个直角三角形不全等.5.(1)解:边:DB=DA,BE=AE;角:∠B=∠BAD=30°,∠ADE=∠BDE=60°,∠BED=∠AED=90°.(2)证明:∵∠C=90°,∠B=30°,∴∠BAC=60°.∵∠BAD=∠B=30°.∴∠CAD=∠EAD=30°.又∵∠AED=∠C=90°,且AD=AD,∴△ACD≌△AED(AAS).(本题证法不唯一)(3)不能.八年级下册数学课本北师大版答案(三)第23页证明:∵AB是线段CD的角平分线,∴ED=EC,FC=FD(线段垂直平分线的性质定理).∴∠ECD=∠EDC(等边对等角),∠FCD=∠FDC(等边对等角).∴ ∠ECD+∠FCD=∠EDC+∠FDC,即∠ECF=∠EDF(等式的性质).。
新版北师大版八年级数学下册练习题 附解析答案 26页
![新版北师大版八年级数学下册练习题 附解析答案 26页](https://img.taocdn.com/s3/m/74003e87d5bbfd0a7856730e.png)
一.选择题(共10小题)1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°2.将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.3603.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.34.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.16.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°9.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是910.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)二.填空题(共9小题)11.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16.分解因式:x3y﹣2x2y+xy=.17.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为.18.若x2﹣9=(x﹣3)(x+a),则a=.19.分解因式:9a2﹣30a+25=.三.解答题(共11小题)20.如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:AD⊥EF.21.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:24.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.25.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.26.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.27.如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.28.分解因式:(x﹣1)(x﹣2)+.29.分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)30.已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.03月23日neg123的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2014秋•南平期末)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°考点:旋转的性质.分析:如图,证明CA=CA′,∠A=∠CA′A;求出∠A=60°,得到∠A′CA=60°,即可解决问题.解答:解:如图,由题意得:CA=CA′,∴∠A=∠CA′A;∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠A′CA=180°﹣2×60°=60°,故选A.点评:该题主要考查了旋转变换的性质及其应用问题;解题的关键是抓住旋转变换过程中的不变量,灵活运用全等三角形的性质来分析、解答.2.(2014秋•南昌期末)将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.360考点:旋转对称图形.分析:等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,计算旋转角即可.解答:解:因为等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,所以,360°÷3=120°,即每次至少旋转120°.故选:B.点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.4.(2014•大庆)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.5.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.6.(2014•资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°考点:旋转的性质.分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解答:解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.7.(2014•北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED 的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.(2014•桂林)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°考点:旋转的性质.分析:根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.解答:解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.9.(2014•随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9考点:旋转的性质;平行线的判定;等边三角形的性质.专题:几何图形问题.分析:首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.解答:解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选:B.