离散数学 第八章
离散数学第8章课件PPT,高等教育出版社,屈婉玲,耿素云,张立昂主编
证明
(2) 假设存在x1, x2∈A使得 由合成定理有 f g(x1)=f g(x2)
g(f(x1))=g(f(x2)) 因为g:B→C是单射的, 故 f(x1)=f(x2). 又由于f:A→B是单射的, 所 以x1=x2. 从而证明f g:A→C是单射的. (3)由(1)和(2)得证. 注意:定理逆命题不为真, 即如果f g:A→C是单射(或满射、双 射)的, 不一定有 f:A→B 和 g:B→C都是单射(或满射、双射)的.
16
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的 证 (1) 任取c∈C, 由g:B→C的满射性, b∈B使得 g(b)=c. 对于这个b, 由 f:A→B的满射性,a∈A使得 f(a)=b. 由合成定理有 fg(a) = g(f(a)) = g(b) = c 从而证明了fg:A→C是满射的
4
实例
例1 设A={1,2,3}, B={a,b}, 求BA. 解BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
离散数学 教案 第八章 图论
西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 为方便起见,在无向图中往往用字母ei表示 边。例如,在上图中,用e1表示边(v2,v2),e2 表示边(v1,v2)等。 对于一个确定的图,我们不关心顶点的位置, 边的长短与形状,因此,所画出的图的图形可 能不唯一。 定义 一个有向图G是一个二元组<V,E>,即 G=<V,E>,其中
西南科技大学
4
计算机科学与技术学院
Discrete Mathematics 定义 一个无向图G是一个二元组<V,E>,即 G=<V,E>,其中
(1). V是一个非空的集合,称为G的顶点集, V中元素称为顶点或结点;
(2). E是无序积 的一个多重子集 (元素可重复 出现的集合为多重集),称E为G的边集,E中元 素称为无向边或简称边。 在一个图G=<V,E>中,为了表示V和E分别 为G的顶点集和边集,常将V记成V(G),而将E 记成E(G)。
由于2m,
为偶数,所以
也为偶数。
可是,vV1时,d(v)为奇数,偶数个奇数之和才能 为偶数,所以|V1|为偶数。结论得证。
西南科技大学
17
计算机科学与技术学院
Discrete Mathematics 对有向图来说,还有下面的定理: 定理 设G=<V,E>为有向图, V={v1,v2,…,vn} , |E|=m,则
(5).设E´ E且E´ ≠Φ ,以E´为边集,以E´中边
关联的顶点的全体为顶点集的G的子图,则称G´是由 边集E´导出的G的子图。
西南科技大学
26
计算机科学与技术学院
Discrete Mathematics 例如,在下图中,(2),(3)均为(1)的子图;(3)是 生成子图;(2)是顶点子集{v1,v2}的导出子图,也
离散数学8-代数系统基础
第八章 代数系统基础
第八章 代数系统基础
8.1 代数系统概念 8.2 半群与独异点 8.3 群的基本定义与性质 8.4 子群与陪集 8.5 循环群和置换群 8.6 环和域
2
一、基本概念
定义1: 设A是个非空集合且函数f:A*A→A,则称f为 A上的二元运算。
二元运算的两个重要特点: 一是运算封闭性,集合内任意两个元素都可以运算,运算后仍在同
主要包括运算所具有的算律和特殊元素 算律主要:结合律、交换律、分配律、吸收律和消去律 特殊元素:等幂元、幺元、零元和逆元。
9
1.结合律
定义3: 设代数系统<A,*>,对于A中任意元素a,b,c, (ab)c=a(bc),都称运算满足结合律,或是可结合的 。
实数集合上的加法和乘法满足结合律。幂集P(A)上的交、并和对称差 都满足结合律。矩阵的加法和乘法满足结合律。代数系统(Nk,+k)和 (Nk, ×k)中的+k和×k都满足结合律。
例设<A,*>是一个代数系统,其中*定义为a*b=a,证明运算是不可交 换的。
11
3.幂等律
定义5: 设代数系统<A,*>,对于A中任意元素有 x*x=x,则称运算*在A上满足幂等律。
设A为集合,<P(A), ∩>和<P(A), ∪>中的∩和换律、结合律和幂等律。
则称<A,*>是群。
如果<A,>是独异点且每个元素存在逆元,则称<A,>是群。 (R,+),(Z,+)都是群,幺元为零,x -1 = -x;(R-{0},×)是群,幺
元为1,x -1 =1/x ;<Q,>不是群,1是幺元,而0是无逆元。
离散数学第八章-最新版
“小于” 关系 <是自然数集 N上的反自反、反对称、传
递
的二元关系
可以用归纳定义法在 N 上定义 “ + ” 与 “ ·” 如下 :
[加法/乘法] 对任意的 n, m∈ N ,令
i) m + 0 = m,
构造自然数系统<N,+,·>
冯 诺依曼(Von Neumann)方案:
