最新北师大版八年级数学知识点汇总
八年级数学北师大版知识点
一、整数1.整数的概念:正整数、负整数、零以及它们在数轴上的位置关系。
2.整数的加法和减法:同号相加、异号相减、零的作用以及加减法的运算规律。
3.整数的乘法和除法:同号相乘得正,异号相乘得负,零的乘除法,乘除法的运算规律。
4.带括号的整数运算:正数和带括号的数的加减法、乘除法的运算法则。
5.整数运算的计算顺序。
二、分数1.分数的概念:真分数、假分数、带分数以及它们之间的转换。
2.分数的加法和减法:同分母相加减,不同分母化为通分后相加减。
3.分数的乘法和除法:分子乘分子,分母乘分母;分数相除等于分子乘以倒数。
4.带分数的加减法和乘除法。
5.分式的加减法:分式化为通分后相加减。
6.真分数与带分数之间的相互转换。
三、小数1.小数的概念:有限小数、无限循环小数、无限不循环小数。
2.小数的加法和减法:竖式加减法,注意小数点的对齐和运算法则。
3.小数的乘法:先忽略小数点,数的乘积的小数位数等于因数的小数位数之和,最后确定小数点的位置。
4.小数的除法:先将除法运算转化为乘法运算,然后计算商的整数部分和小数部分。
四、正比例与反比例1.正比例关系的概念:一个变量的增大,另一个变量也随之增大。
2.例题解答:给出两个变量间的正比例关系,推算一个变量当另一个变量已知时的数值。
3.反比例关系的概念:一个变量的增大,另一个变量随之减小。
4.例题解答:给出两个变量间的反比例关系,推算一个变量当另一个变量已知时的数值。
五、平方根和立方根1.平方根的概念:一个数的平方根是指能够使得该数的平方等于所求数的数值。
2.求解平方根的方法:完全平方数、近似计算。
3.平方根的应用:勾股定理。
4.立方根的概念:一个数的立方根是指能够使得该数的立方等于所求数的数值。
5.求解立方根的方法:近似计算。
6.立方根的应用。
六、代数式和方程式1.代数式的概念:由数、字母和常数通过运算符号连接而成的式子。
2.代数式的计算:合并同类项、求和差、分配律。
3.方程式的概念:等式的特殊形式,表示两个代数式或算式之间的平衡关系。
八年级数学知识点北师版
八年级数学知识点北师版数学是一门需要循序渐进掌握的学科,而数学知识点则是数学学习的基础和关键。
八年级是初中数学学习的重中之重,掌握好这个阶段的数学知识点,对于高中数学及以后的学习都有十分重要的作用。
本文将介绍北师版八年级数学知识点,希望对初中数学学习有所帮助。
一、有理数有理数是由整数和分数组成的数。
八年级主要学习有理数四则运算、有理数大小比较、有理数绝对值等。
其中,有理数大小比较是理解有理数的正负和大小的关键,掌握这个知识点对于后面学习有理数的加减乘除及高中中学分数解析式等知识点十分重要。
二、代数式与方程代数式是用字母和数字表示的式子,方程则是含有等号的代数式。
在八年级,学生需要掌握代数式的展开和因式分解,解代数式方程的基本方法以及一元一次方程和一元一次方程组等知识点。
掌握好代数式和方程的基础知识,对于高中的代数运算和函数概念的理解以及高考数学复习都有很大的帮助。
三、几何几何是与形状、大小和相对位置有关的数学知识领域。
在八年级,学生需要学习平面图形的性质、三角形的性质、相似及全等三角形、勾股定理和三角函数等知识点。
其中三角形的性质和勾股定理是掌握高中三角函数和向量概念的基础,相似及全等三角形则是理解初中和高中的几何概念的关键。
四、函数函数是数学中的基础概念,也是高中数学领域的核心概念之一。
在八年级,学生需要掌握函数概念、函数的表示方法、函数的性质等知识点。
熟练掌握这些知识点,可以为高中二次函数、指数函数、对数函数等知识点的理解和掌握打下坚实的基础。
五、统计与概率统计与概率是数学中的一个重要分支,涉及到数理统计、概率论、数理逻辑等知识。
在八年级,学生需要掌握频数、频率、百分数、样本和总体、事件与样本空间、基本事件、复合事件等知识点。
这些知识点是高中数学概率和统计知识的基石,掌握好这些知识点对于高中数学学习和高考数学都是极其重要的。
八年级的数学知识点涉及到代数、几何、函数和概率等多个领域,对学生的数学素养和思维能力要求也越来越高。
八年级上册数学北师大版知识点总结
第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
新版北师大版八年级数学上册知识点全面总结
新版北师大版八年级数学上册知识点全面总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
常见勾股数:(3、4、5)(6、8、10)(5、12、13)(8、15、17)第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:叫做a(2)性质:①当a ≥0≥0;当a=aa =。
