同济高等数学第四章第一节课件

合集下载

同济高等数学课件(完整版)详细

同济高等数学课件(完整版)详细

T
M
x0
x
切线方程为 y y0 f ( x0 )( x x0 ).
法线方程为
y
y0
f
1 (x
( x0 )
x0 ).
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的 x2
斜率,并写出在该点处的切线方程和法线方程.
解 由导数的几何意义, 得切线斜率为
k y x1 2
( 1 ) x
x1 2
y
y
y f (x)
o
x
y f (x)
o
x0
x
例8
讨论函数
f
(x)
x
sin
1 x
,
x 0,
0, x 0
在x 0处的连续性与可导性.
解 sin 1 是有界函数 , lim x sin 1 0
x
x0
x
f (0) lim f ( x) 0 f ( x)在x 0处连续.
x0
1
但在x 0处有 y (0 x)sin 0 x 0 sin 1
h0
h
三、证明:若 f ( x)为偶函数且 f (0) 存在,则 f (0) 0 .
四、
设函数
f
(x)
x k
sin
1 x
,
x
0问
k
满足什么条
0 , x 0
件, f ( x)在 x 0处 (1)连续; (2)可导;
(3)导数连续.
五、
设函数
f
(x)
x2
,
x
1
,为了使函数
ax b , x 1
f ( x)在 x 1处连续且可导,a , b应取什么值.

同济大学《高等数学》(第四版)1-10节 连续函数的运算

同济大学《高等数学》(第四版)1-10节 连续函数的运算
x
2 2 cos x tan e______ .
x
5 、 lim
t 2
____________ .
x
e , x 0 , 当 a _____时 , f ( x ) 在 6、 设 f ( x ) a x, x 0 ( , ) 上 连 续 .
例2 解
求 lim
令 e
x
e
x
1 x
x 0
.
则 x ln( 1 y ),
1 y,
当 x 0时 , y 0 .
原式 lim
y ln( 1 y )
lim
1
1
1.
y 0
y 0
ln( 1 y )
y
同理可得
lim
a
x
1 x
x 0
ln a .
定理4
t
7、 函 数 f ( x)
x
4 2
x 1
x x 6 ________________.
的连续区间为
x , 当 x 1时 cos 2 8、 设 f ( x ) x 1 , 当 x 1时
x 1 x 1 2
确定
lim f ( x ) _ _ _ _ _ _ _ _ _ _ ; lim f ( x ) _ _ _ _ _ _ _ _ _ _ _ .
x 在 [ 1 ,1 ]上单调减少且连续
同理 y arccos y arctan
x , y arc cot x 在 [ , ]上单调且连续
反三角函数在其定义域内皆连续.
定理3
若 lim ( x ) a , 函数 f ( u ) 在点 a 连续 ,

《同济版高数》课件

《同济版高数》课件
数学是一门美丽而强大的学 科,它存在于生活的方方面 面,深深影响着我们的世界。
持续学习
高等数学是学习其他学科的 基础,要不断提高自己的数 学能力。
勇于挑战
数学中的难题和挑战并不可 怕,要勇敢面对并寻求解决 方法。
采用多样化的教学方法和工具, 激发学生对数学的兴趣和思考 能力。
倡导学生参与式学习,鼓励讨 论和合作,提高学生的学习效 果。
问题解决
培养学生的问题解决能力,注 重实际应用和创新思维。
PPT动效运用
1
简洁清晰
使用适度的动效,突出重点,让学生
过渡自然
2
更清晰地理解内容。
平滑的过渡效果,使切换页面更加流
提供大量习题,巩固理论知识并锻炼解题 能力。
教材简介
《同济版高数》是一套针对高等数学课程编写的教材系列。内容丰富、结构清晰,旨在帮助学生全面理 解和掌握高等数学的核心概念和方法。
PPT目录结构
第一章
函数与极限
第三章
函数的应用
第二章
导数与微分
第四章
微分中值定理与导数的应用
教学设计理念
创新教学
互动学习
畅,保持学生的专注度。
3
视觉引导
运用动画和视觉引导,帮助学生理解 步骤和概念。
学习效果评估
1 定期测评
设置阶段性测验,及时检查学生的学习进展和掌握情况。
2 反馈指导
提供个性化的学习反馈和指导,帮助学生改进学习方法和提高成绩。
3 课堂讨论
鼓励学生参与课堂讨论,提高学习的互动性和深度。
结论和要点
数学的魅力
《同济版高数》PPT课件
探索《同济版高数》的世界,与高数的魅力相遇。让我们一起学习,展现数 学的美妙与力量。

同济大学《高等数学》(第四版)1-8节-无穷小的比较全篇

同济大学《高等数学》(第四版)1-8节-无穷小的比较全篇


lim tan x0
x sin x x3
tan lim( x0 x
x 1 cos x x2 )
1, 2
tan x sin x为x的三阶无穷小.
常用等价无穷小: 当x 0时,
sin x ~ x, arcsin x ~ x,
tan x ~ x, arctan x ~ x,
ln(1 x) ~ x, e x 1 ~ x, 1 cos x ~ 1 x2 . 2
对于代数和中各无穷小不能分别替换.
例4 求 limtan x sin x . x0 sin3 2 x
错解 当x 0时, tan x ~ x, sin x ~ x.
原式 lim x x
x0 (2 x)3
0.
解 当x 0时, sin 2x ~ 2x,
tan x sin x tan x(1 cos x) ~ 1 x3 ,
一、无穷小的比较
例如, 当x 0时, x, x 2 , sin x, x 2 sin 1 都是无穷小.
x2 lim 0,
观 x0 3x
x
x 2比3 x要快得多;
察 各
lim sin x 1,
sin x与x大致相同;
极 限
x0 x
lim
x0
x 2 sin 1 x
x2
lim sin
x0
1 x
不存在.
证 lim lim( )
lim lim lim lim .
例3 求 lim tan2 2x . x0 1 cos x
解 当x 0时, 1 cos x ~ 1 x2 , 2
原式
(2 x )2
lim x0
1 x2
8.
2

同济大学线性代数第四章PPT课件

同济大学线性代数第四章PPT课件
讨论它们的线性相关性.
解: Ee1,e2, ,en
结论: 线性无关
问题: n=3时, e1,e2,e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
例如: 2 1 1 0 a11 1,a212,a312,b33
则 b 能由 a1, a2, a3线性表示.
解方程组 x 1 a 1 x 2 a 2 x 3 a 3 b
既解方程组
2x1x12xx22
x3 x3
0 3
x1 x2 2x3 3

x1 1 1
x2 x3
c
1 1
线性表示
AXB有解,其中 A (1 ,2, ,m )
B (1,2, ,l)
R (A )R (A ,B )
定理3: 向量组 B :1,2, ,l能由 A :1,2, ,m
线性表示,则 R(B) ≤ R(A) 。
其中 A ( 1 ,2 ,,m ) , B ( 1 ,2 ,,l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
定义4:设向量组 A : 1 , 2 , , m , 若存在不全为零实数 1 , 2 , , m , 使得 11 2 2 m m 0
则称向量组 A线性相关. 否则称向量组A线性无关.
定理4: n 维向Ax 量 组0 1有 ,非 2, 零 ,解 m,线其 性相A 关 中 1 ,2 , ,m R(A)m

《高等数学》第六版上册同济大学出版社课件PPT

《高等数学》第六版上册同济大学出版社课件PPT

1 x
0
1
1

1 t4

1 t2
d
t

t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4

1 2


0 1
d
x x4

x2
0 1 x4
d
x

1
2
1 01

x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分

F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式


arcsin x a

a 0

arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01

x2

高等数学(同济大学)第六版课件上第4章

高等数学(同济大学)第六版课件上第4章

例2. 质点在距地面 处以初速 垂直上抛 , 不计阻
力, 求它的运动规律.
解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上 ,
质点抛出时刻为
此时质点位置为 初速为
设时刻 t 质点所在位置为

dx v(t)
(运动速度)
dt
再由此求 x(t)
d2 x d t2
dv dt
g
(加速度)
先由此求 v(t)
y
的所有积分曲线组成 的平行曲线族.
o
x0
x
机动 目录 上页 下页 返回 结束
例1. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
(1, 2)
因此所求曲线为 y x2 1
o
x
机动 目录 上页 下页 返回 结束
C2
由x(0) x0 , 得C2 x0 , 于是所求运动规律为
x(t)
1 2
gt
2
v0t
x0
机动 目录 上页 下页 返回 结束
从不定积分定义可知:
(1)
d dx
f (x)d x
f (x)
或 d
f (x)dx
f (x)dx
(2) F(x) dx F(x) C 或 d F(x) F(x) C
x
x x(t)
x0 x(0) o
机动 目录 上页 下页 返回 结束
先求 由

v(t) ( g) d t gt C1
由v(0) v0 , 得C1 v0 , 故
v(t) gt v0
再求

高等数学第四章课件.ppt

高等数学第四章课件.ppt
例3 求 lim x x . x0
e 解 原式 lim e xln x x0
lim x ln x
x0
( 00 )
ln x lim x0 1
e x
1
e lim x0
x 1
x2
e0 1.
洛必达法则