0= 1 = 0+ = { } = { 0 } 2 = 1+ = { , { } } = { 0, 1 } 3 = 2+ = { , { }, { , { } } } = { 0, 1, 2 } n+1 = n+ = = { 0, 1, , n }
自然数集合 N(归纳定义法)
i) 0∈N, 这里 0 = ; ii) 若 n∈ N ,则 n+∈ N ; iii) 若 S N 满足
1) 0∈S 2) 如果 n∈S, 则 n+∈S 则 S = N。
(极小化)
大于/小于、加法、乘法
对每个自然数 n∈ N ,皆有 n∈n+ 及 n n+,据此有:
自然数和归纳法
主要概念: 集合的后继 主要方法:归纳原理、第一归纳法、第二归纳法
自然数的引进方法
① 公理化方法:皮亚诺公理(G. Peano); ② 构造性方法:借助集合论,具体构造出 N。
自然数构造的出发点
1) 自然数的各种性质 ( 运算、大小次序 及 基本定律 ) , 都可以从 Peano 公理一一推导出来;
∪ ( n+ ) + = ∪ ( n+∪{ n+ } ) = ( ∪ n+ ) ∪ (∪{ n+ } ) = n ∪ n+ = n+ 。
离散数学 第8章 习题解答
第8 章 习题解答8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式.8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了.分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了.8.3 完全二部图,,s r K 中的边数rs m -.分析 设完全二部图s r K ,的顶点集为V, 则∅==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的边互不相同,所以,边数rs m -.8.4 完全二部图s r K ,中匹配数},min{1s r =β,即1β等于s r ,中的小者. 分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到的完备匹配,设M 为一个完备匹配,则1V 中顶点全为M 饱和点,所以,.1r =β8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务.分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V 为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向图>=<E V G ,,则G 为二部图,见图8.7 所示.本题是求图中完美匹配问题. 给图中一个完美匹配就对应一个分配方案.图8.7 满足Hall 定理中的相异性条件,所以,存在完备匹配,又因为,3||||21==V V 所以,完备匹配也为完美匹配.其实,从图上,可以找到多个完美匹配. 取)},(),,(),,{(1c b a M 丙乙甲=此匹配对应的方案为甲完成a,乙完成b, 丙完成c,见图中粗边所示的匹配. )},(),,(),,{(c a b M 丙乙甲=2M 对应的分配方案为甲完成b,乙完成a,丙完成c.请读者再找出其余的分配方案.8.6 本题的答案太多,如果不限定画出的图为简单图,非常容易地给出4族图分别满足要求.(1) n (n 为偶数,且2≥n )阶圈都是偶数个顶点,偶数条边的欧拉图.(2) n (n 为奇数,且1≥n )阶圈都是奇数个顶点,奇数条边的欧拉图.(3) 在(1) 中的圈上任选一个顶点,在此顶点处加一个环,所务图为奇数个顶点,偶数条边的欧拉图.分析 上面给出的4族图都是连通的,并且所有顶点的度数都是偶数,所以,都是欧拉图.并且(1),(2) 中的图都是简单图.而(3),(4)中的图都带环,因而都是非简单图. 于是,如果要求所给出的图必须是简单图,则(3),(4)中的图不满足要求.其实,欧拉图是若干个边不重的图的并,由这种性质,同样可以得到满足(3),(4)中要求的简单欧拉图.设k G G G ,,,21 是长度大于等于3的k 个奇圈(长度为奇数的圈称为奇圈),其中k 为偶数,将1G 中某个顶点与2G 中的某顶点重合,但边不重合, 2G 中某顶点与3G 中某顶点重合,但边不重合,继续地,最后将1-k G 中某顶点与k G 中某顶点重合,边不重合,设最后得连通图为G,则G 中有奇数个顶点,偶数条边,且所有顶点度数均为偶数,所以,这样的一族图满足(4)的要求,其中一个特例为图8.8中(1)所示.在以上各图中,若k G G G ,,,21 中有一个偶圈,其他条件不变,构造方法同上,则所得图G 为偶数个顶点,奇数条边的简单欧拉图,满足(3)的要求,图8.8中(2)所示为一个特殊的情况.8.7 本题的讨论类似于8.6题,只是将所有无向圈全变成有向圈即可,请读者自己画出满足要求的一些特殊有向欧拉图.8.8 本题的答案也是很多的,这里给出满足要求的最简单一些图案,而且全为简单图.(1) n (3≥n )阶圈,它们都是欧拉图,又都是哈密尔顿图.