2.立方根的概念及其性质:(1)概念:若3a ,那么x是a;(2a =;②3a = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5(a ≥0,b ≥0) a ≥0,b >0)。
第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
北师大版八年级数学知识点
北师大版八年级数学知识点一、勾股定理。
1. 勾股定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图证法等。
通过图形的拼接、面积的计算来证明等式成立。
3. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
4. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数,如3、4、5;5、12、13等。
二、实数。
1. 无理数的概念。
- 无限不循环小数叫做无理数。
例如√(2)、π等。
2. 实数的分类。
- 实数包括有理数和无理数。
有理数包括整数(正整数、0、负整数)和分数(有限小数和无限循环小数);无理数是无限不循环小数。
3. 实数的运算。
- 实数的运算顺序与有理数运算顺序相同,先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
- 在进行实数运算时,有理数的运算法则和运算律同样适用。
例如加法交换律a + b=b + a,乘法分配律a(b + c)=ab+ac等。
4. 平方根与立方根。
- 平方根:如果x^2=a(a≥slant0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。
- 立方根:如果x^3=a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
三、位置与坐标。
1. 确定位置的方法。
- 在平面内确定一个物体的位置需要两个数据。
例如用有序数对(x,y)来表示平面内点的位置。
2. 平面直角坐标系。
- 由两条互相垂直、原点重合的数轴组成。
水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,两轴交点O称为原点。
- 坐标平面被坐标轴分成四个象限,右上部分为第一象限(x>0,y>0),左上部分为第二象限(x<0,y>0),左下部分为第三象限(x<0,y<0),右下部分为第四象限(x>0,y<0)。
北师大版初中数学各册章节知识点总结
北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
北师大版八年级数学知识点
一、数与代数
1.基本数与分数:包括整数、真分数、带分数、换算等。
2.小数:包括小数的读法和写法、小数与分数的关系、小数的运算等。
3.比例与比例计算:包括比例的定义、比例的性质、比例的计算等。
4.百分数与百分数计算:包括百分数的意义、百分数的计算、百分数
与小数的关系等。
二、空间与图形
1.二维图形:包括平面图形的名称、特征和性质,如三角形、四边形、平行四边形、正方形、矩形、菱形等。
2.空间几何体:包括立体图形、棱柱、棱锥、圆柱、圆锥、球体、正
方体等的特征和性质。
3.二维图形与三维图形的关系:包括二维图形在立体图形表面的展开、平行投影、立体图形的视图等。
三、函数与方程
1.一次函数与线性方程:包括直线的斜率与截距、斜率的表示和计算、线性方程的解法等。
2.二次函数与二次方程:包括二次函数的图像、顶点坐标、二次方程
的解法等。
3.图像与方程:包括函数图象与方程的关系、通过题目给出的条件建
立方程等。
四、统计与概率
1.平均数:包括算术平均数的概念、算法、利用平均数解题等。
2.统计图表:包括频数分布表、条形统计图、折线统计图、饼图等的解读和绘制。
3.概率:包括事件的概念、概率的计算与统计、独立事件和互不独立事件等。
以上只是北师大版八年级数学的一部分知识点,通过学习这些知识点可以帮助学生建立数学基本概念,培养数学思维和解题能力。
但由于篇幅限制,无法涵盖所有的数学知识点,请根据教材的内容进行详细学习。
北师大版八年级数学知识点汇总
2.勾股定理的逆定理
特色题型:蚂蚁怎样走最近
第二章 实数
1 认识无理数
2 平方根
3 立方根
4 估算
5 用计算器开方
6 实数
7 二次根式
回顾与思考
复习题
一、无理数
定义
有理数与无理数的区别
二、平方根