00 ,1 , 0 型
0型 0 型
0 型
第三节 函数的单调性
一、函数单调性的判定方法 二、函数单调性的应用
其中 C 为常数.
三、柯西中值定理
定理 设函数f(x)与g(x)满足: (1)在闭区间[a,b]上都连续,
(2)在开区间(a,b)内都可导,
(3)在开区间(a,b)内,g(x) 0,
则至少存在一点 (a,b),使 f (b) f (a) f ( ) .
g(b) g(a) g( )
在柯西中值定理中,若取g(x)=x,则得到拉格 朗日中值定理.因此柯西中值定理可以看成是拉格朗 日中值定理的推广.
定理 3 设函数 f (x) 在点 x0 处存在二阶导 数,且 f (x0 ) 0, f (x0 ) 0 ,(1)若 f (x0 ) 0 , 则 函 数 f (x) 在 点 x0 处 取 得 极 大 值 ;( 2 ) 若 f (x0 ) 0 ,则函数 f (x) 在点 x0 处取得极小值.
求极值的步骤:
(1) 求出导数 f ( x); (2) 求出f ( x)的全部驻点,即方程 f ( x) 0的根;
(3) 考察 f ( x) 在驻点左右的正负号,判断极值点; (4) 求出各极值点处的函数值.
三、函数的最值
函数最大值和最小值统称为函数的最值;使 得函数取得最大值或最小值的点,统称为函数的 最值点.
f (0) 0 ,从而推出当 x 0 时, f (x) 0 ,即

《同济版高数》课件

《同济版高数》课件

BIG DATA EMPOWERS TO CREATE A NEW
ERA
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,如分别求极限 、累次极限等。
多元函数的连续性
理解连续性的概念,掌握判断多 元函数在某点或某区域的连续性 的方法。
极限的概念与性质
总结词
极限是高数的核心概念,理解极限的概念和性质是学习高数的关键。
详细描述
极限是指当自变量趋近某一值时,因变量的变化趋势。极限的性质包括唯一性 、局部有界性、局部保序性等。这些性质在高数的各个章节中都有重要的应用 。
极限的运算规则
总结词
掌握极限的运算规则是解决极限问题的关键。
详细描述
一阶常微分方程的解法
总结词
掌握一阶常微分方程的解法是解决这类问题的关键。
详细描述
一阶常微分方程的一般形式是dy/dx = f(x, y),可以 通过分离变量法、积分因子法、公式法等求解。
高阶常微分方程的解法
总结词
理解高阶常微分方程的解法一般形式是y''(x) + p1(x)y'(x) + p2(x)y(x) = f(x),可以通过降 阶法、变量代换法、积分因式分解法等求解
则更加注重应用和与其他学科的交叉融合,不断涌现出新的分支和领域。
高数与其他学科的联系
要点一
总结词
高数与其他学科有着密切的联系,如物理、工程、计算机 科学等。这些学科在高数的理论和方法的基础上不断发展 。
要点二
详细描述
高数与物理学的联系尤为紧密,许多物理问题的解决需要 高数的理论和方法。例如,在力学、电磁学、光学等领域 中,高数的微积分和向量分析被广泛应用。在工程领域中 ,高数的理论和方法也是解决实际问题的关键工具。计算 机科学在高数的基础上发展出了算法设计和数据结构等重 要领域。此外,经济学、统计学等领域也与高数有着密切 的联系。

同济大学 高等数学 课件 .ppt

同济大学 高等数学 课件 .ppt

设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )

lim
n
xn

lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1

1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y

A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn

x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.

局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2

大一上学期同济版高数第四章不定积分ppt课件

大一上学期同济版高数第四章不定积分ppt课件
故 ( x ) F ( x ) C 0 (C0 为某个常数 ) F ( x ) C . 属于函数族 定理3:设 (x) 和 F ( x) 是 f ( x ) 的两个不同的原函数, 则它们之间只差一个常数。
7
I 定义 2. f (x) 在区间 I 上的全体原函数称为 f (x)在
上的不定积分, 记作 f (x )d x, 其中
由 x ( 0 ) x ,得 C x ,于是所求运动规律为 0 2 0
2 1 x ( t ) g t v t x 0 0 2
12
从不定积分定义可知: d f (x)dx (1) f ( x )或 d f (x)d x f ( x ) d x dx 或 ( 2 ) x C d C F(x) F(x) F(x) F(x) d 可见,微分法和积分法是互逆运算,当积分运算记号
质点抛出时刻为 t 0, 此时质点位置为 x0 , 初速为 v 0 .
x ( t ) ,则 设时刻 t 质点所在位置为 x
dx v (t ) dt
(运动速度) 再由此求 x(t )
x
x x ( t)
x x ( 0 ) 0
o
11
d2 x d v g (加速度) 2 dt dt 先由此求 v (t )
与微分运算记号 d 连在一起时,或相互抵消,或
抵消后只差一个常数。即
利用逆向思维
“先积后微,形式不变;先微后积,差个常数。” 二、 基本积分表 (P188)
( 1 )
d xkxC k
( k 为常数)
13
( 2 )
x— 积分变量; 若F 则 ( x ) f ( x ) ,
例如,
— 积分号;

同济版高数PPT课件

同济版高数PPT课件

性质3 假设a c b
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx.
补充:不论 a,b,c的相对位置如何, 上式总成立.
例 若 a b c,
c
a
f
( x)dx
b
a
f
( x)dx
c
b
f
( x)dx

b
a
f
(
x)dx
c
a
f
(
x)dx
c
b
f
(
x)dx
c
b
a f ( x)dx c f ( x)dx.
第2页/共178页
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
第3页/共178页
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
五、88.2(千牛).
第26页/共178页
第二节 定积分的性质、中值定理
一、基本内容 二、小结 思考题
第42页/共178页
一、基本内容
对定积分的补充规定:
(1)当a
b
时, b a
f
(
x)dx
0;
(2)当a
b 时, b a
f
( x)dx
a b
f
( x)dx .
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
4、区间 a , b 长度的定积分表示是_____________ .
二、利用定积分的定义计算由抛物线 y x 2 1 , 两直线 x a , x b ( b a) 及横轴所围成的图形的面积 .

高等数学课件 同济四版

高等数学课件  同济四版

∂f ∂f ∂f cosϕ + sinϕ = ∂l ∂x ∂y
ρ
∂f ∂f ∆x + ∆y + ο ( ρ ) 证 f ( x + ∆x , y + ∆y ) − f ( x , y ) = ∂x ∂y
f ( x + ∆x, y + ∆y) − f ( x, y) ∂f = lim ∂l ρ→0 ρ
∂f ∂f i+ j ∂x ∂y
矢量
为函数 f ( x , y )在点P ( x , y )的梯度 记作 gradf ( x , y ) 梯度. 即
∂f ∂f gradf ( x, y) = i+ j ∂x ∂y
∂f ∂f gradf ( x, y) = , ∂x ∂y
14

推广 对于三元函数 u =
为与 l 同方向的单位向量 解
方向 l即向量
PQ = {1,−1},
∂z 又Q = e2y ∂x
∂z = 2 xe 2 y ∂y ∂z ∂z 在点 P (1,0)处, = 1, =2 ∂x ∂y
1 1 单位化 e = { ,− }, 2 2
0
y o -1 P 1 ϕ 2 x Q
7
1 1 ∂z 2 = 1⋅ + 2 ⋅ (− ) = − 所以 2 2 ∂l 2
Q gradf ( x, y, z ) = {u x , u y , uz } = { y 2 z,2 xyz, xy 2 } 解
∴ gradf (1,−1,2) = { 2,−4,1}
的方向导数最大, 所以沿梯度方向 {2,−4,1}的方向导数最大 最大值为 21
∴ gradf (1,−1,2) = 2 + (− 4) + 12 = 21

