九年级上册数学教案 第2章 命题与证明 定理与证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理与证明

教学目标

1使学生理解公理和定理的意义,并能对公理与定理加以区别

2使学生理解证明命题的思路、书写的格式,使学生对几何的重要内容之一——推理论证,有初步的认识,从而初步培养学生思维的条理性和逻辑性

教学重点和难点

重点是命题证明的一般步骤,难点是探索命题证明的思路以及思维方向

教学过程设计

一、复习命题,引入公理和定理

教师提问:学生思考后回答

1什么叫命题?请你说出一个数学命题

2什么叫真命题?什么叫假命题?请你分别举出两个实例

3在前面学过的真命题中,还有什么名称?

当学生回答完第三个问题后,教师再问

4公理和定理有什么区别?

先由学生随意回答,互相补充,然后教师与学生一起归纳总结

公理:它的正确性是人们长期实践中总结出来并作为判定其它命题真假的根据

定理:它是正确性是用推理证实的,这样的真命题叫做定理

用幻灯投影命题与公理等关系

命题

真命题假命题 (只需举一个反例)

公理 (正确性由实践总结)

定理 (正确性由推理证实)

二、证明的意义、过程和步骤

1证明的意义

请证明以下命题:三个连续奇数的和是3的整数倍

问:请学生们思考,怎样证明?

当三个连续奇数为3,5,7时,它们的和为3+5+7=15是3的整数倍,当三个数为7,8,9时,7+8+9=24,也对那么,我们能否这样试下去,能不能通过试具体数的方法,证明这个命题是真命题不能,如何证明呢?

设n为整数,三个连续奇数为2n+1,2n+3,2n+5,它们的积为(2n+1)+(2n+3)+(2n+5)=6n+9=3,因为n是整数,所以2n+3为整数,3(2 n+3)是3的整数倍。

这就是推理的过程

要判断一个命题的真假,必须要有推理论证的过程,也叫证明只有证明,才能区分命题的真假,否则就会得出错误的结论证明的意义就在于此

再问:“两个连续整数的平方差是一个奇数

,这个命题是真还是假?怎样证明,学生分组讨论,选做出结果的同学板演或讲解

证明:设n为整数,n+1,n为两个连续整数

(n+1)2-n2=n2+2n+1-n2=2n+1,

因为2n+1为奇数,所以得证

2命题证明的一般步骤

例求证:同角的余角相等

已知:如图2—87,∠2是∠1的余角,∠3是∠1的余角

求证:∠2=∠3

证明:因为∠2与∠1互为余角,(已知)

∠3与∠1互为余角,

所以∠2+∠1=90°,∠3+∠1=90°(余角定义)

所以∠2+∠1=∠3+∠1(等量代换)

则∠2=∠3(等量减等量差相等)

同学总结步骤:

1审题:分清命题的“题设”和“结论”

2译题:结合图形中的字母及符号,写出已知,求证

3想题:用“执因索果”(综合法);用“执果索因”(分析法)寻找论证推理的逻辑思路一般是把二者结合起来思考,效果较好,这也叫综合分析法

4证题:从已知出发,每一步过程要有根据(定义,公理或定理)最后得到结论,全面推理过程要因果分明

三、命题证明的练习

1证明:“如果一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直”

教师指导学生,按证明命题的四步,边讲边请学生回答如下问题:

(1)命题的“题设”和“结论”各是什么?学生回答后,教师板书:

已知:如图2—88,a∥b,a⊥c,

求证:b⊥c

(2)以上译题时应注意:图形尽量准确,图中字母与译文要一致,不能随意添加或丢失条件或结论

(3)思维的逻辑路线是什么?

要证垂直,就是要证两条直线相交成90°的角,由第一条直线a与c垂直成90°角又a ∥b,同位角相等,所以a与c的交角也为90°,所以b⊥c

(4)证明过程中有几对因果关系?(两对)

请学生写出证明过程,最好请两名证明顺序有所不同的学生到黑板上证,两种顺序如下证法(一):∵a⊥c,(已知)

∴∠1=90°(垂直的定义)

∵a∥b,(已知)

∴∠1=∠2,(两直线平行,同位角相等)

∴∠2=90°,(等量代换)

∵b⊥c(垂直定义)

证法(二):

∵a∥b,(已知)

∴∠1=∠2(两直线平行,同位角相等)

∵a⊥c,(已知)

∴∠1=90°,(垂直定义)

∴∠2=90°,(等量代换)

∴b⊥c(垂直定义)

2证明:“垂直于同一直线的两条直线平行”

教师给出命题后,让学生每人都在笔记本上自己做,然后找妯两个或三个学生,让他们在黑板上写出证明的过程在学生板演的过程中,教师提问:

(1)将此命题写成“如果……,那么……”的形式“如果两条直线都与第三条直线垂直,那么这两条直线平行”

(2)已知,求证,及图形的画法,由学生分别写出和画出,并与板演的学生对照

已知:a⊥c,b⊥c,如图2—89,

求证:a∥b

(3)师生共同探索证题的思考过程,然后找一位学生板演

证明:∵a⊥c,(已知)

∴∠1=90°(垂直定义)

∵b⊥c,(已知)

∴∠2=90°(垂直定义)

∴∠1=∠2,(等量代换)

∴a∥b(同位角相等,两条直线平行)

以上过程也可以简写为:

∵a⊥c,b⊥c,

∴∠1=90°,∠2=90°

(……)

四、总结

教师以提问形式,学生回答,教师纠正。

1命题,定理之间的关系是什么?(关系图)

2公理的正确性怎样判定?定理的正确性怎样判定?

3假命题应怎样判定?

4证明命题的一般步骤是什么?(审题、译题、想题、证题)

五、作业

1将第一章的定理、公理整理出来,将第二章的定理、公理、整理出来。2复习证明命题的一般步骤。

3如图2-90,已知:∠ABC=90°,∠1+∠C=90°,

求证:∠C=∠2。

4如图2-91,已知:∠1=∠2,∠2+∠3=180°,

求证:a∥b,c∥d。

5(选作题)

证明:

(1)13个同学中必有2个或2个以上的同学在同一个月份出生。

(2)初一年级共有400人,必有2个或2个以上的同学的生日是同一天。(注:以上证明可用抽屉原则。详细答案见“设计说明”。)

板书设计

定理与证明

一、公理与定理三、证明练习

1公理例1

2定理例2

3关系图四、总结

二、证明命题五、作业

1意义例:

2一般步骤

课堂教学设计说明

相关文档
最新文档