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.10.(2014•阜新)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)考点:关于原点对称的点的坐标.专题:几何图形问题.分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.解答:解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.点评:此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.二.填空题(共9小题)11.(2014•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.12.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.13.(2014•汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.(2014•黑龙江)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.15.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.16.(2015•河南模拟)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(2015•永州模拟)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为2011.考点:因式分解的应用.分析:首先将所给的代数式恒等变形,借助已知条件得到x2﹣x=1,即可解决问题.解答:解:﹣x3+2x2+2010=﹣x(x2﹣x﹣1)+x2﹣x+2010;∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2010=2011.故答案为2011.点评:该题主要考查了因式分解及其应用问题;解题的关键是牢固把握代数式的结构特点,灵活运用因式分解法来分析、判断、推理活解答.18.(2014•益阳)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.19.(2014•呼伦贝尔)分解因式:9a2﹣30a+25=(3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.三.解答题(共11小题)20.(2014秋•莘县期末)如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB 于点E,DF⊥AC于点F,求证:AD⊥EF.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:易证△AED≌△AFD,得AE=AF,利用等腰三角形三线合一可得证结论.解答:证明:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD.在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF.点评:本题主要考查全等三角形的判定和性质及等腰三角形的判定和性质,掌握全等三角形的对应边相等及等腰三角形“三线合一”的性质是解题的关键.21.(2014秋•越秀区期末)如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C 的度数.考点:等腰三角形的性质.分析:设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.解答:解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.点评:本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.22.(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F 为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.23.(2013•泉州模拟)如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题;开放型.分析:根据等腰三角形的判定方法,即在一三角形中等边对等角或等角对等边,可选①③来证明△ABE≌△DCE,从而得到AE=DE,即△AED是等腰三角形.(或①④,或②③,或②④.)解答:解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中∵∴△ABE≌△DCE;∴AE=DE;△AED是等腰三角形.点评:此题考查学生对等腰三角形的判定方法及全等三角形的判定的掌握情况;发现并利用全等三角形是正确解答本题的关键.24.(2013秋•长丰县期末)如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.考点:角平分线的性质;等腰三角形的判定与性质.专题:证明题.分析:先根据角平分线的性质得出CF=FG,由HL定理得出△ACF≌△AGF,故可得出∠AFC=∠AFG,再由平行线的性质得出∠AFG=∠AED,由对顶角相等可知∠AED=∠CEF,故可得出∠CEF=∠AFC,那么CE=CF,由此可得出结论.解答:证明:∵AF是∠BAC的平分线,∠ACB=90°,FG⊥AB,∴CF=FG.在Rt△ACF与Rt△AGF中,,∴△ACF≌△AGF(HL),∴∠AFC=∠AFG.∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠AFG=∠AED.∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,∴∠CEF=∠AFC,∴CE=CF,∴CE=FG.点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.26.(2014•兰州一模)如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.27.(2014•开封一模)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)利用等边三角形的判定与性质得出∠DAB=∠ABC,进而得出答案;(2)首先利用旋转的性质以及全等三角形的判定方法得出△DBG≌△ABF(SAS),进而得出△BGF为等边三角形,求出DF=DG+FG=AF+AF=2AF.解答:(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.