同济大学(高等数学)-第四章-不定积分

同济大学(高等数学)-第四章-不定积分

第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及根本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个函数的导数〔或微分〕的问题,例如,变速直线运动中位移函数为()s s t =, 那么质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1.1.1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:假设()()'=F x f x ,那么对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,那么有无穷多个.假设()F x 和()φx 都是()f x 的原函数,那么[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 假设()F x 和()φx 都是()f x 的原函数,那么()()-=F x x C φ〔C 为任意常数〕. 假设()()'=F x f x ,那么()+F x C 〔C 为任意常数〕表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1.1.2不定积分定义2 在区间I 上,函数()f x 的所有原函数的全体,称为()f x 在I 上的不定积分, 记作()d ⎰f x x .其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 由此定义,假设()F x 是()f x 的在区间I 上的一个原函数,那么()f x 的不定积分可表示为()d ()=+⎰f x x F x C .注 〔1〕不定积分和原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素.〔2〕求不定积分,只需求出它的某一个原函数作为其无限个原函数的代表,再加上一个任意常数C .例1 求23d x x ⎰.解 因为32()3,'=x x 所以233d x x x C =+⎰.例2 求sin cos d x x x ⎰.解 〔1〕因为2(sin )2sin cos ,'=x x x 所以21sin cos d sin 2x x x x C =+⎰.〔2〕因为2(cos )2cos sin ,'=-x x x 所以21sin cos d cos 2x x x x C =-+⎰. 〔3〕因为(cos 2)2sin 24sin cos ,'=-=-x x x x 所以1sin cos d cos 24=-+⎰x x x x C . 例3 求1d x x⎰. 解 由于0x >时,1(ln )'=x x ,所以ln x 是1x在(0,)+∞上的一个原函数,因此在(0,)+∞内,1d ln x x C x=+⎰.又当0x <时,[]1ln()x x '-=,所以ln()-x 是1x在(,0)-∞上的一个原函数,因此在(,0)-∞内,1d ln()=-+⎰x x C x .综上,1d ln x x C x=+⎰.例4 在自由落体运动中,物体下落的时间为t ,求t 时刻的下落速度和下落距离. 解 设t 时刻的下落速度为()=v v t ,那么加速度d ()d va t g t==〔其中g 为重力加速度〕. 因此()()d d v t a t t g t gt C ===+⎰⎰,又当0t =时,(0)0=v ,所以0C =.于是下落速度()=v t gt . 又设下落距离为()=s s t ,那么ds()dt=v t .所以 21()()d d 2===+⎰⎰s t v t t gt t gt C , 又当0t =时,(0)0=s ,所以0C =.于是下落距离21()2=s t gt . 1.1.3不定积分的几何意义设函数()f x 是连续的,假设()()F x f x '=,那么称曲线()y F x =是函数()f x 的一条积分曲线.因此不定积分()d ()f x x F x C =+⎰在几何上表示被积函数的一族积分曲线.积分曲线族具有如下特点〔如图4.1〕:〔1〕积分曲线族中任意一条曲线都可由其中某一条平移得到;〔2〕积分曲线上在横坐标相同的点处的切线的斜率是相同的,即在这些点处对应的切线都是平行的.图4-1例5 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解 设曲线方程()=y f x ,曲线上任一点(,)x y 处切线的斜率d 2d yx x=,即()f x 是2x 的一个原函数.因为22d =+⎰x x x C ,又曲线过(1,2),所以21C =+,1C =.于是曲线方程为21y x =+.1.2 根本积分公式由定义可知,求原函数或不定积分与求导数或求微分互为逆运算, 我们把求不定积分的运算称为积分运算.既然积分运算与微分运算是互逆的,那么很自然地从导数公式可以得到相应的积分公式.例如,因11x μμ+'⎛⎫ ⎪+⎝⎭=x μ,所以11x x dx C μμμ+=++⎰〔1μ≠-〕. 类似可以得到其他积分公式,下面一些积分公式称为根本积分公式. ①d k x kx C =+⎰〔k 是常数〕; ②1d 1x x x C μμμ+=++⎰〔1μ≠-〕;③1d ln x x C x=+⎰; ④sin d cos x x x C =-+⎰; ⑤cos d sin x x x C =+⎰; ⑥221d sec d tan cos x x x x C x==+⎰⎰; ⑦221d csc d cot sin x x x x C x==-+⎰⎰; ⑧sec tan d sec x x x x C =+⎰; ⑨csc cot d csc x x x x C =-+⎰; ⑩21d arctan C 1x x x =++⎰,21d cot 1x arc x C x -=++⎰;⑪arcsin x x C =+,arccos x x C =+⎰;⑫e d e x x x C =+⎰;⑬d ln xxa a x C a=+⎰;以上13个根本积分公式,是求不定积分的根底,必须牢记.下面举例说明积分公式②的应用.例6求不定积分x x ⎰.解xx ⎰52d x x =⎰512512x C +=++7227x C =+. 以上例子中的被积函数化成了幂函数x μ的形式,然后直接应用幂函数的积分公式②求出不定积分.但对于某些形式复杂的被积函数,如果不能直接利用根本积分公式求解,那么可以结合不定积分的性质和根本积分公式求出一些较为复杂的不定积分.1.3 不定积分的性质根据不定积分的定义,可以推得它有如下两个性质.性质1 积分运算与微分运算互为逆运算〔1〕()d ()'⎡⎤=⎣⎦⎰f x x f x 或d ()d ()d ⎡⎤=⎣⎦⎰f x x f x x . 〔2〕()d ()'=+⎰F x x F x C 或d ()()=+⎰F x F x C 性质2 设函数()f x 和()g x 的原函数存在,那么[]()()d ()d ()d +=+⎰⎰⎰f x g x x f x x g x x .易得性质2对于有限个函数的都是成立的.性质3 设函数()f x 的原函数存在,k 为非零的常数,那么()d =⎰kf x x ()d ⎰k f x x .由以上两条性质,得出不定积分的线性运算性质如下:[]()()d ()d ()d +=+⎰⎰⎰kf x lg x x k f x x l g x x .例7 求23d 1⎛⎫+⎝⎰x x. 解23d 1⎛⎫+⎝x x213d 21x x x =-+⎰3arctan x =2arcsin x -C +.例8 求221d (1)+++⎰x x x x x .解 原式=22(1)d (1)+++⎰x x x x x 211d 1x x x ⎛⎫=+ ⎪+⎝⎭⎰3arctan 3x x x C =-++. 例9 求2e d x x x ⎰.解 原式(2e)d xx =⎰1(2e)ln 2exC =+2e 1ln 2x x C =++. 例10 求1d 1sin x x+⎰.解 1d 1sin x x+⎰()()1sin d 1sin 1sin xx x x -=+-⎰21-sin d cos x x x=⎰ 2(sec sec tan )d =-⎰x x x x tan sec x x C =-+.例11 求2tan d x x ⎰.解 2tan d x x ⎰=2(sec 1)d tan -=-+⎰x x x x C .注 本节例题中的被积函数在积分过程中,要么直接利用积分性质和根本积分公式,要么将函数恒等变形再利用积分性质和根本积分公式,这种方法称为根本积分法.此外,积分运算的结果是否正确,可以通过它的逆运算〔求导〕来检验,如果它的导函数等于被积函数,那么积分结果是正确的,否那么是错误的.下面再看一个抽象函数的例子:例12 设22(sin )cos '=f x x ,求()f x ?解 由222(sin )cos 1sin '==-f x x x ,可得()1'=-f x x , 从而21()2=-+f x x x C .习题4-11.求以下不定积分.〔1〕41d x x⎰; 〔2〕x ⎰; 〔3〕; 〔4〕()2d ax b x -⎰;〔5〕22d 1x x x +⎰; 〔6〕4223d 1x x x x +++⎰;〔7〕x ; 〔8〕22d 1x x⎛⎫+⎝⎰; 〔9〕32e d x x x⎛⎫- ⎪⎝⎭⎰; 〔10〕()22d 1x xx+⎰;〔11〕x ;〔12〕2tan d x x ⎰; 〔13〕2sin d 2xx ⎰;〔14〕cos 2d cos sin x xx x-⎰;〔15〕21cos d 1cos 2xx x++⎰; 〔16〕()sec sec tan d x x x x +⎰;〔17〕2352d 3x xxx ⋅-⋅⎰;〔18〕x .2.某产品产量的变化率是时间t 的函数,()=+f t at b 〔a ,b 为常数〕.设此产品的产量函数为()p t ,且(0)0=p ,求()p t .3.验证12arcsin(21)arccos(12)=-+=-+x C x C 3C =. 4.设33()d f x x x C '=+⎰,求()f x ?第2节 换元积分法和不定积分法2.1 换元积分法上一节介绍了利用根本积分公式与积分性质的直接积分法,这种方法所能计算的不定积分是非常有限的.因此,有必要进一步研究不定积分的求法.这一节,我们将介绍不定积分的最根本也是最重要的方法——换元积分法,简称换元法.其根本思想是:利用变量替换,使得被积表达式变形为根本积分公式中的形式,从而计算不定积分. 换元法通常分为两类,下面首先讨论第一类换元积分法.2.1.1第一类换元积分法定理1 设()f u 具有原函数,()=u x ϕ可导,那么有换元公式()[()]()d ()d =⎡⎤'=⎣⎦⎰⎰u x f x x x f u u ϕϕϕ. 〔4.2.1〕证明 不妨令()F u 为()f u 的一个原函数,那么[]()()d ()=⎡⎤=+⎣⎦⎰u x f u u F x C ϕϕ.由不定积分的定义只需证明([()])[()]()''=F x f x x ϕϕϕ,利用复合函数的求导法那么显然成立.注 由此定理可见,虽然不定积分[()]()d '⎰f x x x ϕϕ是一个整体的记号,但从形式上看,被积表达式中的d x 也可以当做自变量x 的微分来对待.从而微分等式()d d '=x x u ϕ可以方便地应用到被积表达式中.例1 求33e d x x ⎰.解 3333e d e (3)d e d(3)x x x x x x x '=⋅=⎰⎰⎰e d =⎰u u e =+u C , 最后,将变量3u x =代入,即得333ed e xx x C =+⎰.