小学六年级阴影部分面积专题复习经典例题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初阴影部分面积专题

1.求如图阴影部分的面积.(单位:厘米)

2.如图,求阴影部分的面积.(单位:厘米)

3.计算如图阴影部分的面积.(单位:厘米)

4.求出如图阴影部分的面积:单位:厘米.

5.求如图阴影部分的面积.(单位:厘米)

6.求如图阴影部分面积.(单位:厘米)

7.计算如图中阴影部分的面积.单位:厘米.

8.求阴影部分的面积.单位:厘米.

9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)

10.求阴影部分的面积.(单位:厘米)

11.求下图阴影部分的面积.(单位:厘米)

12.求阴影部分图形的面积.(单位:厘米)

13.计算阴影部分面积(单位:厘米).

14.求阴影部分的面积.(单位:厘米)

15.求下图阴影部分的面积:(单位:厘米)

16.求阴影部分面积(单位:厘米).

17.(2012?长泰县)求阴影部分的面积.(单位:厘米)

☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆

参考答案与试题解析

1.求如图阴影部分的面积.(单位:厘米)

考点组合图形的面积;梯形的面积;圆、圆环的面积.

分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.

解答

解:(4+6)×4÷2÷2﹣×÷2,

=10﹣×4÷2,

=10﹣,

=(平方厘米);

答:阴影部分的面积是平方厘米.

点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.

2.如图,求阴影部分的面积.(单位:厘米)

考点组合图形的面积.

分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径

为(10÷2)5厘米的圆的面积,即:×5×5=(平方厘米).

解答解:扇形的半径是:

10÷2,

=5(厘米);

10×10﹣×5×5,

100﹣,

=(平方厘米);

答:阴影部分的面积为平方厘米.

点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)

考点组合图形的面积.

分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),

长方形的面积=长×宽=10×5=50(平方厘米),

半圆的面积=πr2÷2=×52÷2=(平方厘米),

阴影部分的面积=长方形的面积﹣半圆的面积,

=50﹣,

=(平方厘米);

答:阴影部分的面积是.

点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.

4.求出如图阴影部分的面积:单位:厘米.

考点组合图形的面积.

专题平面图形的认识与计算.

分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.

解答解:8×4﹣×42÷2,

=32﹣,

=(平方厘米);

答:阴影部分的面积是平方厘米.

点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.

5.求如图阴影部分的面积.(单位:厘米)

考点圆、圆环的面积.

分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2

=×(4÷2)2

=(平方厘米);

阴影部分的面积=2个圆的面积,

=2×,

=(平方厘米);

答:阴影部分的面积是平方厘米.

点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.

6.求如图阴影部分面积.(单位:厘米)

考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.

分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.

解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);

图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);

答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.

点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.

7.计算如图中阴影部分的面积.单位:厘米.

考点组合图形的面积.

分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,

利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.

解答解:圆的半径:15×20÷2×2÷25,

=300÷25,

=12(厘米);

阴影部分的面积:

××122,

=××144,

=×144,

=(平方厘米);

答:阴影部分的面积是平方厘米.

点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.

考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.

分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;

(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.

解答解:(1)阴影部分面积:

×﹣×,

=﹣,

=(平方厘米);

(2)阴影部分的面积:

×32﹣×(3+3)×3,

=﹣9,

=(平方厘米);

相关文档
最新文档