点评:此题主要考查了全等三角形的判定与性质以及旋转的性质和等边三角形的判定与性质等知识,熟练掌握等边三角形的判定方法是解题关键.28.(2014秋•栖霞市期末)分解因式:(x﹣1)(x﹣2)+.考点:因式分解-运用公式法.分析:首先去括号,进而利用完全平方公式分解因式得出即可.解答:解:(x﹣1)(x﹣2)+=x2﹣3x+2+=x2﹣3x+=(x﹣)2.点评:此题主要考查了公式法分解因式,正确运用公式法分解因式是解题关键.29.(2014秋•青神县期末)分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)考点:提公因式法与公式法的综合运用.分析:(1)利用完全平方公式分解因式即可;(2)先整理,然后提取公因式2,再利用十字相乘法分解因式即可.解答:解:(1)4m2﹣12mn+9n2=(2m﹣3n)2;(2)(a2﹣4b2)+(a2+2ab)=a2﹣4b2+a2+2ab=2a2+2ab﹣4b2=2(a2+ab﹣2b2)=2(a﹣b)(a+2b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.30.(2014秋•宜城市期末)已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.考点:因式分解的应用.专题:常规题型.分析:先去分母得到a2+b2+c2=ab+ac+bc,再利用配方法得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,则根据非负数的性质有a﹣b=0,b﹣c=0,a﹣c=0,所以a=b=c,于是可判断△ABC是等边三角形.解答:解:△ABC是等边三角形.理由如下:∵++=++,∴a2+b2+c2=ab+ac+bc,∴2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,∴a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC是等边三角形.点评:本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了等边三角形的定义.。
八年级下册数学书答案北师大版
![八年级下册数学书答案北师大版](https://img.taocdn.com/s3/m/ff5be8ddbceb19e8b8f6baec.png)
八年级下册数学书答案北师大版只要是辛勤的蜜蜂,在八年级数学书习题的广阔原野里,到处都可以找到蜜源。
以下是小编为大家整理的八年级下册数学书答案北师大版,希望你们喜欢。
八年级下册数学书答案北师大版(一) 第3页1.解:(1)∵A=40,A+B+C=180,B=C=180-A=180-40=140.∵AB=AC,C=B=(140)/2=70.(2)∵AB=AC,B=C=72.∵A+B十C=180,A=180-B-C=180-72-72=36.2.(1)证明:∵ACBD于点C,ACB=ACD=90.又∵AC=AC,BC=CD,△ACB≌△ACD(SAS),AB=AD(全等三角形的对应边相等),即△ABD是等腰三角形.(2)解:∵AC=BC,ACB= 90,B=BAC=45.同理,D=DAC=45.BAC+DAC=45+45=90,即BAD=90.八年级下册数学书答案北师大版(二) 第6页1.解:如图1-1-43所示,在等边△ABC中.中线BD,CE相交于点F,CEAB,BEF=90∵BD平分ABC,EBF=1/2ABC=1/260=30.在Rt△BEF中,EFB=90-EBF=90-30=60.等边△ABC两条中线相交所成锐角为60.2解:∵△ADE是等边三角形,AD=DE=AE.ADE=DAE=60.又∵D.F是BC的三等分点,BD=DE=EC.AD=BD,B=BAD.∵ADE=B+BAD=60,BAD=B=30.同理可得EA=C=30.BAC=BAD+DAE+ EAC=30+60+30=120.八年级下册数学书答案北师大版(三) 第38页1.如小芳的体重思维2倍不超过她爸爸的体重等.2.(1)a0;(2)ca,cb;(3)x+175x;(4)a+b2ab(a表示一个数,b表示另一个数).八年级下册数学书答案北师大版。
数学书八年级下册答案北师大版
![数学书八年级下册答案北师大版](https://img.taocdn.com/s3/m/9b9684f3c67da26925c52cc58bd63186bceb92cf.png)
数学书八年级下册答案北师大版数学是一门实用的学科,它不仅能够培养学生的逻辑思维能力,还可以提高他们的问题解决能力。
对于八年级学生而言,数学是一个相当重要的学科,因此掌握好数学知识对他们而言非常关键。
而对于八年级下册的数学答案,对学生来说更是至关重要。
因为不论是课堂练习还是作业,都需要有一个标准答案来进行对照和自我检查。
北师大版的数学教材是八年级下册所采用的教材,下面我们就来为大家提供数学书八年级下册答案北师大版。
第一章有理数1. 知识点复习:a. 有理数的概念b. 有理数的加减法c. 有理数的乘除法d. 有理数的大小比较e. 有理数的绝对值2. 习题答案:1)练习题2)课后作业第二章代数式与方程1. 知识点复习:a. 代数式的概念b. 展开与因式分解c. 一元一次方程d. 一元一次方程的解法2. 习题答案:1)练习题2)课后作业第三章几何基础知识1. 知识点复习:a. 几何图形的概念b. 直线、射线、线段的区别c. 角的概念d. 平行线与垂直线的判定e. 三角形的分类f. 角平分线与垂直平分线2. 习题答案:1)练习题2)课后作业第四章相似与全等1. 知识点复习:a. 相似图形的概念b. 相似三角形的判定c. 全等图形的概念d. 全等三角形的判定2. 习题答案:1)练习题2)课后作业第五章计算与应用1. 知识点复习:a. 分数的加减乘除b. 百分数、倍数和比例的概念c. 百分数与小数的转换d. 比例与比例的运算e. 利息和平均数的计算2. 习题答案:1)练习题2)课后作业第六章数据分析1. 知识点复习:a. 数据的收集与整理b. 统计指标的计算c. 直方图与折线图的绘制d. 数据的分析和解读2. 习题答案:1)练习题2)课后作业通过以上各章节的习题答案,学生们可以对自己的学习成果进行巩固和总结。
同时,这些答案也可以作为学生在学习过程中的参考,帮助他们更好地理解和掌握数学知识。
总结起来,数学书八年级下册答案北师大版是每个八年级学生所必备的学习资料。
八下数学北师大版参考答案
![八下数学北师大版参考答案](https://img.taocdn.com/s3/m/8d042a987e192279168884868762caaedd33ba30.png)
八下数学北师大版参考答案数学是一门让很多人头疼的学科,尤其是对于初中生来说。
而北师大版的数学教材一直以来都备受学生和家长的关注。
在学习过程中,很多学生会遇到一些难题,对于这些难题的解答,参考答案是一个很好的学习工具。
下面将为大家提供一些八年级数学北师大版的参考答案。