根据例1第一类换元公式求不定积分可分以下步骤:〔1〕将被积函数中的简单因子凑成复合函数中间变量的微分; 〔2〕引入中间变量作换元;〔3〕利用根本积分公式计算不定积分; 〔4〕变量复原.显然最重要的是第一步——凑微分,所以第一类换元积分法通常也称为凑微分法.例2 求()9945d x x +⎰.解 被积函数9945()+x 是复合函数,中间变量45=+u x ,45()=4'+x ,这里缺少了中间变量u 的导数4,可以通过改变系数凑出这个因子:99999911(45)d (45)(45)d (45)d(45)44'+=⋅+⋅+=++⎰⎰⎰x x x x x x x 991d 4=⎰u u 1001001(45)4100400+=⋅+=+u x C C .例3 求22d xx x a +⎰. 解221x a+为复合函数,22u x a =+是中间变量,且222x a x '+=(), 22222222221111d ()d d()22'=⋅+=++++⎰⎰⎰x x x a x x a xax a x a 221111d ln ln()222==+=++⎰u u C x a C u . 对第一类换元法熟悉后,可以整个过程简化为两步完成.例4 求x ⎰.解 322211)(1)23=--=--+⎰x x x C .注 如果被积表达式中出现()d +f ax b x ,-1()d ⋅m m f x x x ,通常作如下相应的凑微分:1()d ()d()+=++f ax b x f ax b ax b a , 111()d ()d()-+=⋅++n n n n f ax b x x f ax b ax b a n.例5 求1d (12ln )x x x +⎰.解 因为1d d ln x x x=,亦即11d d(1+2ln )2x x x=,所以1111d d ln d(1+2ln )(12ln )12ln 212ln x x x x x x x==+++⎰⎰⎰ 1ln 1+2ln 2x C =+. 例6 求arctan 22d 1xx x +⎰.解 因为21d d arctan 1x x x =+,所以 arctan arctan arctan 222d 2d arctan ln 21x x xx x C x ==++⎰⎰.例7 求x .解x =x C ==-⎰.在例4至例7中,没有引入中间变量,而是直接凑微分.下面是根据根本微分公式推导出的常用的凑微分公式.①x=②211d d x x x=-.③1d dln x x x=. ④e d de x x x =.⑤ cos d d sin x x x =. ⑥ sin d d cos x x x =-. ⑦221d sec d d tan cos ==x x x x x. ⑧ 221d csc d d cot sin =-=-x x x x x.d(arcsin )d(arccos )x x x ==-.⑩21d d(arctan )d(arccot )1x x x x ==-+. 在积分的运算中,被积函数有时还需要作适当的代数式或三角函数式的恒等变形后,再用凑微分法求不定积分.例8 求221d x a x +⎰. 解 将函数变形2222111.1a x a x a =+⎛⎫+ ⎪⎝⎭,由d d x x a a=,所以得到221d x a x +⎰2111darctan 1x xC aa a ax a ==+⎛⎫+ ⎪⎝⎭⎰. 例9求x . 解1x x x aa ⎛⎫==⎪⎝⎭ arcsinxC a=+. 例10 求tan d x x ⎰. 解 tan d x x ⎰=sin d d cos ln cos cos cos x x xx C x x-==-+⎰⎰. 同理,我们可以推得cot d ln sin x x x C =+⎰.例11 求3sin d x x ⎰.解 3222sin d sin sin d sin dcos (1-cos )dcos x x x x x x x x x ==-=-⎰⎰⎰⎰31cos cos 3x x C =-++.例12 求23sin cos d x x x ⎰.解 232222sin cos d sin cos cos d sin cos dsin x x x x x x x x x x ==⎰⎰⎰2224sin (1sin )dsin (sin sin )dsin x x x x x x =-=-⎰⎰3511sin sin 35x x C =-+. 例13 求2sin d x x ⎰. 解 21cos 211sin d d sin 2224x x x x x x C -==-+⎰⎰. 例14 求sec d x x ⎰. 解 12211sec d d cos d cos d sin d sin cos 1sin x x x x x x x x x x--====-⎰⎰⎰⎰⎰ 1sin 1ln ln sec tan 2sin 1x C x x C x +=+=++-. 同理,我们可以推得csc d ln csc cot x x x x C =--+⎰.注 对形如sin cos d m n x x x ⎰的积分,如果m ,n 中有奇数,取奇次幂的底数〔如n 是奇数,那么取cos x 〕与d x 凑微分,那么被积函数一定能够变形为关于另一个底数的多项式函数,从而可以顺利的计算出不定积分;如果m ,n 均为偶数,那么利用倍角〔半角〕公式降幂,直至将三角函数降为一次幂,再逐项积分.例15 求sin 2cos3d x x x ⎰. 解 sin 2cos3d x x x ⎰=11sin 5d sin d 22x x x x -⎰⎰=11cos5cos 102x x C -++ =11cos cos5210x x C -+. 一般的,对于形如以下形式sin cos d mx nx x ⎰, sin sin d mx nx x ⎰, cos cos d mx nx x ⎰,的积分〔m n ≠〕,先将被积函数用三角函数积化和差公式进行恒等变形后,再逐项积分.例16 求221d x x a -⎰. 解 因为 2211111()()2⎛⎫==- ⎪-+-+-⎝⎭x a x a a x a x a x a, 所以 221111111d d d d 22⎛⎫⎛⎫=-=- ⎪ ⎪-+-+-⎝⎭⎝⎭⎰⎰⎰⎰x x x x a x a x a a x a x a x a111d()d()2x a x a a x a x a ⎛⎫=--+ ⎪-+⎝⎭⎰⎰ ()11ln ln ln 22x a x a x a C C a a x a-=--++=++. 这是一个有理函数〔形如()()P x Q x 的函数称为有理函数,()P x ,()Q x 均为多项式〕的积分,将有理函数分解成更简单的局部分式的形式,然后逐项积分,是这种函数常用的变形方法.下面再举几个被积函数为有理函数的例子.例17 求23d 56x x x x +-+⎰.解 先将有理真分式的分母256x x -+因式分解,得256-+=x x (2)-x (3)-x .然后利用待定系数法将被积函数进行分拆.设232356x A B x x x x +=+---+=(3)(2)(2)(3)-+---A x B x x x , 从而 3(3)(2)+=-+-x A x B x , 分别将3,2x x ==代入3(3)(2)+=-+-x A x B x 中,易得56A B =-⎧⎨=⎩.故原式=56d 23x x x -⎛⎫+⎪--⎝⎭⎰=5ln 26ln 3x x C --+-+. 例18 求33d 1x x +⎰. 解 由321(1)(1)+=+-+x x x x , 令323111A Bx Cx x x x +=+++-+, 两边同乘以31x +,得23(1)()(1)=-++++A x x Bx C x .令1,x =-得1A =;令0,x =得2C =;令1x =,得1B =-. 所以32312111x x x x x -+=+++-+. 故3223121213d d ln 1d 12111-+--⎛⎫=+=+- ⎪++-+-+⎝⎭⎰⎰⎰x x x x x x x x x x x x =2221d 1d(1)32ln 12211324x x x x x x x ⎛⎫- ⎪-+⎝⎭+-+-+⎛⎫-+⎪⎝⎭⎰⎰.21=ln 1ln(1).2x x x C +--+++2.1.2 第二类换元积分方法定理2 设()=x t ψ是单调,可导的函数,并且()0'≠t ψ,又设[]()()'f t t ψψ具有原函数,那么有换元公式,[]1()()d ()()d -=⎡⎤'=⎣⎦⎰⎰t x f x x f t t t ψψψ,其中,1()-x ψ是()=x t ψ的反函数.证明 设[]()()'f t t ψψ的原函数为()t φ.记1()()-⎡⎤=⎣⎦x F x φψ,利用复合函数及反函数求导法那么得[][]d d 1()()()()()d d ()''=⋅=⋅=='t F x f t t f t f x t x t φψψψψ, 那么()F x 是()f x 的原函数.所以11()()d ()[()][()]()d --=⎡⎤'=+=+=⎣⎦⎰⎰t x f x x F x C x C f t x t ψφψψψ.利用第二类换元法进行积分,重要的是找到恰当的函数()=x t ψ代入到被积函数中,将被积函数化简成较容易的积分,并且在求出原函数后将1()t x ψ-=复原.常用的换元法主要有三角函数代换法、简单无理函数代换法和倒代换法.一、三角函数代换法例19 求22d a x x -⎰(0)>a .解 设ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,22cos a x a t -=,d cos d x a t t =,于是22d a x x -⎰=2222cos cos d cos d sin cos 22a a a t a t t a t t t t t C ⋅==++⎰⎰.因为 ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,所以arcsin ,xt a = 为求出cos t ,利用sin xt a=作辅助三角形〔图4-2〕,求得22cos a x t a-=, 所以 22222221d d arcsin 22a x a x x a x x x a x C a -=-=+-+⎰⎰.图4-2例20 求22d x x a+⎰(0)>a .解 令2ππtan ,,,d sec d 22x a t t x a t t ⎛⎫=∈-= ⎪⎭⎝,22d xx a +⎰=21cos sec d sec d ln sec tan t a t t t t t t C a ⋅==++⎰⎰. 利用tan xt a=作辅助三角形〔图4-3〕,求得 22ππsec ,,22x a t t a +⎛⎫=∈- ⎪⎭⎝ 所以 ()2222122d ln ln xx x a c x x a C a ax a ⎛⎫+ ⎪=++=+++ ⎪+⎝⎭⎰.图4-3例21 求22x a-(0)>a .解 当x a >时,令πsec ,0,,d sec tan d 2x a t t x a t t t ⎛⎫=∈=⋅ ⎪⎭⎝,22x a -=11cot sec tan d sec d ln sec tan t a t t t t t t t C a⋅⋅⋅==++⎰⎰.利用cos at x=作辅助三角形〔图4-4〕,求得22tan x a t -=所以 (2222122lnln x x a C x x a C aax a -=+=+-+-,1(ln )C C a =-. 