(2) 给定k (2≥k )个长度大于等于3的初级回路,即圈k G G G ,,,21 ,用8.6题方法构造的图G 均为欧拉图,但都不是哈密尔顿图,图8.8给出的两个图是这里的特例.(3)n (4≥n )阶圈中,找两个不相邻的顶点,在它们之间加一条边,所得图均为哈密尔顿图,但都不是欧拉图.(4) 在(2)中的图中,设存在长度大于等于4的圈,比如说1G ,在1G 中找两个不相邻的相邻顶点,在它们之间加一条新边,然后用8.6题方法构造图G,则G 既不是欧拉图,也不是哈密尔顿图,见图8.9所示的图.分析 (1) 中图满足要求是显然的.(2)中构造的图G 是连通的,并且各顶点度数均为偶数,所以,都是欧拉图,但因为G 中存在割点,将割点从G 中删除,所得图至少有两个连通分支,这破坏了哈密尔顿图的必要条件,所以,G 不是哈密尔顿图.(3) 中构造的图中,所有顶点都排在一个圈上,所以,图中存在哈密尔顿回路,因而为哈密尔顿图,但因图中有奇度顶点(度数为奇数的顶点),所以,不是欧拉图. 由以上讨论可知,(4) 中图既不是欧拉其实,读者可以找许多族图,分别满足题中的要求.8.9 请读者自己讨论.8.10 其逆命题不真.分析 若D 是强连通的有向图,则D 中任何两个顶点都是相互可达的,但并没有要求D 中每个顶点的入度都等于出度. 在图8.2 所示的3个强连通的有向衅都不是欧拉图.8.11 除2K 不是哈密尔顿图之外, n K (3≥n )全是哈密尔顿图. n K (n 为奇数)为欧拉图. 规定1K (平凡图)既是欧拉图,又是哈密尔顿图.分析 从哈密尔顿图的定义不难看出,n 阶图G 是否为哈密尔顿图,就看是否能将G 中的所有顶点排在G 中的一个长为n 的初级回路,即圈上. n K (3≥n )中存在多个这样的生成圈(含所有顶点的图), 所以n K (3≥n )都是哈密尔顿图.在完全图n K 中,各顶点的度数均为n-1,若n K 为欧拉图,则必有1-n 为偶数,即n 为奇数,于是,当n 为奇数时, n K 连通且无度顶点,所以, n K (n 为奇数) 都是欧拉图.当n 为偶数时,各顶点的度数均为奇数,当然不是欧拉图.8.12 有割点的图也可以为欧拉图.分析 无向图G 为欧拉图当且仅当G 连通且没有奇度顶点.只要G 连通且无奇度顶点(割点的度数也为偶数),G 就是欧拉图.图8.8所示的两个图都有割点,但它们都是欧拉图.8.13 将7个人排座在圆桌周围,其排法为.abdfgeca分析 做无向图>=<E V G ,,其中,},,,,,,{g f e d c b a V =},|),{(有共同语言与且v u V v u v u E ∈=图G 为图8.10所示.图G 是连通图,于是,能否将这7个人排座在圆桌周围,使得每个人能与两边的人交谈,就转化成了图G 中是否存在哈密尔顿回路(也就是G 是否为哈密尔顿图).通过观察发现G 中存在哈密尔顿回路, abdfgeca 就是其8.14 用i v 表示颜色.6,,2,1, =i i 做无向图>=<E V G ,,其中},,,,,,{654321v v v v v v V =}.,,|),{(能搭配与并且且v u v u V v u v u E ≠∈=对于任意的)(,v d V v ∈表示顶点v 与别的能搭配的颜色个数,易知G 是简单图,且对于任意的V v u ∈,,均有633)()(=+≥+v d u d ,由定理8.9可知,G 为哈密尔顿图,因而G 中存在哈密尔顿回路,不妨设1654321i i i i i i i v v v v v v v 为其中的一条,在这种回路上,每个顶点工表的颜色都能与它相邻顶点代表的颜色相.于是,让1i v 与2i v ,3i v 与4i v ,5i v 与6i v 所代表的颜色相搭配就能织出3种双色布,包含了6种颜色.8.15∑=⨯======300321,10220)deg(.12)deg(,3)deg(,1)deg(,4)deg(i i R R R R R 而本图边数m=10.分析 平面图(平面嵌入)的面i R 的次数等于包围它的边界的回路的长度,这里所说回路,可能是初级的,可能是简单的,也可能是复杂的,还可能由若干个回路组成.图8.1所示图中,321,,R R R 的边界都是初级回路,而0R 的边界为复杂回路(有的边在回路中重复出现),即432110987654321e e e e e e e e e e e e e e ,长度为12,其中边65,e e 在其中各出现两次.8.16 图8.11中,实线边所示的图为图8.1中图G,虚线边,实心点图为它的对偶图的顶点数*n ,边数*m ,面数*r 分别为4,10和8,于是有分析 从图8.11还可以发现,G 的每个顶点位于的一个面中,且的每个面只含G 的一个顶点,所以,这是连通平面图G 是具有k 个连通分支的平面图2≥k ,则应有1*+-=k n r .读者自己给出一个非连通的平面图,求出它的对偶图来验证这个结论.另外,用图8.1还可以验证,对于任意的*v (*G 中的顶点),若它处于G 的面i R 中,则应有)deg()(*i R v d =.8.17 不能与G 同构.