算法分析期末试题集规范标准答案(6套)
《算法分析与设计》期末试题及参考答案
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。
7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。
算法设计与分析历年期末试题整理_含答案_
《算法设计与分析》历年期末试题整理(含答案)(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现 7、程序调试 8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
算法设计与分析期末试题汇总
A卷一、选择题1.二分搜索算法是利用(A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树3.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法4.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 ( B ) 。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)6.分支限界法解最大团问题时,活结点表的组织形式是( B)。
A、最小堆B、最大堆C、栈D、数组7、下面问题(B )不能使用贪心法解决。
A 单源最短路径问题B N皇后问题C 最小花费生成树问题D 背包问题8.下列算法中不能解决0/1背包问题的是(A )A 贪心法B 动态规划C 回溯法D 分支限界法9.背包问题的贪心算法所需的计算时间为( B )A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)10.背包问题的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)二、填空题1.算法的复杂性有复杂性和复杂性之分。
2.算法是由若干条指令组成的有穷序列,且要满足输入、、确定性和四条性质。
其中算法的“确定性”指的是组成算法的每条是清晰的,无歧义的。
3.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是,需要排序的是,。
4.动态规划算法的两个基本要素是. 性质和性质。
5.回溯法是一种既带有又带有的搜索算法;分支限界法是一种既带有又带有的搜索算法。
6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
算法期末考试题及答案
算法期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法不是排序算法?A. 快速排序B. 归并排序C. 深度优先搜索D. 堆排序答案:C2. 在二叉树的遍历算法中,中序遍历的顺序是:A. 先序B. 后序C. 中序D. 层序答案:C3. 动态规划与分治法算法的主要区别在于:A. 问题分解的方式B. 问题解决的顺序C. 存储中间结果的方式D. 问题规模的大小答案:C4. 哈希表的冲突解决方法不包括:A. 开放寻址法B. 链地址法C. 线性探测法D. 排序答案:D5. 以下哪个是图的遍历算法?A. 归并排序B. 深度优先搜索C. 快速排序D. 堆排序答案:B6. 贪心算法的特点是:A. 每一步都选择最优解B. 每一步都选择局部最优解C. 每一步都选择最差解D. 每一步都随机选择解答案:B7. 在算法分析中,时间复杂度O(1)表示:A. 常数时间B. 线性时间C. 对数时间D. 多项式时间答案:A8. 以下哪个是排序算法的时间复杂度为O(n^2)?A. 快速排序B. 归并排序C. 冒泡排序D. 堆排序答案:C9. 递归算法的基本原理是:A. 重复执行B. 分而治之C. 循环调用D. 迭代求解答案:B10. 以下哪个是算法的时间复杂度为O(log n)的典型例子?A. 二分查找B. 线性查找C. 冒泡排序D. 快速排序答案:A二、简答题(每题10分,共20分)1. 简述快速排序算法的基本思想及其时间复杂度。
答案:快速排序是一种分治法的排序算法。
其基本思想是选择一个元素作为“基准”(pivot),然后将数组分为两部分,一部分包含所有小于基准的元素,另一部分包含所有大于基准的元素。
这个过程称为分区(partitioning)。
之后,递归地对这两部分进行快速排序。
快速排序的平均时间复杂度为O(n log n),但在最坏情况下(例如数组已经排序或所有元素相等)时间复杂度为O(n^2)。
2. 解释什么是动态规划,并给出一个动态规划问题的例子。
算法分析期末试题集答案(6套)
《算法分析与设计》期末复习题(一)一、选择题1.应用Johnson法则的流水作业调度采用的算法是(D)A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所示。
现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi塔问题的移动规则。
由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔3.动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C. D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A. 产生x[k]的时间;B. 满足显约束的x[k]值的个数;C. 问题的解空间的形式;D. 计算上界函数bound 的时间;E. 满足约束函数和上界函数约束的所有x[k]的个数。
(完整版)算法设计与分析考试题及答案,推荐文档
____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至
和
之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的
。
7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13
算法分析与设计试题及答案
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
算法分析期末考试集答案(套)
end MERGESORT
答:1、 递归方程
设n=2k
解递归方程:
2、procedure S1(P,W,M,X,n)
i←1; a←0
while i≤ n do
if W(i)>M then return endif
a←a+i
i←i+1 ;
repeat
end
解: i←1 ;s←0 时间为:O(1)
while i≤ n do 循环n次
if i<p
then call INTERCHANGE(A(i),A(p))
else exit
endif
repeat
A(m) ←A(p);A(p) ←v
End PARTITION
解:最多的查找次数是p-m+1次
4.procedure F1(n)
if n<2 then return(1)