当x a <-时,令x u =-那么u a >,由上面的结果,得((2222112222ln ln u u a C x x a C x a u a =-=-+=---+--=(221,(2ln )x x a C C C a --+=-. 综上,2222ln x x a C x a =-+-.图4-4注 22a x -22a x +22x a -换元:sin x a t =,tan x a t =,sec x a t =±将根号化去.但是具体解题时,要根据被积函数的具体情况,选取尽可能简捷的代换,不能只局限于以上三种代换.二、简单无理函数代换法 例22 求12x+.解 令22,,d d 2u u x x x u u ===,12x +=d 11d 11u u u u u ⎛⎫=- ⎪++⎝⎭⎰⎰(ln 12ln 12u u C x x C =-+++. 例23 求3(1+)x x.解 被积函数中出现了两个不同的根式,为了同时消去这两个根式,可以作如下代换: 令6t x =6x t =,5d 6d x t t =,从而522322361d 6d 61d (1)11(1+)t t t t t t t t t x x ⎛⎫===- ⎪+++⎝⎭⎰⎰⎰ 666(arctan )6()t t C x x C =-+=+.例24 求211d xx x x +. 解 为了去掉根式,作如下代换:1x t x +=,那么211x t =-,222d d (1)t x t t =--,从而222222112d (1)d 2d (1)x t x t t t t t x x t +-=-⋅=--⎰⎰ 32322133x t C C x +⎛⎫=-+=-+ ⎪⎝⎭. 一般的,如果积分具有如下形式〔1〕()d n R x ax b x +⎰,那么作变换n t ax b +〔2〕(,)d n m R x ax b ax b x ++⎰,那么作变换pt ax b +p 是m ,n 的最小公倍数;〔3〕(R x x ⎰,那么作变换t = 运用这些变换就可以将被积函数中的根数去掉,被积函数就化为有理函数. 三、倒代换法在被积函数中如果出现分式函数,而且分母的次数大于分子的次数,可以尝试利用倒代换,即令1x t=,利用此代换,常常可以消去被积函数中分母中的变量因子x .例25 求6d (1)+⎰xx x .解 令211,d d x x t tt ==-, 6d (1)+⎰x x x =52661d d 1111t t t t t t t -=-+⎛⎫⋅+ ⎪⎝⎭⎰⎰661d(1)61+=-+⎰t t 61ln 16t C =-++ 611ln 16C x ⎛⎫=-++ ⎪⎝⎭. 例26求x . 解 设211,d d ,x x t tt ==-则 于是1222241d (1)d ⎫=-=--⎪⎝⎭⎰x t a t t t t t , 当0x >时,有31222222222231()(1)d(1)23-=---=-+⎰a x x a t a t C a a x . 0x <时,结果相同.本例也可用三角代换法,请读者自行求解.四、指数代换 例27 求2d e (e 1)+⎰x x x.解 设1e ,d d ,x t x t t==则 于是222d 1d e (e 1)(1)=++⎰⎰x x x t t t22111d arctan 1t t C t t t ⎛⎫=-=--+ ⎪+⎝⎭⎰--e arctane x x C =--+. 注 本节例题中,有些积分会经常遇到,通常也被当作公式使用.承接上一节的根本积分公式,将常用的积分公式再添加几个〔0a >〕:①tan d ln cos x x x C =-+⎰; ②cot d ln sin x x x C =+⎰; ③cscd x ⎰=ln csc cot x x C -+; ④sec d ln sec tan x x x x C =++⎰; ⑤2211d arctan xx C a a a x=++⎰; ⑥221d xx a -⎰=1ln 2x a C a x a -++; ⑦arcsin xx C a =+>(a 0);⑧(ln x C =+;⑨ln x C =. 例28 求.解=2arcsin3-=+x C . 例29 求.解=11ln(222=+x C . 例30 求解ln 1=-x C .例31 求322d (22)x x x x -+⎰.解 被积函数为有理函数,且分母为二次质因式的平方,把二次质因式进行配方:2(1)1x -+,令ππ1tan ,,22⎛⎫-=∈- ⎪⎝⎭x t t ,那么2222sec x x t -+=,2d sec d x t t =.所以332224(1tan )d sec d (22)sec x t x t t x x t +=⋅-+⎰⎰23cos (1tan )d t t t =+⎰3(sin cos )d cos t t t t+=⎰ 3122(sin cos 3sin 3sin cos cos )d t t t t t t t -=+++⎰ 2ln cos cos 2sin cos t t t t t C =--+-+.图4-5按照变换ππ1tan ,22x t t ⎛⎫-=∈- ⎪⎝⎭作〔辅助三角形图4-5〕,那么有2cos 22t x x =-+,2sin 22t x x =-+,于是322221d ln(22)2arctan(1)2(22)22x x x x x x C x x x x =-++--+-+-+⎰.2.2 分部积分法前面我们得到了换元积分法.现在我们利用“两个函数乘积的求导法那么〞来推导求积分的另一种根本方法—分部积分法.定理1 设函数()=u u x ,()=v v x 具有连续的导数,那么d d =-⎰⎰u v uv v u .〔4.2.2〕证明 微分公式d()d d =-uv u v v u 两边积分得d d =-⎰⎰uv u v v u ,移项后得d d =-⎰⎰u v uv v u .我们把公式〔4.2.2〕称为分部积分公式.它可以将不易求解的不定积分d u v ⎰转化成另一个易于求解的不定积分d v u ⎰.例32 求cos d x x x ⎰.解 根据分部积分公式,首先要选择u 和d v ,显然有两种方式,我们不妨先设,cos d d ,u x x x v == 即sin v x =,那么cosd dsin sin sin d sin cos x x x x x x x x x x x C ==-=++⎰⎰⎰.采用这种选择方式,积分很顺利的被积出,但是如果作如下的选择: 设cos ,d d ,u x x x v == 即212v x =,那么222111cos d cos d cos sin d 222x x x x x x x x x x ==-⎰⎰⎰, 比拟原积分cos d x x x ⎰与新得到的积分21sin d 2x x x ⎰,显然后面的积分变得更加复杂难以解出.由此可见利用分部积分公式的关键是恰当的选择u 和d v .如果选择不当,就会使原来的积分变的更加复杂.在选取u 和d v 时一般考虑下面两点: 〔1〕v 要容易求得;〔2〕d v u ⎰要比d u v ⎰容易求出. 例33 求e d x x x ⎰.解 令,e d d ,e x x u x x v v ===,那么e d de e e d e e x x x x x x x x x x x x C ==-=-+⎰⎰⎰.例34 求2e d x x x ⎰.解 令2,e d d ,e x x u x x v v ===,那么利用分部积分公式得22222e d dee e d e 2e d xxx x x x x x x x x x x x ==-=-⎰⎰⎰⎰,这里运用了一次分部积分公式后,虽然没有直接将积分积出,但是x 的幂次比原来降了一次,e d xx x ⎰显然比2e d xx x ⎰容易积出,根据例4.3.2,我们可以继续运用分部积分公式,从而得到222e d e2e d e 2de xxx x x x x x x x x x =-=-⎰⎰⎰2e 2(e e )x x x x x C =--+ 2e (22)x x x C =-++.注 当被积函数是幂函数与正〔余〕弦或指数函数的乘积时,幂函数在d 的前面,正〔余〕弦或指数函数至于d 的后面.例35 求ln d x x x ⎰. 解 令ln ,u x =21d d 2x x x =,212v x =,那么 222111ln d ln d ln d 22x x x x x x x x x x ⎛⎫==-⋅ ⎪⎝⎭⎰⎰⎰2211ln 22x x x C ⎛⎫=-+ ⎪⎝⎭ 22ln 124x x x C =-+.在分部积分公式运用比拟熟练后,就不必具体写出u 和d v ,只要把被积表达式写成d ⎰u v的形式,直接套用分部积分公式即可. 例36 求arctan d x x x ⎰.解 222211arctan d arctan d arctan d 221x x x x x x x x x x ⎛⎫==- ⎪+⎝⎭⎰⎰⎰21(arctan arctan )2=-++x x x x C . 注 当被积函数是幂函数与对数函数或反三角函数的乘积时,对数函数或反三角函数在d 的前面,幂函数至于d 的后面.下面再来举几个比拟典型的分部积分的例子.例37 求e sin d x x x ⎰.解 〔法一〕e sin d sin de e sin e cos d x x x x x x x x x x ==-⎰⎰⎰e sin cos de x x x x =-⎰=e sin e cos e sin d x x x x x x x --⎰,∴ 1e sin d e (sin cos )2=-+⎰x xx x x x C . 〔法二〕x e sin d e d(cos )e (cos )cos d(e )=-=-+⎰⎰⎰x x x x x x x x =e cos cos e d e cos e dsin x x x x x x x x x -+=-+⎰⎰ =e cos e sin sin de x x x x x x -+-⎰ =e cos e sin e sin d x x x x x x x -+-⎰,∴ 1e sin d e (sin cos )2=-+⎰x x x x x x C .当被积函数是指数函数与正〔余〕弦函数的乘积时,任选一种函数凑微分,经过两次分部积分后,会复原到原来的积分形式,只是系数发生了变化,我们往往称它为“循环法〞,但要注意两次凑微分函数的选择要一致.例38 求3sec d x x ⎰.解 32sec d sec d tan sec tan sec tan d x x x x x x x x x ==⋅-⋅⎰⎰⎰3sec tan sec d sec d x x x x x x =⋅+-⎰⎰,利用 1sec d ln sec tan x x x x C =++⎰ 并解方程得3sec d x x ⎰=1(sec tan ln sec tan )2⋅++x x x x +C .在求不定积分的过程中,有时需要同时使用换元法和分部积分法.例39求x ⎰.解令2,d 2d t t x t t ===,e 2d 2de 2e 2e d 2e 2e t t t t t t x t t t t t t C C ===-=-+=-+⎰⎰⎰⎰.例40 求cos(ln )d x x ⎰. 解 令ln ,e ,d e d t t t x x x t ===,cos(ln )d x x ⎰=()()1cos e d e sin cos sin ln cos ln 22t t xt t t t C x x C ⋅=++=++⎰. 下面再看一个抽象函数的例子.例41 ()f x 的一个原函数是sin xx,求()d '⎰xf x x ? 解 因为()f x 的一个原函数是sin x x ,所以sin ()d =+⎰xf x x C x, 且 2sin cos sin ()'-⎛⎫==⎪⎝⎭x x x xf x x x .