1.定义;2.平方根与开平方的定义;3.算术平方根;4.平方根与算数平方根的联系与区别;5.平方根的性质:一个正数有两个平方根,且他们互为相反数;0只有一个平方根是0;负数没有平方根
一组数据中出现次数最多的那个数据叫做这组数据的众数。
三、极差、方差、标准差
极差:最大值与最小值的差。
方差:
标准差:标准差是方差的算数平方根
极差、方差、标准差都是反映一组数据离散程度的特征数,一般地,一组数据的极差、方差或标准差较小,这组数据就越稳定。
第七章证平行线的证明
1 为什么要证明
2 定义与命题
②三个角都相等的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形。
4、直角三角形
(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(2)勾股定理及其逆定理
直角三角形两条直角边的平方和等于斜边的平方
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
7、平行线的性质
公理:两直线平行,同位角相等。
定理:两直线平行,内错角相等。
定理:两直线平行,同旁内角互补。
8、证明的一般步骤:(1)根据题意,画出图形;(2)根据条件、结论,结合图形,写出证明的过程;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
初二数学上册知识点.复习及配套练习(新北师大版本)
.新北师大版八年级数学上册知识点复习第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 2 2 2a b c 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
2 2 23.勾股定理逆定理:如果三角形的三边长a,b,c 满足a b c ,那么这个三角形是2 2 2直角三角形。
满足a b c 的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果 2x a,那么x 是a 的平方根,记作: a ;其中 a 叫做a 的算术平方根。
(2)性质:①当a≥0 时, a ≥0;当a <0时, a 无意义;②2a =a ;③ 2a a 。
2.立方根的概念及其性质:(1)概念:若(2)性质:①33 a ;x a ,那么x 是a 的立方根,记作:33 a3 a ;② 3 a a;③ 3 a = 3 a3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
a a5.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0)。
a b a bb b第三章位置与坐标1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点A、B横坐标相同,则AB ∥y 轴;如果点A、B 纵坐标相同,则AB∥x 轴。
3.将图形的纵坐标保持不变,横坐标变为原来的1倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1倍,所得到的图形与原图形关于原点成中心对称。
北师大版初二数学知识点
北师大版初二数学知识点
北师大版初二数学课程涵盖了丰富的数学知识点,旨在培养学生的数
学思维和解决问题的能力。
以下是初二数学的主要知识点概述:
1. 数与式:初二数学首先深入学习了有理数的概念,包括正数、负数
和零。
学生需要掌握有理数的加减乘除运算法则,以及如何进行有理
数的大小比较。
此外,还涉及了代数式的概念,包括单项式和多项式,以及它们的加减运算。
2. 方程与不等式:方程和不等式是初二数学的重要内容。
学生学习了
一元一次方程的解法,包括移项、合并同类项等步骤。
同时,还学习
了一元一次不等式的解法,以及如何根据不等式求解集。
3. 函数:函数的概念在初二数学中被引入,学生需要理解函数的基本
概念,如定义域、值域和对应法则。
此外,还学习了一次函数的图像
和性质,包括斜率和截距的意义。
4. 几何图形:初二数学中的几何部分包括了对线段、角、三角形等基
本几何图形的认识。
学生需要掌握这些图形的基本性质,如线段的中点、角的平分线等,并学习了如何进行几何证明。
5. 统计与概率:统计与概率是初二数学的另一重要领域。
学生学习了
如何收集和整理数据,包括制作统计表和统计图。
同时,还学习了概
率的基本概念,如随机事件、概率的计算等。
6. 综合应用:初二数学课程还强调了数学知识在实际生活中的应用。
学生通过解决实际问题,如购物问题、行程问题等,来提高运用数学
知识的能力。