else return(F2(2,n,1,1))
在程序中,b[i][j]记录C[i][j]的值是由哪一个子问题的解得到的。
(1)请填写程序中的空格,以使函数LCSLength完成计算最优值的功能。
(2)函数LCS实现根据b的内容打印出Xi和Yj的最长公共子序列。请填写程序中的空格,以使函数LCS完成构造最长公共子序列的功能(请将b[i][j]的取值与(1)中您填写的取值对应,否则视为错误)。
《算法分析与设计》期末试题及参考答案-推荐下载
5. 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 5. 最坏情况下的时间复杂性和平均时间复杂性考察的是 n 固定时,不同输入实例下的 算法所耗时间。最坏情况下的时间复杂性取的输入实例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn
二、复杂性分析 1、 MERGESORT(low,high) if low<high; then mid←(low,high)/2; MERGESORT(low,mid); MERGESORT(mid+1,high); MERGE(low,mid,high); endif end MERGESORT
17. 回溯法的解(x1,x2,……xn)的隐约束一般指什么? 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满足的某种关系。
18. 阐述归并排序的分治思路。 18. 讲数组一分为二,分别对每个集合单独排序,然后将已排序的两个序列归并成一
个含 n 个元素的分好类的序列。如果分割后子问题还很大,则继续分治,直到一个元素。
《算法分析与设计》期末试题及参考答案
一、简要回答下列问题 : 1. 算法重要特性是什么? 1. 确定性、可行性、输入、输出、有穷性 2. 2. 算法分析的目的是什么? 2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。 3. 3. 算法的时间复杂性与问题的什么因素相关? 3. 算法的时间复杂性与问题的规模相关,是问题大小 n 的函数。
算法分析大学考试题及答案
算法分析大学考试题及答案一、选择题(每题2分,共10分)1. 以下哪个算法的时间复杂度是O(n log n)?A. 冒泡排序B. 快速排序C. 选择排序D. 插入排序答案:B2. 在最坏的情况下,下列哪个排序算法的时间复杂度是O(n)?A. 归并排序B. 堆排序C. 二分排序D. 桶排序答案:C3. 动态规划与分治法的区别在于:A. 递归的使用B. 问题分解的方式C. 存储中间结果D. 问题规模的减小答案:C4. 以下哪个不是贪心算法适用的场景?A. 最小生成树B. 霍夫曼编码C. 单源最短路径D. 旅行商问题答案:D5. 在图论中,深度优先搜索(DFS)和广度优先搜索(BFS)的主要区别在于:A. 搜索的顺序B. 是否使用队列C. 是否使用栈D. 搜索的深度答案:A二、简答题(每题5分,共20分)1. 请简述二分查找算法的基本思想及其时间复杂度。
答案:二分查找算法是在有序数组中查找特定元素的一种算法。
它通过比较数组中间的元素与目标值,如果中间元素与目标值相等,则查找成功;如果目标值小于中间元素,则在数组的左半部分继续查找;如果目标值大于中间元素,则在数组的右半部分继续查找。
这个过程递归进行,直到找到目标值或搜索范围为空。
二分查找算法的时间复杂度是O(log n)。
2. 请解释什么是动态规划,并给出一个动态规划的应用实例。
答案:动态规划是一种算法策略,它适用于具有重叠子问题和最优子结构特性的问题。
在动态规划中,问题的解被分解为一系列子问题的解,这些子问题被递归地解决,并存储在表格中以避免重复计算。
动态规划的应用实例包括背包问题、最长公共子序列、矩阵链乘等。
3. 请简述深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。
答案:深度优先搜索(DFS)是一种通过递归或显式栈来遍历图或树的算法。
它从一个顶点开始,沿着一条路径深入探索,直到无法继续为止,然后回溯并沿着另一条路径继续探索。
广度优先搜索(BFS)则使用队列来遍历图或树,它从一个顶点开始,先探索所有邻近的顶点,然后再探索这些邻近顶点的邻近顶点,依此类推,直到达到目标或遍历完所有顶点。
(完整版)算法设计与分析期末考试卷及答案a
e i rb ei n一.填空题: 1. 元运算2. O 3.∑∈nD I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值 随机选主元13. 比较n二.计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=(g(n))Ω (3) f(n)=(g(n))Ω (4) f(n)= O(g(n))3. (1) i>=1 (2)k[i]+1 (3) 1(4) i+1 (5) k[i]=0 (6) tag[x, y]=0(7) x=x-dx[k[i]]; y=y-dy[k[i]]四.算法设计题:1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油耗尽前所能到达的最远的油站为止,在该油站再加满油。
算法MINSTOPS输入:A、B两地间的距离s,A、B两地间的加油站数n,车加满油后可行驶的公里数m,存储各加油站离起点A的距离的数组d[1..n]。
输出:从A地到B地的最少加油次数k以及最优解x[1..k](x[i]表示第i次加油的加油站序号),若问题无解,则输出no solution。
d[n+1]=s; //设置虚拟加油站第n+1站。
for i=1 to nif d[i+1]-d[i]>m thenoutput “no solution”; return //无解,返回end ifend fork=1; x[k]=1 //在第1站加满油。
s1=m //s1为用汽车的当前油量可行驶至的地点与A点的距离i=2while s1<sif d[i+1]>s1 then //以汽车的当前油量无法到达第i+1站。
《算法设计与分析》历年期末试题整理_含答案_
《算法设计与分析》历年期末试题整理(含答案)(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
《算法设计与分析》考试题目及答案(DOC)
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) }; C. O(g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有
12. k 带图灵机的空间复杂性 S(n)是指(B) A. k 带图灵机处理所有长度为 n 的输入时,在某条带上所使用过的最大方格
数。 B. k 带图灵机处理所有长度为 n 的输入时,在 k 条带上所使用过的方格数的
总和。 C. k 带图灵机处理所有长度为 n 的输入时,在 k 条带上所使用过的平均方格
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) };