分析 任意平面图的对偶图都是连通的,因而与都是连通图,而G 是具有3个连通分支的非连通图,连通图与非连通图显然是不能同构的.图 8.12 中, 这线边图为图8.2中的图G,虚线边图为G 的对偶图,带小杠的边组成的图是*G 的对偶图,显然.~**G G ≠8.18 因为彼得森图中有长度为奇数的圈,根据定理8.1可知它不是二部图.图中每个顶点的度数均为3,由定8.5可知它不是欧拉图.又因为它可以收缩成5K ,由库拉图期基定理可知它也不是平面图.其实,彼得森图也不是哈密尔顿图图,这里就不给出证明了.8.19 将图8.4重画在图8.13中,并且将顶点标定.图中afbdcea 为图中哈密尔顿回路,见图中粗边所示,所以,该图为哈密尔顿图.将图中边),(),,(),,(d f f e e d 三条去掉,所得图为原来图的子图,它为3,3K ,可取},,{1c b a V =},,{2f e d V =,由库拉图期基定理可知,该图不是平面图.8.20 图8.14 所示图为图8.5所示图的平面嵌入.分析 该图为极大平面图.此图G 中,顶点数9=n ,边数.12=m 若G 是不是极大平面图,则应该存在不相邻的顶点,,v u 在它们之间再加一条边所得'G 还应该是简单平面图, 'G 的顶点数131,6''=+===n m n n ,于是会有.126313''=->=n m这与定理8.16矛盾,所以,G 为极大平面图.其实,n ( 3≥n )阶简单平面图G 为极大平面图当且仅当G 的每个面的次数均为3.由图8.14可知,G 的每个面的次数均为3,所以,G 为极大平面图.8.12 答案 A,B,C,D 全为②分析 (1) 只有n 为奇数时命题为真,见8.11的解答与分析.(2) 2≠n 时,命题为真,见8.11的解答与分析.(3) 只有m n ,都是偶数时,m n K ,中才无奇度数顶点,因而m n K ,为欧拉图,其他情况下,即m n ,中至少有一个是奇数,这时m n K ,中必有奇度顶点,因而不是欧拉图.(4) 只有m n =时, m n K ,中存在 哈密尔顿回路,因而为哈密尔顿图. 当m n ≠时,不妨设m n <,并且在二部图m n K ,中,m V n V ==||,||21,则n V m V G p =>=-||)(11,这与定理8.8矛盾. 所以, m n ≠时, m n K ,不是哈密尔顿图.8.22 答案 A:②;B ②;C ②.分析图8.15中,两个实边图是同构的,但它们的对偶力(虚边图)是不同构的.(2) 任何平面图的对偶图都是连通图.设G 是非连通的平面图,显然有.**~G G ≠ (3) 当G 是非连通的平面图时,,1*+-=k n r 其中k 为G 的连通分支数.8.23 答案 A:④;B ②;C ②.分析 根据库期基定理可知,所求的图必含有5K 或3,3K 同胚子图,或含可收缩成5K 或3,3K 的子图.由于顶点数和边数均已限定,因而由3,3K 加2条边的图可满足要求,由5K 增加一个顶点,一条边的图可满足要求,将所有的非同构的简单图画出来,共有4个,其中由3,3K 产生的有2个,由5K 产生的有2个.见图8.16所示.。
离散数学 第8章 树(祝清顺版)88页PPT文档
e6
e5
e3
e10
e9 e11
e6
e7 e8
e10
e11
离散数学
第八章 树
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树.
[证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而
vVdeg(vi) =2m =2(n1). 另一方面, 设T有x片树叶, 可得
2(n1)= vVdeg(vi) ≥x+2(nx) 由上式解出x≥2.
离散数学
第八章 树
2007年8月20日
例题
例2 设T为6条边的树, 其顶点度为1, 2, 3. 如果T恰有3个 度为2的顶点,那么T有多少片树叶?并画出满足要求的 非同构的无向树. [解] 设T有x片树叶, 于是结点总数为
本章将对树进行详细的讨论,主要包括:
树的基本性质和生成树,
根树、有向树中的n元树、有序树和搜索树等。
离散数学
第八章 树
2007年8月20日
Discrete Mathematics
科学出版社
第1节 树
主讲:祝清顺 教授
树的概念
定义1 连通而无简单回路的无向图称为无向树, 简称树, 常用T表示树. 在树中度数为1的结点称为树叶, 度数大于1的结点称为分支结点.
e1
e4 e2 e7 e8
e6
e5 e3Fra biblioteke10
e9 e11
e1 e4 e2 e5
e3
e9
生成树T1
离散数学
第八章 树
《离散数学》图论 (上)
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
离散数学第8章 图论
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。
离散数学 第8章 树(祝清顺版)
G的生成树一般不惟一. 余树不一定是树, 因为余树不一定连通, 也可能包 含回路.