从而 原式()()d d[()]()d '===-⎰⎰⎰xf x x x f x xf x f x x cos 2sin x x xC x-=+.习题4-2一、求以下不定积分. 1.2014(23)d -⎰x x ; 2.23d (12)-⎰xx ;3.()d +⎰k a bx x 〔0b ≠〕; 4.sin3d x x ⎰; 5.()cos d x x αβ-⎰; 6.tan5d x x ⎰; 7.3e d x x -⎰; 8.210d x x ⎰; 9.121e d x x x⎰;10.2d 19xx +⎰; 11.2d πsin 24x x ⎛⎫+ ⎪⎝⎭⎰;12.x ⎰;13.2(23)d 38--+⎰x xx x ;14.;15.e sin e d x x x ⎰; 16.2e d x x x ⎰; 17.x ; 18.θ;19.;20.22(arctan )d 1+⎰x x x ;21.2d 3x x x+⎰;22.21d 413x x x x -++⎰;23.2cos d x x ⎰; 24.4sin d x x ⎰; 25.1tan d sin 2xx x+⎰; 26.22cos sin d x x x ⎰; 27.3cos d x x ⎰; 28.35sin cos d x x x ⎰; 29.4sec d x x ⎰;30.4tan d x x ⎰; 31.22d sin cos xx x⎰;32.4;33.;34.322d (1)-⎰x x ;35.3322d (1)+⎰x xx ;36.2x ;37.3222d ()+⎰xx a ;38.x ; 39. 40. 41.;42.;43.x ; 44.x ;45.42d xx x -⎰; 46.2d (1)+⎰xx x .二、求以下不定积分.1.sin 2d x x x ⎰; 2.-(e e )d 2-⎰x x x x ; 3.2cos d x x x ω⎰; 4.2d x x a x ⎰;5.ln d x x ⎰; 6.ln d n x x x ⎰〔1n ≠〕; 7.arctan d x x ⎰; 8.arccos d x x ⎰; 9.e cos d ax nx x ⎰;10.2ln(1)d +⎰x x x ;11.32ln d xx x⎰;12.2(arcsin )d ⎰x x ;13.2cos d x x x ⎰; 14.2tan d x x x ⎰;15.22cos d x x x ⎰; 16.2ln cos d cos xx x⎰;17.3ln d xx x ⎰; 18.x ⎰.三、()f x 的一个原函数是2-e x ,求()d '⎰xf x x .第3节 有理函数的积分3.1 有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数,即具有如下形式的函数: mm m m nn n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(,其中m 和n 都是非负整数; a 0,a 1,a 2,⋅⋅⋅,a n 及b 0,b 1,b 2,⋅⋅⋅,b m 都是实数,并且a 0≠0,b 0≠0.当n <m 时,称这有理函数是真分式;而当n ≥m 时,称这有理函数是假分式. 假分式总可以化成一个多项式与一个真分式之和的形式.例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时,如果分母可因式分解,那么先因式分解,然后化成局部分式再积分.例1 求⎰+-+dxx x x 6532.解⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536(⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示:)3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x ,A +B =1,-3A -2B =3,A =6,B =-5. 分母是二次质因式的真分式的不定积分: 例2 求⎰++-dxx x x 3222.解⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示:321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x .例3 求⎰-dx x x 2)1(1.解⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示:222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x .3.2 三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四那么运算所构成的函数,其特点是分子分母都包含三角函数的和差和乘积运算.由于各种三角函数都可以用sin x 及cos x 的有理式表示,故三角函数有理式也就是sin x 、cos x 的有理式. 用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数,然后作变换2tan xu =:222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=.变换后原积分变成了有理函数的积分. 例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tanx u =,那么212sin u u x +=,2211cos u u x +-=,x =2arctan u ,du u dx 212+=. 于是⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u u du u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+Cx x d xdx x x )sin 1ln()sin 1(sin 11sin 1cos .习题4-3求以下不定积分.1.x dx x +⎰33;2.x dx x x ++-⎰223310; 3.x dx x x +-+⎰2125; 4.()dx x x +⎰21 ;5.()()x dx x x ++-⎰22111;6.()()x dx x ++⎰22211;7.sin dx x +⎰23; 8.cos dxx +⎰3;9.sin dx x +⎰2 ; 10.sin cos dx x x++⎰1;11.sin cos dxx x -+⎰25; 12.⎰.第4节 MATLAB 软件的应用在高等数学中,经常利用函数图形研究函数的性质,在此,我们应用MA TLAB 命令来实现这一操作.MATLAB 符号运算工具箱提供了int 函数来求函数的不定积分,该函数的调用格式为:Int(fx,x) %求函数f(x)关于x 的不定积分参数说明:fx 是函数的符号表达式,x 是符号自变量,当fx 只含一个变量时,x 可省略. 例计算下面的不定积分.sin .cos x xI dx x+=+⎰1syms xI=int((x+sin(x)/(1+cosx))) I=X*tan(x/2)说明:由上述运行结果可知,int 函数求取的不定积分是不带常数项的,要得到一般形式的不定积分,可以编写以下语句:syms x c fx=f(x); int(fx,x)+c以sin cos x xI dx x +=+⎰1为例,编写如下语句可以得到其不定积分:syms x cfx=(x+sin(x))/(1+cos(x)); I=int(fx,x)+c I=C+x*tan(x/2)在上述语句的根底上再编写如下语句即可观察函数的积分曲线族: ezplot(fx,[-2,2]) hf=ezplot(fx,[-2,2]); xx=linspace(-2,2);plot(xx,subs(fx,xx),’k’,’LineWidth’,2) hold on for c=0:6Y=inline(subs(I,C,c));Plot(xx,y(xx),’LineStyle’,’- -’); Endlegend(‘函数曲线’,’积分曲线族’,4).总习题4 (A)一、填空题1.假设()f x 的一个原函数为cos x ,那么()d f x x ⎰=. 2.设()d sin f x x x C =+⎰,那么2(1)d xf x x -⎰=. 3.2e d x x x =⎰. 4.1d 1cos 2x x=+⎰.5.22(arctan )d 1x x x +⎰=.二、选择题1.曲线()y f x =在点(,())x f x 处的切线斜率为1x,且过点2(e ,3),那么该曲线方程为. (A) ln y x =(B) ln 1y x =+(C) 211y x =-+ (D) ln 3y x =+2.设()f x 的一个原函数是2e x -,那么()d xf x x '=⎰.(A) 222e x x C --+ (B) 222e x x -- (C) 22e (21)x x C ---+(D) ()()d xf x f x x +⎰3.设()F x 是()f x 的一个原函数,那么.(A) ()()d ()f x x F x '=⎰(B) ()()d ()f x x f x '=⎰(C)d ()()F x F x =⎰(D) ()()d ()F x x f x '=⎰4.设()f x 的原函数为1x,那么()f x '等于. (A) ln x(B)1x(C) 21x -(D)32x 5.2d x x x =⎰.(A) 22xxx C -+(B) 222ln 2(ln 2)x xx C -+(C) 22ln (ln 2)2x x x x C -+(D) 222x x C + 三、计算以下各题1.x ;2.1d e e x xx --⎰; 3.2ln(1+)d x x ⎰; 4.2d 23++⎰xx x ;5.sin ecosxd xx ⎰;6.742d (1)x xx +⎰;7.12e d x x -⎰; 8.;9.1d e 1xx -⎰; 10.3d (1)xx x -⎰;11.x x ;12.x ; 13.4d 1xx -⎰; 14.; 15.32ln d x x x ⎰; 16.17.x ⎰; 18.19.20.4sin d 2xx ⎰;21.24(tan tan )d x x x +⎰;22.2sec d 1tan ⎛⎫ ⎪+⎝⎭⎰x x x ;23.sin(lnx)d x ⎰; 24.5;25.x ;26.54tan sec d t t t ⎰;27.3sin x π⎰; 28.64tan cos d sin x x x x⎰;29.44d sin cos xx x⎰;30.1sin d 1sin +-⎰xx x;31.x x ;32.x ⎰;33.e (1)d +⎰x x x x ; 34.x ;35.2ln(1)d x x x +⎰;36.x . (B)1.〔1999、数学一〕设()f x 是连续函数()F x 是()f x 的原函数,那么( ). (A) 当()f x 是奇函数时,必是偶函数.(B) 当()f x 是偶函数时,()F x 必是奇函数.(C) 当()f x 是周期函数时,()F x 必是周期函数.(D) 当()f x 是单调增函数时,()F x 必是单调增函数.2.〔2006、数学二〕 求arctan xxe dx e ⎰. 3.〔2003、数学二〕 计算不定积分.)1(232arctan dx x xe x ⎰+.4.(2021、数学三)计算不定积分ln(1dx +⎰(0)x >.。