首先,我们来看一下八年级上册的数学题目。
在这个学期里,学生将学习到很多重要的数学知识,包括代数方程、平面图形的性质、数与式的运算等等。
其中,代数方程是一个比较难的部分,很多同学容易出错。
下面是一道典型的代数方程题目:已知2x + 3 = 7,求x的值。
根据方程的定义,我们可以得到2x = 7 - 3,即2x = 4。
然后,将方程两边都除以2,得到x = 2。
所以,这道题的答案是x = 2。
接下来,我们来看一下八年级下册的数学题目。
在这个学期里,学生将学习到更加复杂的数学知识,包括三角函数、立体几何、概率等等。
其中,立体几何是一个比较抽象的概念,很多同学可能会感到困惑。
下面是一道典型的立体几何题目:已知一个正方体的棱长为a,求正方体的表面积。
根据正方体的性质,我们知道正方体有六个面,每个面都是一个正方形。
所以,正方体的表面积等于六个正方形的面积之和。
而每个正方形的面积等于边长的平方。
所以,正方体的表面积等于6 * a * a,即6a²。
所以,这道题的答案是6a²。
除了代数方程和立体几何,还有很多其他的数学知识需要我们去掌握。
比如,数与式的运算是一个非常基础的概念。
下面是一道典型的数与式的运算题目:计算:(2x + 3)² - (x - 1)²。
根据数与式的运算法则,我们可以得到(2x + 3)² - (x - 1)² = (2x)² + 2 * 2x * 3 + 3² - (x)² + 2 * x * 1 + 1²。
化简之后,得到4x² + 12x + 9 - x² + 2x + 1。
北师大版八年级下册数学课本答案参考
![北师大版八年级下册数学课本答案参考](https://img.taocdn.com/s3/m/e0a7bdbed5d8d15abe23482fb4daa58da0111cb2.png)
北师大版八年级下册数学课本答案参考第一章:有理数1. 基础知识有理数是整数和分数的统称,它包括正数、负数和零。
有理数的加、减、乘、除运算规则和整数的运算规则相同。
2. 课后练习答案1) 解方程2x - 1 = 7得 x = 4。
2) 有理数的加法运算:(-3) + (-5) = -8。
3) 约分分数$\frac{8}{12}$得到$\frac{2}{3}$。
4) 相反数的性质:若$a$是有理数,那么$-(-a) = a$。
5) 解方程$\frac{1}{3}x - \frac{1}{2} = \frac{1}{4}$,得到$x =\frac{2}{3}$。
6) 有理数的乘法运算:$(-\frac{3}{4}) \times (\frac{8}{9}) = -\frac{2}{3}$。
7) 加法交换律:若$a$和$b$是有理数,则$a + b = b + a$。
8) 解方程$\frac{2}{3}x + \frac{1}{4} = -\frac{3}{4}$,得到$x = -\frac{5}{2}$。
9) 解方程$-0.4x - 0.1 = -0.3$,得到$x = 1$。
10) 解方程$2x - 3 = -5x + 2$,得到$x = \frac{5}{7}$。
第二章:代数式与变量1. 基础知识代数式是由常数、变量和运算符号组成的表达式,例如$x + y$就是一个代数式。
变量是代表数的符号,可以代表不同的数值。
在代数式中,变量参与运算,可以得到具体的数值。
2. 课后练习答案1) 代数式$3x^2 - 2x + 5y$的系数是3、-2、5。
2) 代数式$7x - 3y$的和是$8x - y$。
3) 代数式$(3a + 4b)(2a - 5b)$展开后为$6a^2 - 7ab - 20b^2$。
4) 代数式$2x^2 + 3xy - 4y^2$的最高次项是$2x^2$。
5) 代数式$6a - (2b - 3a)$化简得$9a - 2b$。
八年级下册数学练习册答案北师大版
![八年级下册数学练习册答案北师大版](https://img.taocdn.com/s3/m/a3956daaf524ccbff121849f.png)
八年级下册数学练习册答案北师大版第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面; “⊙”,表示“森哥马”,§,¤,♀,∮,≒ ,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABC DEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’) 2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
291.(精品文档)北师大版八年级下册练习题 附解析答案 26页
![291.(精品文档)北师大版八年级下册练习题 附解析答案 26页](https://img.taocdn.com/s3/m/528fc00c33d4b14e852468e0.png)
一.选择题(共10小题)1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°2.将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.3603.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.34.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.16.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°9.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是910.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)二.填空题(共9小题)11.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16.分解因式:x3y﹣2x2y+xy=.17.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为.18.若x2﹣9=(x﹣3)(x+a),则a=.19.分解因式:9a2﹣30a+25=.三.解答题(共11小题)20.如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:AD⊥EF.21.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:24.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.25.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.26.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.27.