离散数学
第八章
树
2007年8月20日
例题
例4 在下图中, 可以看到该图的绿线所示的一个生成树 T. 其中e1, e2, e3, e4, e5, e9都是T的树枝, e6, e7, e8, e10, e11都是T的弦.
树
2007年8月20日
例题
例4 利用破圈法求下图的生成树。
依次删去边e6,e7,e8,e10,e11, 所得到的生成树就是例
9.1.3中所给出一棵生成树T1.
e4 e2 e7 e8 e10 e9 e5 e6 e3 e11
e1 e1
e4
e2
e9
e5 e3
T的余树如右图所示, 余树是不连通的, 同时也包含回路.
e 4 e2 e7 e8 e10 e9 e5 e6 e3 e11
离散数学 第八章 树
e1
e7 e 8 e6 e10 e11
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树. [证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而 不影响图的连通性. 若上仍有回路, 则再删除回路上的一条边, 直到无 回路为止, 最后得到的图是无回路、连通的且为G的生 成子图, 故为G的生成树.
离散数学 第八章 树 2007年8月20日
树简介
而系统地研究树,把树当成一个纯数学对象来研究的是法 国数学家约当(Jordan)。 1869年,约当(Jordan)作为一个纯数学对象独立地发现 了树,并给出了树的概念。 约当所研究的成果就是凯莱(Caylay Arthur)所要研究的,但他并不知道树
电子科技大学离散数学第8章 函数
如果关系 f 具备下列两种情况之一,那么 f 就不是函数:
例8.2.1
设 A={1,2,3,4} , B={a,b,c,d} ,试判断下列关系哪 些是函数。如果是函数,请写出它的值域。 ( 1 ) f1 = {<1,a>,<1,b>,<2,c>,<3,b>}, 其 中 A = {1,2,3},B={a,b, c}; ( 2 ) f2 = {<a,b>,<b,b>,<c,c>}, 其中 A = {a,b,c},B ={b,c}; (3)f3={<x,y>|y−x=1,x,y∈R},其中A=B=R (4)f4={<x,y>|y−x=1,x,y∈Z+},其中A=B=Z+
离散数学
电子科技大学
2019年1月31日星期四
第8章 函数
1 2
函数的概念 特殊函数
内 容 提 要
3
函数的复合运算
函数的逆运算
4
5
2019/1/31
函数的运算定理
67-2
8.1 本章学习要求
重点掌握 1 1 函数的概念 2 单射、满射 和双射函数的 概念 3 函数的复合 运算和逆运算 2019/1/31 一般掌握
(集合元素的第一个元素存在差别)
3. 每一个函数的基数都为 |A| 个 (|f|=|A|) ,但关 系的基数却为从零一直到|A|×|B|。 (集合基数的差别)
2019/1/31 67-14
8.2.2函数的类型
定义8.2.2 设f是从A到B的函数,
对任意x1,x2∈A,如果x1≠x2,有f(x1)≠f(x2),
2019/1/31 67-26
第八章图论
3. 图的结点与边之间的关系 定义 如果边e={vi,vj}是G的边, 则称结点vi 和vj邻接的, 边e和结点vi ,边e和结点vj称为关联的。 没有与边关联的结点称为孤立点。 关联于同一结点的相异边称为邻接的。 不与任何边邻接的边称为孤立边。
例1
在上图中显然e1和e2, e1与e4是邻接的, 结点v1和v2,v2和v4等是邻接的, 没有孤立点和孤立边。
例2.如下图中:
图(a)是伪图。图(b)是有向多重 图。 最右第三个图是简单图有权图。
三、结点的度
1.定义 图G中关联于结点vi的边的总数称为 结点vi的度, 用deg(vi)表示。
2.定理1(握手定理) 图G的所有结点的度的总和为边数 的二倍。即若G为具有n结点的(n,m)图, 则有: n deg(vi ) 2m
例8 如下图
(a)是连通图。 (b)是一个具有三个分图 的非连通图。 结论: (1)一个图的分图必是连通的; (2)一个连通图一定只能有一个分图。
例11 对于图的连通性,常常由于删除了 图中的结点和边而影响了图的连通性。
在连通图(a)中删除边e后, 则变成了不连通 的图(b)。
8.2 图的矩阵表示
2. 有向图的定义 定义 设G=(V,E), V是一个有限非空集合, E是V中不同元素的有序对偶的集合, 则称G是一有向图。在有向图G中 若vi≠vj,则(vi,vj)和(vj,vi)表示两条 不同的边,且用一个从结点vi指向vj 的箭头表示边(vi,vj)。
定义 具有n个结点和m条边的图称为(n,m)图。 (n,0)图称为零图。(1,0)图称为平凡图。
三、边割集、点割集 定义3 设图G=<V,E>是连通图,若有E的子集S, 使得在图G中删去了S的所有边后, 得到的子图G-S变成具有两个分图的不连通图, 删去了S的任一真子集后所得子图仍是连通图, 则称S是G的一个边割集。 注:割边是边割集的一个特例。
武汉大学《离散数学》课件-第8章
23T(n 3) 22 2 1
...