通过这些知识点的学习,初二学生不仅能够掌握数学的基础知识,还能够培养分析问题和解决问题的能力,为进一步的数学学习打下坚实的基础。
北师版初二数学知识点归纳
北师版初二数学知识点归纳北师版初二数学课程涵盖了众多重要的数学知识点,这些知识点为学生进一步学习数学打下了坚实的基础。
以下是对这些知识点的归纳总结:首先,我们学习了实数的概念,包括有理数和无理数的分类,以及实数的运算法则。
实数的运算包括加法、减法、乘法和除法,这些运算法则在解决实际问题时非常重要。
其次,我们掌握了多项式的概念和运算。
多项式是由变量和系数组成的代数表达式,我们学习了如何进行多项式的加减、乘法以及因式分解。
接着,我们了解了分式的概念和运算。
分式是分子和分母都是多项式的有理表达式。
我们学习了分式的加减、乘除以及通分和约分的方法。
此外,我们深入学习了二次根式的性质和运算。
二次根式是形如√a的表达式,其中a是非负实数。
我们掌握了二次根式的乘除法则,以及如何化简二次根式。
在几何部分,我们首先学习了平行线的性质和判定。
平行线是在同一平面内不相交的两条直线,我们了解了平行线的判定定理,如同位角相等、内错角相等等。
然后,我们探讨了三角形的相关知识,包括三角形的内角和定理、三角形的分类以及三角形的面积计算公式。
此外,我们还学习了四边形的性质,特别是平行四边形、矩形、菱形和正方形的性质和判定方法。
在统计学方面,我们学习了数据的收集、整理和描述。
我们了解了如何使用图表,如条形图、折线图和饼图,来展示数据的分布情况。
最后,我们掌握了概率的基本概念,包括随机事件、概率的计算以及概率在实际生活中的应用。
通过这些知识点的学习,我们不仅提高了数学解题能力,而且增强了逻辑思维和问题解决能力。
这些知识将为我们今后的学习和生活提供重要的支持。
新北师大版八年级数学下册知识点总结
新北师大版八年级数学下册知识点总结新北师大版八年级数学下册知识点总结一、知识点概述本篇总结了新北师大版八年级数学下册的主要知识点,包括平行线、三角形、四边形、概率等。
这些知识点是八年级数学学习的基础,对于学生掌握更高级的数学概念具有重要意义。
二、知识点详解1、平行线:理解平行线的概念,掌握平行线的性质和判定方法,了解平行线的应用。
2、三角形:掌握三角形的性质,熟悉各类三角形(如等腰、直角、等边)的特点,了解三角形的高、中线和角平分线的概念。
3、四边形:理解四边形的概念,掌握各类四边形(如矩形、菱形、正方形)的性质,了解梯形、多边形的特点。
4、概率:理解概率的概念,掌握概率的求解方法,了解概率在生活中的应用。
三、知识点总结本篇知识点总结了新北师大版八年级数学下册的主要内容,包括平行线、三角形、四边形和概率。
这些知识点是数学学习的基础,对于学生掌握更高级的数学概念具有重要意义。
在学习过程中,学生应注重理解概念、掌握性质和应用,从而更好地掌握这些知识点。
四、学习建议为了更好地掌握这些知识点,学生可以采取以下学习建议:1、做好课堂笔记:在课堂上,认真听讲,做好笔记,将老师讲解的重点难点记录下来,方便课后复习。
2、练习做题:在掌握基本概念之后,要多做练习题,通过做题加深对知识点的理解,同时也可以检验自己的学习成果。
3、积极思考:在学习过程中,要积极思考,通过思考加深对知识点的理解,培养自己的数学思维。
4、理论联系实际:将学到的知识点与实际生活联系起来,通过实际例子来理解概念,从而更好地掌握知识点。
五、拓展阅读在掌握基本知识点的基础上,学生可以进一步拓展阅读,了解更多与数学相关的知识和应用。
例如,可以阅读一些数学课外书籍、数学期刊和数学竞赛资料,从而拓宽自己的数学知识面。
此外,还可以通过数学实验、数学探究等活动,深入了解数学的应用和实际意义。
总之,新北师大版八年级数学下册的知识点是八年级数学学习的重要内容,学生应认真掌握、深入理解,并通过拓展阅读和实践活动,进一步拓宽自己的数学知识面。
(完整word版)北师大版八年级数学知识点整理(分单元精校版)(良心出品必属精品)
北师大版八年级全册数学定理知识点汇总八年级上册第一章勾股定理1.勾股定理直角三角形两直角边a, b的平方和等于斜边c的平方, 即2.勾股定理的逆定理如果三角形的三边长a, b, c有关系, 那么这个三角形是直角三角形。
3.勾股数:满足的三个正整数, 称为勾股数。
第二章实数1) 1.实数的概念及分类2)实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数无理数:无限不循环小数叫做无理数。
➢在理解无理数时, 要抓住“无限不循环”这一时之, 归纳起来有四类:➢开方开不尽的数, 如等;➢有特定意义的数, 如圆周率π, 或化简后含有π的数, 如+8等;➢有特定结构的数, 如0。