如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.28.分解因式:(x﹣1)(x﹣2)+.29.分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)30.已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.2020年03月23日neg123的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2014秋•南平期末)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°考点:旋转的性质.分析:如图,证明CA=CA′,∠A=∠CA′A;求出∠A=60°,得到∠A′CA=60°,即可解决问题.解答:解:如图,由题意得:CA=CA′,∴∠A=∠CA′A;∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠A′CA=180°﹣2×60°=60°,故选A.点评:该题主要考查了旋转变换的性质及其应用问题;解题的关键是抓住旋转变换过程中的不变量,灵活运用全等三角形的性质来分析、解答.2.(2014秋•南昌期末)将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.360考点:旋转对称图形.分析:等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,计算旋转角即可.解答:解:因为等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,所以,360°÷3=120°,即每次至少旋转120°.故选:B.点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.4.(2014•大庆)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.5.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.6.(2014•资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°考点:旋转的性质.分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解答:解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.7.(2014•北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED 的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.(2014•桂林)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°考点:旋转的性质.分析:根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.解答:解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.9.(2014•随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9考点:旋转的性质;平行线的判定;等边三角形的性质.专题:几何图形问题.分析:首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.解答:解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选:B.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.10.(2014•阜新)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)考点:关于原点对称的点的坐标.专题:几何图形问题.分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.解答:解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.点评:此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.二.填空题(共9小题)11.(2014•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.12.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.13.(2014•汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.(2014•黑龙江)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.15.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.16.(2019•河南模拟)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(2019•永州模拟)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为2011.考点:因式分解的应用.分析:首先将所给的代数式恒等变形,借助已知条件得到x2﹣x=1,即可解决问题.解答:解:﹣x3+2x2+2010=﹣x(x2﹣x﹣1)+x2﹣x+2010;∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2010=2011.故答案为2011.点评:该题主要考查了因式分解及其应用问题;解题的关键是牢固把握代数式的结构特点,灵活运用因式分解法来分析、判断、推理活解答.18.(2014•益阳)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.19.(2014•呼伦贝尔)分解因式:9a2﹣30a+25=(3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.三.解答题(共11小题)20.(2014秋•莘县期末)如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB 于点E,DF⊥AC于点F,求证:AD⊥EF.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:易证△AED≌△AFD,得AE=AF,利用等腰三角形三线合一可得证结论.