2n1T (1) 2n2 2n3 ... 2 1
2n1 2n2 2n3 ... 2 1 (代 入 初 值)
2n 1
(等比级数求和)
24
递推方程的定义
定义10.5 设序列a0, a1, …, an, …, 简记为{an}, 一 个把an与某些个ai(i<n)联系起来的等式叫做关 于序列{an}的递推方程.
实例:
Fibonacci数列: fn=fn-1+fn-2, 初值 f0=1, f1=1 阶乘数列{an},an=n!:an=nan-1, a1=1
T (n)
2
n1
T (i) O(n),
n i1
T (1) 0
n2
求解方法:迭代法
25
二分归并排序算法
算法Mergesort(A,s,t) //*排序数组A[s..t] 1. m(t-s)/2 2. AMergesort(A,s,m) //*排序前半数组 3. BMergesort(A,s+1,t) //*排序后半数组 4. Merge(A,B) //*将排好序的A,B归并
nn1 n2 ...nk 1
N
C
n1 n
C n2 n n1
...C
nk n
n1
...nk
1
n! n1!n2! ... nk !
(2) 若 r ni 时,每个位置都有 k 种选法,得 kr.
14
多重集的组合
当r ni , 多重集 S ={ n1a1, n2a2, …, nkak } 的组
合数为
28
归纳法验证解
n=1代入上述公式得 W(1)=1 log11+1=0,
离散数学第8,9章课后习题答案
第8章 习题参考答案1. 在一次10周年同学聚会上,想统计所有人握手的次数之和,应该如何建立该问题的图论模型?解:将每个同学分别作为一个节点,如果两个人握过一次手就在相应的两个节点之间画一条无向边,于是得到一个无向图。
一个人握手的次数就是这个节点与其他节点所连接的边的条数,进而可得出所有人握手的次数之和。
2. 在一个地方有3户人家,并且有3口井供他们使用。
由于土质和气候的关系,有些井中的水常常干枯,因此各户人家要到有水的井去打水。
不久,这3户人家成了冤家,于是决定各自修一条路通往水井,打算使得他们在去水井的路上不会相遇。
试建立解决此问题的图论模型。
解:将3户人家分别看做3个节点且将3口井分别看做另外3个节点,若1户人家与1口井之间有一条路,则在该户人家与该口井对应的节点之间连一条无向边,这样就得到一个无向图。
3. 某人挑一担菜并带一条狼和一只羊要从河的一岸到对岸去。
由于船太小,只能带狼、菜、羊中的一种过河。
由于明显的原因,当人不在场时,狼要吃羊,羊要吃菜。
通过建立图论模型给出问题答案。
解:不妨认为从北岸到南岸,则在北岸可能出现的状态为24=16种,其中安全状态有下面10种:(人,狼,羊,菜),(人,狼,羊),(人,狼,菜),(人,羊,菜),(Φ),(人,羊),(菜),(羊),(狼),(狼,菜);不安全的状态有下面6种:(人)(人,菜)(人,狼)(狼,羊,菜)(狼,羊)(羊,菜)。
线将北岸的10种安全状态看做10个节点,而渡河的过程则是状态之间的转移,这样就得到一个无向图,如图8-1所示。
图8-1从上述无向图可以得出安全的渡河方案有两种:第1种:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(狼)→(人,狼,羊)→(羊)→(人,羊)→(Φ)。
(人,狼,羊,菜)(人,狼,羊)(人,狼,菜)(人,羊,菜)(人,羊) (狼,菜) (羊) (狼) (菜) (Φ)第2中:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(菜)→(人,羊,菜)→(羊)→(人,羊)→(Φ)。
离散数学 第8章 图的基本概念 课件
素数目等于结点vj的引入次数。即
deg(vi)=
和deg(vj)=
。
5.由给定简单图G的邻接矩阵A可计算出矩阵A的l次幂,
即Al。则第i行第j列上的元素alij便是G中从
结点vi到结点vj长度为l的通路的数目。
给出下面Байду номын сангаас理
定理 设A为简单图G的邻接矩阵,则Al中的i行j列元 素alij等于G中联结vi到vj的长度为l的通路的数目。
0 0 0 1 1 0 C 0 0 1 0 0 0 1 1 0 BC 1 1 0
例2
v5
v1 v2
v3
v4
0 0 A 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 P 1 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
多重图、无向图及权图
则该有向图的邻接距阵为:
则该无向图的邻接距阵为:
已知加权的简单图G=<V,E>,定义一个矩阵
A=(aij),其中:
aij=
{
ω, ω是边(vi,vj) 的权
0, vi与vj没有边相连
则称A为图G的权矩阵
例: 权图
a
5
b
4
w(ab)=5 w(aa)=0 w(ac)=12 w(bd)= ∞ w(ad)=8
8
12
20
d
c
0 5 12 8 5 0 4 A 12 4 0 20 8 20 0