1010010001…等;某些三角函数值, 如sin60o等1) 2.实数的倒数、相反数和绝对值相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b,反之亦成立。
绝对值:在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a ≥0;若|a|=-a, 则a ≤0。
倒数:如果a 与b 互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
数轴:2) 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时, 要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想, 理解实数与数轴的点是一一对应的, 并能灵活运用。
估算:1) 3.平方根、算数平方根和立方根算术平方根:➢ 一般地, 如果一个正数x 的平方等于a, 即x2=a, 那么这个正数x 就叫做a 的算术平方根。
特别地, 0的算术平方根是0。
2) 表示方法:记作“ ”, 读作根号a 。
北师大版八年级数学知识点归纳总结
第一章有理数1.有理数的定义与性质:有理数是可以用两个整数的比表示的数,包括整数、分数、正数、负数。
2.有理数的运算:有理数的加、减、乘、除法运算。
3.有理数的比较:通过比较绝对值的大小,确定有理数的大小关系。
4.有理数的绝对值:一个有理数的绝对值是其与0之间的距离。
5.有理数的表示:分数的四则运算、分数的乘法公式、乘除法法则。
6.分数与整数、小数的关系:分数可以化简为整数或小数,整数可以化为分数或小数,小数可以化为分数。
第二章代数式1.代数式的定义:一个由数及代数符号组成的式子。
2.代数式的运算:代数式的加减乘除运算。
3.代数式的展开:将代数式从因式形式展开为展开式。
4.求代数式的值:给定代数式中的字母数值,可以求出代数式的具体值。
5.变量的代数计算:将一个代数式的一些变量用另一个变量表示出来。
6.代数式间的运算:如同代数式只是一个数一样,进行加、减、乘、除运算。
第三章图形的性质1.直角三角形:一条直角边的边与斜边的关系,勾股定理的应用。
2.这角三角形:斜边的平方等于两直角边的平方和,勾股定理的应用。
3.平行四边形:对角线的性质,平行四边形对角线的长度关系。
4.长方体:长方体的表面积,长方体的体积。
5.圆的性质:圆的半径、直径、弦、弧、弧度、周长、面积的概念,圆心角、圆周角的概念。
6.圆的应用:构造与判断等分线、切线和相切圆。
第四章数据的处理1.平均数:算术平均值的定义及计算,调查数据中个体之间的关系。
2.中位数:确定数据集中的中位数,中位数对数据变化的稳定性。
3.极差和五数概括:观察数据集的极差和五数概括。
4.数据的表示法:条形统计图的基本知识,构建条形统计图的步骤。
5.单位换算:长度、质量、容量以及时间的换算。
6.折线图的绘制:折线图的构建步骤。
第五章线性方程1.方程与解:方程的定义,解方程的原则。
2.带有分数的一元一次方程:解带有分数的一元一次方程。
3.解方程的实际问题:解与年龄、长宽、长度之间关系的方程。
数学知识点初二北师大版(实用10篇)
数学知识点初二北师大版(实用10篇)数学知识点初二北师大版第1篇相似、全等三角形1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理3三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理2相似三角形周长的比等于相似比9、性质定理3相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等【篇四:等腰、直角三角形】1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论3等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论1三个角都相等的三角形是等边三角形7、推论2有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半数学知识点初二北师大版第2篇第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
最新北师大版八年级数学知识点汇总