解答:证明:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD.在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF.点评:本题主要考查全等三角形的判定和性质及等腰三角形的判定和性质,掌握全等三角形的对应边相等及等腰三角形“三线合一”的性质是解题的关键.21.(2014秋•越秀区期末)如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C 的度数.考点:等腰三角形的性质.分析:设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.解答:解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.点评:本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.22.(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F 为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.23.(2013•泉州模拟)如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题;开放型.分析:根据等腰三角形的判定方法,即在一三角形中等边对等角或等角对等边,可选①③来证明△ABE≌△DCE,从而得到AE=DE,即△AED是等腰三角形.(或①④,或②③,或②④.)解答:解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中∵∴△ABE≌△DCE;∴AE=DE;△AED是等腰三角形.点评:此题考查学生对等腰三角形的判定方法及全等三角形的判定的掌握情况;发现并利用全等三角形是正确解答本题的关键.24.(2013秋•长丰县期末)如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.考点:角平分线的性质;等腰三角形的判定与性质.专题:证明题.分析:先根据角平分线的性质得出CF=FG,由HL定理得出△ACF≌△AGF,故可得出∠AFC=∠AFG,再由平行线的性质得出∠AFG=∠AED,由对顶角相等可知∠AED=∠CEF,故可得出∠CEF=∠AFC,那么CE=CF,由此可得出结论.解答:证明:∵AF是∠BAC的平分线,∠ACB=90°,FG⊥AB,∴CF=FG.在Rt△ACF与Rt△AGF中,,∴△ACF≌△AGF(HL),∴∠AFC=∠AFG.∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠AFG=∠AED.∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,∴∠CEF=∠AFC,∴CE=CF,∴CE=FG.点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.26.(2014•兰州一模)如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.27.(2014•开封一模)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)利用等边三角形的判定与性质得出∠DAB=∠ABC,进而得出答案;(2)首先利用旋转的性质以及全等三角形的判定方法得出△DBG≌△ABF(SAS),进而得出△BGF为等边三角形,求出DF=DG+FG=AF+AF=2AF.解答:(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.点评:此题主要考查了全等三角形的判定与性质以及旋转的性质和等边三角形的判定与性质等知识,熟练掌握等边三角形的判定方法是解题关键.28.(2014秋•栖霞市期末)分解因式:(x﹣1)(x﹣2)+.考点:因式分解-运用公式法.分析:首先去括号,进而利用完全平方公式分解因式得出即可.解答:解:(x﹣1)(x﹣2)+=x2﹣3x+2+=x2﹣3x+=(x﹣)2.点评:此题主要考查了公式法分解因式,正确运用公式法分解因式是解题关键.29.(2014秋•青神县期末)分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)考点:提公因式法与公式法的综合运用.分析:(1)利用完全平方公式分解因式即可;(2)先整理,然后提取公因式2,再利用十字相乘法分解因式即可.解答:解:(1)4m2﹣12mn+9n2=(2m﹣3n)2;(2)(a2﹣4b2)+(a2+2ab)=a2﹣4b2+a2+2ab=2a2+2ab﹣4b2=2(a2+ab﹣2b2)=2(a﹣b)(a+2b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.30.(2014秋•宜城市期末)已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.考点:因式分解的应用.专题:常规题型.分析:先去分母得到a2+b2+c2=ab+ac+bc,再利用配方法得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,则根据非负数的性质有a﹣b=0,b﹣c=0,a﹣c=0,所以a=b=c,于是可判断△ABC是等边三角形.解答:解:△ABC是等边三角形.理由如下:∵++=++,∴a2+b2+c2=ab+ac+bc,∴2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,∴a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC是等边三角形.点评:本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了等边三角形的定义.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
北师大版数学八年级下册全册同步练习附答案
![北师大版数学八年级下册全册同步练习附答案](https://img.taocdn.com/s3/m/8dc538326c175f0e7cd1376e.png)
3.已知实数x,y满足 ,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16B.20C.16D.以上答案均不对
4.如图,在△ABC中,AB=AC,∠A=40°,
BD为∠ABC的平分线,则∠BDC的度数是( )
A.60°B.70°C.75°D.80°
22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.