同济版高数 第四章修改习题课课件

同济版高数 第四章修改习题课课件

1!
2!

f (k)(0) xk k!

f (n)(0) xn n!
Rn( x) .
Rn( x)
f (n1)( x) xn1
(n 1) !
o( xn ) .
(0 1.)
常用的Maclaurin 公式 :
e x , sin x , cos x , 1 , ln(1 x) , (1 x) 1 x

x0 )n1
Rolle 定理 Lagrange 定理 Cauchy 定理
1 f ( x)在[a,b]连续 1 f ( x)在[a,b]连续 1 f ( x), g( x)在[a,b]连续
2 f ( x)在(a,b)可导2 f ( x)在(a,b)可导2 f ( x), g( x)在(a,b)可导

f (n)( x0 ) ( x n!
x0 )n

Rn( x) .
Rn( x)
f (n1)(
(n 1)!
)(x

x0 )n1
( 介于x与 x0 之间.)
o ( x x0)n .
Maclaurin 公式 :
f ( x) f (0) f (0) x f (0) x2
00 ,1 , 0 型
y f g 取对数
e g ln f
0型
f g
f 1
g
Taylor 公式 :
f (x)
f ( x0 )
f ( x0 ) ( x 1!
x0 )
f ( x0 ) ( x 2!
x0 )2


f (k)( x0 ) ( x k!
x0 )k
234

同济大学线性代数课件第四章

同济大学线性代数课件第四章

, m
2018/10/14
19
已知 : ( 1 , 1 , 1 ) , ( 0 , 2 , 5 ) , ( 2 , 4 , 7 ) 例2: 1 2 3
试讨论向量组 1 , 2 , 3 及向量组 1 , 2 的 线性相关性.
2018/10/14
b1 b2 bm
a11 a 21 记 A a m1
a12 a 22 am 2
a1n a2n a mn
x1 x2 x x n
b1 b2 b b m
R( A) R( A, B )
2018/10/14
16
定理3: 向量组 B : 1 , 2 ,
, l 能由 A : 1 , 2 ,
, m
线性表示,则 R(B) ≤ R(A) 。 其中 A (1 , 2 , , m ), B ( 1 , 2 , , l )
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 ,
, an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2018/10/14
1
a1 a 2 (a1 , a2 an
2018/10/14
14
A : 1 , 2 ,
, m B : 1 , 2 ,
, l B 能由 A 线性表示
j k1 j1 k2 j2
kl jl j 1,2,
,l
( 1 , , l ) (k111 km1 m , , k1l1 kml m )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
上页
返回
下页
结束