一、有理数及其运算1.有理数的定义和性质2.有理数的比较大小3.有理数的加法和减法运算4.有理数的乘法和除法运算5.有理数的混合运算6.有理数的乘幂运算7.开方与根号的计算8.绝对值的计算二、代数式与加减法1.代数式及其基本性质2.代数式的加法与减法运算3.代数式的乘法运算4.代数式的乘幂运算5.分配律的运用6.合并同类项与提取公因式7.开放式代数式的计算三、一次函数1.一次函数的概念及表示法2.一次函数的图象与性质3.求解一次方程与解的检验4.一次函数的运算与性质5.一次函数的应用四、图形的认识1.图形的基本概念与性质2.角的概念与判定3.直线与平面的关系4.平行线与相交线5.点、直线和平面的位置关系五、图形的计算1.图形的周长与面积的计算2.同类图形的长度与面积比较3.三角形的周长与面积计算4.直角三角形的边长计算5.正方体的表面积与体积计算六、正比例与反比例1.正比例与反比例的概念及性质2.正比例与反比例的图象3.正比例与反比例的关系4.正比例与反比例的应用七、平均数1.平均数的概念及计算2.均值不变的性质3.平均速度的计算以上是北师大版八年级数学的主要知识点汇总,包括有理数及其运算、代数式与加减法、一次函数、图形的认识与计算、正比例与反比例、平均数等内容。
这些知识点是八年级数学学习的基础,掌握好这些知识可以帮助学生更好地理解和应用数学知识,提高数学能力。
希望对你的学习有所帮助。
北师大版数学八年级知识点总结
一、代数表达式与简单方程式1.代数表达式的定义和基本性质2.多项式的定义和运算3.一元一次方程式的解法及应用4.解一元一次方程组的常用方法5.实际问题中的一元一次方程式与方程式解法的应用6.一元一次方程式的应用和拓展二、数与式1.实数与有理数2.无理数3.幅数与科学计数法4.根与幂5.相反数与绝对值6.指数与对数三、二元一次方程组1.二元一次方程组与解法2.解三元一次方程组的常用方法3.实际问题中的二元一次方程组及解法的应用4.一次不等式组与解法5.二元不等式组与解法四、比例与类比1.比与比例的概念2.比例的变化、比例等式及其应用3.列比例方程与解法4.各种图形的成比例与相似5.平行线分线段五、多角形1.多边形的定义和性质2.角的度量与作图3.三角形的定义和性质4.三角形的分类与判定5.三角形的面积6.梯形、平行四边形和菱形的性质与面积六、三角形的相似1.直角三角形的性质和应用2.三角形的相似及其判定3.三角形的相似定理与应用4.三角形的黄金分割点与黄金三角5.分数比例与比例的复调和七、平移与轴对称1.平移的定义和性质2.轴对称的定义和性质3.平移与轴对称的关系及应用4.以点为旋转中心的旋转八、投影与视图1.平面的投影与剖视图2.空间的投影与展开图3.空间的视图及应用九、统计常用图形1.条形统计图的绘制和应用2.饼形统计图的绘制和应用3.折线统计图的绘制和应用4.瞬时图和比率图的绘制和应用5.统计实际问题的分析和解答十、集合与cd-ua映射1.集合的概念和运算2.集合的关系与运算律3.点的坐标与集合的关系4. cd-ua映射与映射公式5.映射特例与应用。
初二数学北师大版知识点2024
初二数学北师大版知识点2024第一章有理数1.定义及性质•有理数的定义•有理数的比较•有理数的相反数和绝对值•有理数的加、减、乘、除等基本运算法则2.分数、整数与有理数的关系•分数的定义及性质•整数的定义及性质•有理数、分数、整数的关系3.有理数的应用•简单利息、复利、负利率•率、比例、百分数、利润率、增长率•实际问题的有理数表示及运算第二章线性方程组1.线性方程组的概念及解法•线性方程组的定义•方程组的消元法、代入法、加减法和矩阵法2.二元一次方程组的应用•二元一次方程组的解法•实际问题的线性方程组表示及解法第三章平面图形的认识1.点、直线、射线、线段、平面和角•基本概念和性质2.角的度量•角度的定义、度量方法•角度量数的转化3.平面直角坐标系•直角坐标系的定义及性质•二维平面上点的坐标表示及关系第四章相似与全等1.相似的概念•相似的定义及性质•判定两个三角形相似的方法•相似三角形的比例性质2.全等的概念•全等的定义及性质•判定两个三角形全等的方法3.三角形的性质•三角形的定义及性质•三角形内角和定理•三角形的外角和定理•三角形的中线定理、高线定理、角平分线定理和垂线定理第五章平移和旋转1.平移的概念及性质•平移的定义•平移的性质、平移的坐标变化2.旋转的概念及性质•旋转的定义•旋转的性质、旋转的坐标变化第六章平面直角坐标系中的直线1.平面直角坐标系中的直线•直线的概念及性质•直线的斜率及其性质•直线方程的表达式和求解方法2.直线的位置关系及角的概念•两条直线位置关系的判定•直线与直线、直线与平面的位置关系及其应用•角的概念、角的分类及其性质第七章数据的统计与处理1.统计图表的应用•直方图及其应用•饼图及其应用2.数据的平均数和离散程度•平均数和中位数的概念•极差和标准差的概念及计算方法3.概率初步•概率的概念及性质•样本空间及事件•概率的计算方法以上为初二数学北师大版的知识点概述,涵盖了有理数、线性方程组、平面图形、相似与全等、平移和旋转、平面直角坐标系中的直线、数据的统计与处理等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