C. (g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有 n n0 有:0 f(n)<cg(n) };
n n0 有:0 f(n)<cg(n) }; D. O(g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有
n n0 有:0 cg(n) < f(n) };
15. 记号 的定义正确的是(B)。 A. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 f(n)
return b;
}
11. 用回溯法解布线问题时,求最优解的主要程序段如下。如果布线区域划分 为 n m 的方格阵列,扩展每个结点需 O(1)的时间,L 为最短布线路径的长度, 则算法共耗时 ( O(mn) ),构造相应的最短距离需要(O(L))时间。
算法分析期末试题集答案(6套)1
《算法分析与设计》一、解答题 1. 机器调度问题。
问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理。
每件任务的开始时间为s i ,完成时间为f i ,s i <f i 。
[s i ,f i ]为处理任务i 的时间范围。
两个任务i ,j 重叠指两个任务的时间范围区间有重叠,而并非指i ,j 的起点或终点重合。
例如:区间[1,4]与区间[2,4]重叠,而与[4,7]不重叠。
一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。
因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。
最优分配是指使用的机器最少的可行分配方案。
问题实例:若任务占用的时间范围是{[1,4],[2,5],[4,5],[2,6],[4,7]},则按时完成所有任务最少需要几台机器?(提示:使用贪心算法)画出工作在对应的机器上的分配情况。
2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩,其中,b 、c 是常数,g(n)是n 的某一个函数。
则f(n)的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑。
现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩,求h(n)的非递归表达式。
解:利用给出的关系式,此时有:b=2, c=1, g(n)=1, 从n 递推到1,有:n 1n 1n 1i i 1n 1n 22n h(n)cbb g(i)22 (22121)----=--=+=+++++=-∑3. 单源最短路径的求解。
问题的描述:给定带权有向图(如下图所示)G =(V,E),其中每条边的权是非负实数。
另外,还给定V 中的一个顶点,称为源。
现在要计算从源到所有其它各顶点的最短路长度。
这里路的长度是指路上各边权之和。
这个问题通常称为单源最短路径问题。
解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径。
《算法设计与分析》考试题目及答案(DOC)
构。 10.用回溯法解 0/1 背包问题时,计算结点的上界的函数如下所示,请在空
格中填入合适的内容:
Typep Knap<Typew, Typep>::Bound(int i) {// 计算上界
return true; }
13. 旅行售货员问题的解空间树是(排列树)。
三、 证明题
1. 一个分治法将规模为 n 的问题分成 k 个规模为 n/m 的子问题去解。设分
解阀值 n0=1,且 adhoc 解规模为 1 的问题耗费 1 个单位时间。再设将原问
题分解为 k 个子问题以及用 merge 将 k 个子问题的解合并为原问题的解需用
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
Typew cleft = c - cw; // 剩余容量
Typep b = cp;
// 结点的上界
// 以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
cleft -= w[i];
b += p[i];
i++;
算法设计与分析考试题及答案
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性有穷性可行性0个或多个输入一个或多个输出2.算法的复杂性有时间复杂性空间复杂性之分,衡量一个算法好坏的标准是时间复杂度高低3.某一问题可用动态规划算法求解的显着特征是该问题具有最优子结构性质4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y 的一个最长公共子序列{BABCD}或{CABCD}或{CADCD }5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解6.动态规划算法的基本思想是将待求解问题分解成若干_子问题,先求解_子问题,然后从这些子问题的解得到原问题的解。
7.8.0-19.10.1.2. ①令N b i 的 3. 若,(b 1,b 24. 3的0-15. 设S 的二叉搜索树中搜索一个元素X ,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=X i ,其概率为b i 。
(2)在二叉搜索树的叶结点中确定X ∈(X i ,X i+1),其概率为a i 。
在表示S 的二叉搜索树T 中,设存储元素X i 的结点深度为C i ;叶结点(X i ,X i+1)的结点深度为d i ,则二叉搜索树T 的平均路长p 为多少?假设二叉搜索树T[i][j]={X i ,X i+1,···,X j }最优值为m[i][j],W[i][j]=a i-1+b i +···+b j +a j ,则m[i][j](1<=i<=j<=n)递归关系表达式为什么? .二叉树T 的平均路长P=∑=+n i 1Ci)(1*bi +∑=nj 0dj *ajm[i][j]=0(i>j)6. 描述0-1背包问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》期末复习题(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) {if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}D. void hanoi(int n, int C, int A, int B){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}3.动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C. D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A. 产生x[k]的时间;B. 满足显约束的x[k]值的个数;C. 问题的解空间的形式;D.计算上界函数bound 的时间;E. 满足约束函数和上界函数约束的所有x[k]的个数。