不定积分的概念 在区间I上, 函数f(x)的带有任意常数项的原函数称为 f(x)(或f(x)dx )在区间I上的不定积分, 记作
f (x)dx .
根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么 F(x)C就是f(x)的不定积分, 即
f (x)dx F (x) C .
例4 4 例 例5 5 例
1 dx x3dx 1 x31 C 1 C . x3 2 31 2x
2 x x dx 5 x 2 dx
2 x3 x C . 7
4
5 1 2 x2 C 1 2 x C . 5 1 7 2
7
dx 3 3 C 3 C . 例6 6 C 例 x dx 3 x 3 3 4 x x x 1 3
因为 ( x ) 1 , 所以 x 是 1 的原函数. 2 x 2 x 1 提问: cos x 和 还有其它原函数吗? 2 x
首页 上页 返回 下页 结束 铃
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 原函数存在定理 如果函数f(x)在区间I上连续, 那么在区间 I上存在可 导函数F(x), 使对任一xI 都有 F (x)f(x). 简单地说就是: 连续函数一定有原函数. (下章证明) 初等函数在定义区间上连续
首页
上页
返回
下页
结束

证: 1) 即 又知 故 即 属于函数族
首页
上页
返回
下页
结束

不定积分的概念 在区间I上, 函数f(x)的带有任意常数项的原函数称为 f(x)(或f(x)dx )在区间I上的不定积分, 记作
f (x)dx .
不定积分中各部分的名称:
------ 称为积分号,
f(x) ------ 称为被积函数, f(x)dx ------ 称为被积表达式, x ------ 称为积分变量.
首页
上页
返回
下页
结束

如果F(x)是f(x)的一个原函数, 则 f (x)dx F (x) C .
1 例 2 例 2. 求函数 f (x) 的不定积分. x 1 解 解:当 x>0 时, (ln x) , x 1 dx ln x C (x>0) x 1 1 当 x<0 时, [ln(x)] (1) , x x 1 dx ln(x) C (x<0). x 合并上面两式, 得到 1 dx ln | x| C (x0). x
质点抛出时刻为 t 0 , 此时质点位置为 x0 , 初速为 v0 .
设时刻 t 质点所在位置为 x x(t ) , 则
dx v(t ) dt
d2 x d v g 2 dt dt
x
(运动速度) 再由此求 x(t ) (加速度) 先由此求 v(t )
o
结束
x x(t )
x0 x(0)
1 5x 2 )dx
7 x2

3
5 x 2 dx

1 5x 2 dx
2 2 C . 5 x 7 3 3 3 2 ( x 1 ) x 3 x 3x 1dx (x 3 3 1 )dx 例 dx 例 88 x x2 x2 x2 xdx 3 dx 3 1 dx 12 dx 1 x2 3x 3ln | x| 1 C . x 2 x x
§4.1 不定积分的概念与性质
一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质
首页
上页
返回
下页
结束

一、原函数与不定积分的概念
微分法:
F ( x) ( ? )
互逆运算
积分法:
( ? ) f ( x)首页上页源自返回下页结束

一、原函数与不定积分的概念
原函数的概念 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对 任一xI, 都有 F (x)f(x)或dF(x)f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数. •原函数举例 因为(sin x)cos x , 所以sin x是cos x的原函数.
(5) a xdx
x
(7) sin xdx cos x C ,
(8) sec2 xdx tan x C ,
首页 上页
(14) sh x dx ch x C ,
(15) ch x dx sh x C .
返回 下页 结束 铃
(2) x dx 1 x 1 C , 1
C 称为积分常数 不可丢 !
首页
上页
返回
下页
结束

如果F(x)是f(x)的一个原函数, 则 f (x)dx F (x) C .
例1 因为sin x 是cos x 的原函数, 所以
cosxdx sin x C .
因为 x 是 1 的原函数, 所以 2 x 1 dx x C . 2 x
初等函数在定义区间上有原函数
首页 上页 返回 下页 结束 铃
说明: 1. 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限 多个原函数, F(x)C都是f(x)的原函数, 其中C是任意常数. 2. 函数 f(x)的任意两个原函数之间只差一个常数, 即如果(x)和F(x)都是f(x)的原函数, 则 (x)F(x)C (C为某个常数).
思考与练习
1. 若
2 x f (ln x) d x
1 2 x C 2
x e 提示: 1 ln x f (ln x) e x
首页
上页
返回
下页
结束

2. 若

是 e x 的原函数 , 则 1 f (ln x) C0 ln x C d x x x
积分表 首页 上页 返回 下页 结束 铃
1 2 2 x dx
三、不定积分的性质
性质1 [ f (x) g(x)]dx f (x)dx g(x)dx . 性质2 kf (x)dx k f (x)dx (k 是常数, k 0).
例 例 99 (e x 3cos x)dx e xdx 3 cos xdx ex 3sin x C .
首页
上页
返回
下页

dv 先求v(t ) . 由 g , 知 dt
x
由 v(0) v0 , 得 C1 v0 , 故
v(t ) ( g ) d t g t C1
x x(t )
x0 x(0)
v(t ) g t v0 o dx 再求 x(t ) . 由 (t g)t v0 , 知 v dt 2 g t v0t C2 x(t ) (g t v0 )d t 1 2 由 x(0) x0 , 得 C2 x0 , 于是所求运动规律为
积分表 首页 上页 返回 下页 结束 铃
内容小结
1. 不定积分的概念 • 原函数与不定积分的定义 • 不定积分的性质 • 基本积分表 (见P 188) 2. 直接积分法:
利用恒等变形, 积分性质 及 基本积分公式进行积分 . 分项积分
常用恒等变形方法 加项减项
利用三角公式 , 代数公式 ,
首页 上页 返回 下页 结束 铃
a C , ln a (6) cos xdx sin x C ,
(9) csc2 xdx cot x C ,
1 dx arctan x C , 2 1 x 1 dx arcsin x C (11) , 2 1 x
(10) (12) sec x tan xdx sec x C , (13) cscx cotdx cscx C ,
1 1 dx dx arctan x ln | x| C . 2 x 1 x
积分表 首页 上页 返回 下页 结束 铃
2 2 4 4 ( x 1 )( x 1 ) 1 x x 1 1 例 12 dx dx dx 例 12 2 2 2 1 x 1 x 1 x 1 1 2 2 (x 1 )dx x dx dx dx 2 2 1 x 1 x 1 x3 x arctanx C . 3
首页
上页
返回
下页
结束

三、不定积分的性质
性质1 [ f (x) g(x)]dx f (x)dx g(x)dx . 性质2 kf (x)dx k f (x)dx (k 是常数, k 0). 例7

x (x2 5)dx
5 x 2 dx 5
5 (x 2
上页 返回
首页
下页
结束

例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率 等于这点横坐标的两倍, 求此曲线的方程. 解 设所求的曲线方程为yf(x), 则曲线上任一点(x, y) 处的切线斜率为 yf (x)2x, 即f(x)是2x 的一个原函数. 因为
2 2 xdx x C , 故必有某个常数C使f(x)x2C, 即曲线方程为yx2C. y 因所求曲线通过点(1, 2), 故 21C, C1. (1, 2) 于是所求曲线方程为yx21.
或记作 dF (x) F (x) C .
由此可见, 如果不计任意常数, 则微分运算与求不定 积分的运算是互逆的.
首页
上页
返回
下页
结束

二、基本积分表
(1) kdx kx C (k 是常数), (2) x dx 1 x 1 C , 1 1 (3) dx ln | x| C , x (4) e xdx e x C ,
相关文档
最新文档