离散数学第八章
这个位置上能且仅能出现相应集合中的某个元素。
另外,按照推导,也就是句子的产生过程来说,这些
“符号”在形成一个句子的过程中逐渐地被替换掉,
而不是在最终的句子中出现。所以称这些符号为非终 结符号。
(2)<句子> 作为一个“符号”,具有特殊的意义。
语言中的所有句子都是从这个“符号”出发经过推导
得到的。称这个符号为开始符。
是句型,称 是 的直接派生,记 作 。如果 1 , 2 ,, n 是一串句型,其 中 1 2 3 n ,称 n 可由 1 派生得到或 * 称n 是1 的派生,记作 1 n。
定义8-2.3 文法G生成的语言记作 生得到的所有终结符串集,即
用开始符标识树根,派生过程中的非终结符标识 树的分枝点,最后得到的终结符串中的字母标识树叶, 这样得到的树称为派生树。派生树的构造是按照派生 A 过程逐步得到,如果已有 ,其中 , , (VN VT )* 它的派生树如356页图8-2.4(a)所示接着使用生成式 A ,其中 B1B2 Bn , , 并用图8-2.4(b)所示的子树代替标识为A的叶,得到 A VN Bi (VN VT ),(1 i n) 新的派生树,如图8-2.4(c)所示。按照这种方法构造下 去,直到所有叶都是以终结符标识为止。
所有的生成式 A 中, 且 , 即它的生成式形为
A
( )
在此文法中,所有生成式左端是一个非终结符。 与上下文有关文法一样, G 当且仅当G包含生成 式 。由上下文无关文法产生的语言称为上下 文无关语言(CFL)或2型语言。
生,那么,| || | ,这种规则称为缩减规则。
只有0型文法能缩减。由0型文法产生的语言称为0型语
离散数学第八章(第1讲)
(2)无向图,有向图
a
d
每一条边都是无向边的图称无向图。
b
c
每一条边都是有向边的图称有向图。 a
d
b
c
例:将右图用二元组表示为: G=〈V,E〉 其中V={a,b,c,d} E={<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 则:G=〈V,E〉= 〈 {a,b,c,d} , {<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 〉
A
最大度,记为:△(G)=max{d(v)| vV} B
E
最小度,记为:δ(G)=min{d(v)| vV}
D
C
定理1 (握手定理) :每个图中,结点度数的总和等于边 数的两倍。即
deg(v) 2 E
vV
证:∵每条边必关联两个结点,而一条边给于关联的每 个结点的度数为1。 故上述定理成立。
例:在一次10周年同学聚会上,想统计所有人握手的 次数之和,应该如何建立该问题的图论模
a
h
b
c
g
d h
b
c
g
d
a
h
f (a)
f e
e
(b)
f (c)
(13)生成子图:如果G的子图包含G的所有结点,则称 该子图为G的生成子图。
如下图,(b)、(c)都是(a)的生成子图。
v1
v4
v1
v4
v1
v4
v2
v3
(a)
v2
v3
v2
(b)
离散数学第八章布尔代数
对于一个具体的逻辑电路,我们可以使用布尔代数进行化简。首先,将电路中的逻辑门表示为相应的布尔表达式,然后利用布尔代数的性质和定理进行化简,最终得到最简的布尔表达式。
答案部分
THANKS
定理
在布尔代数中,定理是经过证明的数学命题,可以用于证明其他命题或解决特定问题。
公式与定理
逻辑推理
逻辑推理
在布尔代数中,逻辑推理是一种基于已知命题推导出新命题的推理过程。它使用逻辑规则和已知事实来得出结论。
推理规则
在逻辑推理中,常用的推理规则包括析取三段论、合取三段论、假言推理等。这些规则用于从已知事实推导出新的事实或结论。
在电路设计中的应用
计算机的内部工作原理是基于逻辑运算的。布尔代数是计算机逻辑设计的基础,用于描述计算机中的各种逻辑关系和运算。例如,计算机中的指令集、指令编码、指令执行等都涉及到布尔代数的应用。
计算机逻辑设计
在数据压缩和加密算法中,布尔代数也发挥了重要作用。通过利用布尔代数的性质和运算,可以实现高效的压缩算法和安全的加密算法。
变量
在布尔代数中,常量表示一个固定的值,通常用于表示逻辑上的“真”或“假”。
常量
变量与常量
函数
在布尔代数中,函数是一种将输入映射到输出的规则。对于每个输入,函数都有一个确定的输出。
运算
布尔代数中的运算包括逻辑与、逻辑或、逻辑非等基本运算。这些运算用于组合变量的值以产生新的输出。
常量、函数和运算符组成的数学表达式。
逻辑电路设计
逻辑函数的优化准则
逻辑函数的优化准则包括最小化使用的最小项数量、减少最大项的个数、减少最大项的复杂度等。这些准则有助于简化逻辑函数的表示和实现,提高电路的性能。
逻辑函数的优化方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉图(续)
例 图中, (1), (4)为欧拉图; (2), (5)为半欧拉图; (3),(6)既不 是欧拉图, 也不是半欧拉图. 在(3), (6)中各至少加几条边才能成为欧拉图?