(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)
(2)选择(1)小题中的一种情形,说明AB=AC.
23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?
∴BD=CD,
在△A BD和△ACD中, ,
∴△ABD≌△ACD(SSS);…(4分)
(2)由(1)知△ABD≌△ACD,
∴∠BAD=∠CAD,即∠BAE=∠CAE,
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS),
∴BE=CE(全等三角形的对应边相等).
(其他正确证法同样给分)…(4分)
21、解:OE⊥AB.
22.如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO ;③BD=CE;④OB=OC.
(1)上述四个条件中,哪两个可以判定△ABC是等腰三角 形?
(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.
八下数学书答案北师大版
![八下数学书答案北师大版](https://img.taocdn.com/s3/m/b44782b1fbb069dc5022aaea998fcc22bcd14325.png)
八下数学书答案北师大版一、引言数学是一门重要的学科,对于学生的学习发展和素质提升有着重要的作用。
而作为学生来说,能够找到正确的答案是巩固知识的重要一环。
本文的目的就是为了提供八年级下册数学书北师大版的答案,以帮助学生们提高自己的学习效果和提供参考。
二、北师大版数学书概述北师大版数学书以新课程改革精神为指导,注重培养学生的数学思维和解决问题的能力。
八年级下册分为七个章节,包括《一次函数及应用》、《平面图形的变换》、《平面上的几何性质应用》、《利用平面图形的性质解题》、《立体图形的认识与计算》、《数据的收集整理和分析》和《概率与统计》。
通过这些内容,学生将系统地学习数学的基本概念和方法,为进一步学习打下坚实的基础。
三、答案示例下面为大家提供数学书的一些题目的答案示例,以供参考。
1. 《一次函数及应用》章节例1:求下列函数图象的斜率。
(1)y = -2x + 3解答:斜率即为函数的系数,所以斜率为-2。
例2:判断下列函数的图象是否相等。
(1)y = 4x+1 和 y = 2(2x)+1解答:两个函数的图象相等,因为它们的函数表达式相等。
2. 《平面图形的变换》章节例1:平行四边形ABCD的边AB长为6cm,AD长为4cm,正方形EFGH的边长为3cm。
将EFGH围绕AB作旋转,求旋转后EF 的长度。
解答:AE = CF = 3cm,因为正方形旋转过程中保持不变,所以EF 的长度仍为3cm。
例2:已知平行四边形ABCD的周长为36cm,边AD的长度为9cm,求BC的长度。
解答:由周长的性质可知,AB+CD = AD+BC,带入已知条件得到6+BC = 9,所以BC = 3cm。
3. 《平面上的几何性质应用》章节例1:已知平行四边形ABCD,对角线AC和BD相等,证明该平行四边形是矩形。
解答:根据性质可知,平行四边形的对角线互相平分,所以AC和BD是平行四边形的互相平分线。
又因为AC和BD相等,所以这两条线是平行四边形的对边,所以该平行四边形是矩形。
北师大版八年级下册数学书答案2022
![北师大版八年级下册数学书答案2022](https://img.taocdn.com/s3/m/9fb78fec5ebfc77da26925c52cc58bd6318693d4.png)
北师大版八年级下册数学书答案2022 2022 年北师大版八年级下册数学书答案一、数的认识和运算1. 整数乘法:(1)387×6= 2322;(2)-218×7= -1526;(3)-341×-2= 682。
2. 整数除法:(1)558÷7=79;(2)816÷-2=-408;(3)-526÷-6=87。
3. 混合运算:(1)2-3×(-5+4)=-14;(2)-6+(-4÷2)=-8;(3)(-10+2)×4=28。