3、不等式的解集
4、一元一次不等式
5、一元一次不等式与一次函数
6、一元一次不等式组
回顾与思考
复习题
1.定义;一般的,用符号≤或<或>或≥连接的式子叫做不等式
(6)一次函数y=kx+b(k、b为常数且k≠0)中,b为一次函数与y轴交点的纵坐标
三、确定一次函数表达式;
确定表达式的步骤:(1)设:设一次函数表达式y=kx+b(k、b为常数且k≠0)(2)代:将已知条件代入y=kx+b中,列出关于k,b的方程(3)求:解方程,求k,b的值(4)写:把求出的k,b值代回到表达式中。关键;学会数形结合思想
(3)“斜边、直角边”或“HL”
直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等
定理的作用:判定两个直角三角形全等
5、线段的垂直平分线和角平分线
1、线段的垂直平分线。
线段垂直平分线上的点到这条线段两个端点的距离相等;
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
5、平行于坐标轴的直线上的点的坐标:(1)平行于x轴的直线上点的纵坐标相等,横坐标为任意实数;(2)平行于y轴的直线上点的横坐标相等,纵坐标为任意实数
6、对称点的坐标:(1)关于X轴对称的两点其横坐标相等,纵坐标互为相反数;(2)关于Y轴对称的两点其横坐标互为相反数,纵坐标相等;(3)关于原点对称的两点其横、纵坐标都互为相反数
2.基本性质;(1)两边加或减同一个整式,不等号方向不变;(2)两边同时乘以或除以同一个正数,不等号方向不变;(3)两边同时乘以或除以同一个正数,不等号方向不变;
3.解或解集;能使不等式成立的未知数的值,叫做不等式的解。不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集。
4.解不等式;求不等式解集的过程。
第二章 实数
1 认识无理数
2 平方根
3 立方根
4 估算
5 用计算器开方
6 实数
7 二次根式
1、无理数
定义
有理数与无理数的区别
2、平方根
1.定义;2.平方根与开平方的定义;3.算术平方根;4.平方根与算数平方根的联系与区别;5.平方根的性质:一个正数有两个平方根,且他们互为相反数;0只有一个平方根是0;负数没有平方根
5.旋转不改变图形的大小和形状。
难点:作图及与坐标系结合求点的坐标
第四章 因式分解
1、因式分解
2、提公因式法
3、运用公式法
回顾与思考
复习题
1.定义;把一个多项式化成几个整式积的形式,叫做多项式的分解因式
注意;必须分解到每个多项式因式不能再分解为止;
(整式乘法与因式分解的过程互逆)
3.因式分解的方法;
八上数学知识点汇总
第一章 勾股定理
1 探索勾股定理
2 能得到直角三角形吗
3 勾股定理的应用
一、勾股定理
a2+b2=c2(两条直角边的平方和等于斜边的平方)
勾股数:满足 a2+b2=c2的三个正整数,成为勾股数
二、直角三角形的判定方法:
1.三角形中有两个角互余
2.勾股定理的逆定理
特色题型:蚂蚁怎样走最近
(2)将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式,此为“代”
(3)解这个一元一次方程,把求得的一次方程的解代入方程中,求得另一个未知数的值,组成方程组的解,此为“解”。这种解方程组的方法称为代入消元法。简称代入法。
(二)对某些二元一次方程组可通过方程两边分别相加(减),消去其中一个未知数,到一个一元一次方程,从而求出它的解,解这种类型的方程组的主要步骤,是观察求未知数的系数的绝对值是否相同,若互为相反数就用加,若相同,就用减,达到消元目的。这种通过两式相加(减)消去一个未知数解二元一次方程组的方法叫做加减消元法,简称加减法。
A.提公因式法;B.运用公式法;C.十字相乘法
2、分解因式的步骤
(1)若多项式各项有公因式,则再提取公因式。
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
(3)十字交叉相乘
(4)分组分解法
(5)拆分法
本章很大程度地检测了学生对之前所学知识的检测,如果本章学不好,下一章分式也会落下。
第五章 二元一次方程组
1 认识二元一次方程组
2 求解二元一次方程组
3 鸡兔同笼
4 增收节支
5 里程碑上的数
6 二元一次方程(组)与一次函数
7 用二元一次方程组确定一次函数表达式
1、二元一次方程组的定义及解的由来
2、解二元一次方程组
解方程组的基本思路是“消元”——把“二元”变为“一元”