F. 计算约束函数constraint 的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数。
13. NP类语言在图灵机下的定义为(D)A.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是(A)。
A.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤f(n) ≤cg(n) };B.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤cg(n) ≤f(n) };C.O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D.O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };15. 记号Ω的定义正确的是(B)。
A.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤f(n) ≤cg(n) };B.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤cg(n) ≤f(n) };C.(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D.(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };二、填空题1.下面程序段的所需要的计算时间为(2O(n))。
Array2.有11个待安排的活动,它们具有下表所示的开始时间与结束时间,如果以贪心算法求解这些活动的最优安排(即为活动安排问题:在所给的活动集合中选出最大的相容活动子集合),得到的最大相容活动子集合为活动( {1,4,8,11} )。
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。
5. 回溯法是指(具有限界函数的深度优先生成法)。
6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
如果解空间树 中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为(O(h(n)))。
7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与(排列树)算法框架。
8. 用回溯法解0/1背包问题时,该问题的解空间结构为(子集树)结构。
9.用回溯法解批处理作业调度问题时,该问题的解空间结构为(排列树)结构。
10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:1413121110987654f[i]12 2 8 8 6 5 3 5 0 3 1 S[i] 11 10 9 8 7 6 5 4 3 2 1 i11. 用回溯法解布线问题时,求最优解的主要程序段如下。
如果布线区域划分为 的方格阵列,扩展每个结点需O(1)的时间,L为最短布线路径的长度,则n m算法共耗时( O(mn) ),构造相应的最短距离需要(O(L))时间。
12. 用回溯法解图的m 着色问题时,使用下面的函数OK 检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O (mn ))。
13. 旅行售货员问题的解空间树是(排列树)。
三、解答题1. 机器调度问题。
问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理。
每件任务的开始时间为s i ,完成时间为f i ,s i <f i 。
[s i ,f i ]为处理任务i 的时间范围。
两个任务i ,j 重叠指两个任务的时间范围区间有重叠,而并非指i ,j 的起点或终点重合。
例如:区间[1,4]与区间[2,4]重叠,而与[4,7]不重叠。
一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。
因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。
最优分配是指使用的机器最少的可行分配方案。
问题实例:若任务占用的时间范围是{[1,4],[2,5],[4,5],[2,6],[4,7]},则按时完成所有任务最少需要几台机器?(提示:使用贪心算法)画出工作在对应的机器上的分配情况。
2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,g(n)是n 的某一个函数。
则f(n)的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑。
现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求h(n)的非递归表达式。
解:利用给出的关系式,此时有:b=2, c=1, g(n)=1, 从n 递推到1,有:n 1n 1n 1i i 1n 1n 22n h(n)cbb g(i)22 (22121)----=--=+=+++++=-∑3. 单源最短路径的求解。
问题的描述:给定带权有向图(如下图所示)G =(V,E),其中每条边的权是非负实数。
另外,还给定V 中的一个顶点,称为源。
现在要计算从源到所有其它各顶点的最短路长度。
这里路的长度是指路上各边权之和。
这个问题通常称为单源最短路径问题。
解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径。
请将此过程填入下表中。
4. 请写出用回溯法解装载问题的函数。
装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi ,且121ni i w cc =≤+∑。
装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
解:void backtrack (int i) {// 搜索第i 层结点if (i > n) // 到达叶结点 更新最优解bestx,bestw;return; r -= w[i];if (cw + w[i] <= c) {// 搜索左子树43 2 1 100 30 maxint10 - {1} 初始 dist[5] dist[4] dist[3] dist[2] u S 迭代x[i] = 1;cw += w[i];backtrack(i + 1);cw -= w[i]; }if (cw + r > bestw) {x[i] = 0; // 搜索右子树backtrack(i + 1); }r += w[i];}5. 用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同。