二、分数的认识和运算1. 加法:(1)3/4+2/3=17/12;(2)1/2+(-3/4)=-1/4;(3)-1/5+(-7/8)=-63/40。
2. 减法:(1)3/4-2/3=1/12;(2)5/6-8/15=17/30;(3)1/5--7/8=63/40。
3. 乘法:(1)2/3×30/7=60/21;(2)-2/3×6/7=-12/21;(3)1/4×-7/9=-7/36。
4. 除法:(1)5/6÷2/3=15/4;(2)-3/4÷-1/5=15/4;(3)2/3÷-5/6=-10/15。
三、有理数的认识和运算1. 加法:(1)3/4+2.3=11.3/4;(2)0.75+(-3.28)=-2.53;(3)-1.6/+2.7=1.1。
2. 减法:(1)3/4-2.3=-5.3/4;(2)0.75-(-3.28)=4.03;(3)-1.6-2.7=-4.3。
3. 乘法:(1)2.3×3/4=6.9/4;(2)-2/3×0.75=-1.5;(3)1.6×-2.7=-4.32。
4. 除法:(1)3/4÷2.3=0.6521739;(2)0.75÷-3.28=-0.22727;(3)-1.6÷2.7=-0.592593。
最新北师大版八年级下册数学练习册答案[方案]优秀名师资料
![最新北师大版八年级下册数学练习册答案[方案]优秀名师资料](https://img.taocdn.com/s3/m/a97af76233687e21af45a95f.png)
1、认真研读教材,搞好课堂教学研究工作,向课堂要质量。充分利用学生熟悉、感兴趣的和富有现实意义的素材吸引学生,让学生主动参与到各种数学活动中来,提高学习效率,激发学习兴趣,增强学习信心。提倡学法的多样性,关注学生的个人体验。
(1)与圆相关的概念:
北师大版八年级下册数学练习册答案[方案]
数学:
(三)实践活动
(1)三边之间的关系:ห้องสมุดไป่ตู้2+b2=c2;
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;
三、教学内容及教材分析:
六、教学措施:集合性定义:圆是平面内到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。
北师大版八年级下册数学书答案
![北师大版八年级下册数学书答案](https://img.taocdn.com/s3/m/85d6effb9a89680203d8ce2f0066f5335a81673a.png)
北师大版八年级下册数学书答案不努力做八年级数学书习题的人,永远达不到成功的彼岸。
店铺为大家整理了北师大版八年级下册数学书答案,欢迎大家阅读!北师大版八年级下册数学书答案(一)习题1.71.解:∵AB=AC,∠BAC=120°,∴ ∠B=∠C=(180°-∠BAC)/2=(180°-120°)/2=30°.∵EF是AB的垂直平分线,∴FA=FB.∴∠FAB=∠B=30°.∵∠FAB+∠FAC=∠BAC,∴∠FAC=∠BAC-∠FAB=120°-30°=90°,∴∠AFC=90°-∠C=90°-30°=60°.2.另一个顶点都在线段AB的垂直平分线上.3.解:∵DE垂直平分AB,∴AE=BE(线段垂直平分线上的点到这条线段的两个端点的距离相等).∵△BCE的周长为BC+BE+EC=50,∴BC+AE+EC=50,即BC+AC=50.∵AC=27,∴BC=50-AC=50-27=23.4.作法:如图1-3-27所示.(1)连接AB;(2)作AB的垂直平分线交河岸于点C,则点C即为码头应该建造的位置.北师大版八年级下册数学书答案(二)第29页1.解:互相垂直.理由如下:∵AD,AE分别平分∠BAC,∠CAF,∴∠CAD=1/2∠BAC,∠CAE=1/2∠CAF.∴∠CAD+∠CAE=1/2∠BAC+1/2∠CAF=1/2(∠BAC+∠CAF)=1/2×180°=90°,即∠DAE=90°.∴AD⊥AE.2.提示:把公路、铁路看成两条相交直线(交点为O)作出其夹角(A 区所在角的平分线OB,在OB上截取OC=2.5cm,点C即为所求目标的位置,作图如图1-4-29所示.北师大版八年级下册数学书答案(三)第31页。