(一)
(1)将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,简称“变”
易错题型:二次根式的计算(1.不会开根号;2.运算法则不理解且不会运用)
第三章 位置与坐标
1 确定位置
2 平面直角坐标系
3 轴对称与坐标变化
1、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向,水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,两条数轴的交点0称为直角坐标系的原点。
7、平行线的性质
公理:两直线平行,同位角相等。
定理:两直线平行,内错角相等。
定理:两直线平行,同旁内角互补。
8、证明的一般步骤:(1)根据题意,画出图形;(2)根据条件、结论,结合图形,写出证明的过程;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形内角和定理:三角形的内角和180度。
第五章 分式
1、认识分式
2、分式的乘除法
3、分式的加减法
4、分式方程
回顾与思考
复习题
1、分式
注意;(1)对于任意一个分式,分母都不能为0;(2)分式的值为零包含两个意思;分子等于0,分母不等于0
2、分式的运算
分式的乘除法;县因式分解,再约分
分式的加减法;找最简公分母——现将分母因式分解,通分
3、分式方程的解法
3、立方根
1.定义;2.性质;正数有一个正的立方根,负数有一个正的立方根,0的立方根是0
4、实数
1.定义;2.数轴表示实数;3.实数的比较大小;4.实数范围内相反数、倒数、绝对值的意义;5.实数范围的运算法则;有理数的运算法则在实数范围内实用
五、二次根式
1.定义;2、性质;3、化最简二次根式;4、乘除法法则;5、加减法法则
2、点的坐标:对于平面内任意一点p,过点p分别向X轴、Y轴作垂线,垂足在X轴、Y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,有序实数对(a,b)叫做点p的坐标。
3、象限:平面直角坐标系中,两个数轴把平面分成四个部分,每一个部分都称为象限,按逆时针方向分别称为第一、第二、第三、第四象限。
4、坐标轴上的点的坐标至少有一个是0:横轴上的点的纵坐标为0,横坐标为任意实数,纵坐标上的点的横坐标为0,纵坐标为任意的实数。
(3)在正比例函数y=kx(k为常数且k≠0)图像中,当∣k∣越大时,函数图像与x轴所成的锐角越大
(4)在正比例函数y=kx(k为常数且k≠0)的图像中,当k>0时,y的值随x值的增大而增大,k<0时,y的值随x值的增大而减小。
(5)一次函数y=kx+b(k、b为常数且k≠0)中,y的值随x的变化而变化的情况跟正比例函数的图像的性质相同。对照正比例函数图像的性质,可知一次函数的图像不过原点,但和两个坐标轴相交。在做一次函数的图像时,也需要描两个点。一般选取(0,b),
2、角平分线。
角平分线上的点到这个角的两边的距离相等。
在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
3、逆命题、互逆命题的概念,及反证法
如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
3、运用二元一次方程组解应用题
步骤:(1)设:弄清楚题意和题目中的数量关系,用字母表示题目中的两个未知数;(2)“列”:找出能够表达应用题全部含义的两个等量关系,根据这两个相等关系列出需要的代数式,从而列出方程并组成方程组(3)“解”:解这个方程组,求出未知数的值(4)“验”:检验这个解是否正确,并看它是否符合题意。
第四章 一次函数
1 函数
2 一次函数
3 一次函数的图象
4 确定一次函数表达式
5 一次函数图象的应用
1、一次函数、正比例函数定义;会判定一个函数是否为一次函数或正比例函数;能根据已知条件求函数表达式中的待定系数或次数
2、(1)正比例函数的图像都经过坐标原点。
(2)作正比例函数y=kx(k为常数且k≠0)的图像时,除原点外,还需要找一个点,一般找(1,k)点
2、图形的旋转
3、中心对称
4、简单的图案设计
回顾与思考
复习题
1.的概念;在平面内,将一个图形沿某个方向移动一定的距离,平移不改变图形的形状和大小
2.的基本性质;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
3.平移的三要素:原图形位置、平移方向、移距离。
4.旋转;平面内,将一个图形绕着一个定点沿某个方向,转动一个角度,这样的图形运动叫图形的旋转。定点----旋转中心。角度----旋转角