13
欧拉图的判别法
定理 无向图G为欧拉图当且仅当G连通且无奇度顶点. 无向图G是半欧拉图当且仅当G连通且恰有两个奇度顶点. 定理 有向图D是欧拉图当且仅当D连通且每个顶点的入度都 等于出度. 有向图D具有欧拉通路当且仅当D连通且恰有两个奇度顶 点, 其中一个入度比出度大1, 另一个出度比入度大1, 其余 顶点的入度等于出度.
9
8.2 欧拉图
欧拉通路 欧拉回路 欧拉图 半欧拉图
10
哥尼斯堡七桥问题
欧拉图是能一笔画出的边不重复的回路.
11
欧拉图
欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.
第8章 一些特殊的图
8.1 二部图 8.2 欧拉图 8.3 哈密顿图 8.4 平面图
1
8.1 二部图 二部图 完全二部图 匹配 极大匹配 最大匹配 匹配数 完备匹配
2
二部图
定义 设无向图 G=<V,E>, 若能将V 划分成V1 和 V2 (V1V2=V, V1V2=), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为<V1,V2,E>, 称V1和V2为互补顶点子集. 又若G 是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为Kr,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图.
20
实例
例 设G为n阶无向连通简单图, 若G中有割点或桥, 则G不是哈密顿图. 证 (1) 设v为割点, 则p(Gv) 2>|{v}|=1. 根据定理, G不是哈密顿图. (2) 若G是K2(K2有桥), 它显然不是哈密顿图. 除K2 外, 其他的有桥连通图均有割点. 由(1), 得证G不是 哈密顿图.
5
匹配 (续)
设M为G中一个匹配 vi与vj被M匹配: (vi,vj)M v为M饱和点: M中有边与v关联 v为M非饱和点: M中没有边与v关联 M为完美匹配: G的每个顶点都是M饱和点 例 关于M1, a,b,e,d是饱和点 f,c是非饱和点 M1不是完美匹配 M2是完美匹配
M1
M2
6
二部图中的匹配
(1)
(2)
(3)
7
Hall定理
定理(Hall定理) 设二部图G=<V1,V2,E>中,|V1||V2|. G中存 在从V1到V2的完备匹配当且仅当V1中任意k 个顶点至少与V2 中的k个顶点相邻(k=1,2,…,|V1|). 由Hall定理不难证明, 上一页图(2)没有完备匹配. 定理 设二部图G=<V1,V2,E>中, 如果存在t1, 使得V1中每个 顶点至少关联 t 条边, 而V2中每个顶点至多关联t条边,则G 中存在V1到V2的完备匹配.
18
实例
例 图中, (1), (2)是哈密顿图; (3) 是半哈密顿图. (4)既不是哈密顿图, 也不是半哈密顿图,为什么?
19
无向哈密顿图的一个必要条件
定理 设无向图G=<V,E>是哈密顿图, 则对于任意V1V且 V1, 均有 p(GV1)|V1|. 证 设C为G中一条哈密顿回路, 有p(CV1) |V1|. 又因为 CG, 故 p(GV1) p(CV1) |V1|. 几点说明 定理中的条件是哈密顿图的必要条件, 但不是充分条件. 可利用该定理判断某些图不是哈密顿图. 由定理可知, Kr,s当sr+1时不是哈密顿图. 当r2时, Kr,r是哈密顿图, 而Kr,r+1是半哈人至少与其余7人中 的4人有共同语言,问服务员能否将他们安排在同一张 圆桌就座,使得每个人都能与两边的人交谈? 解 图是描述事物之间关系的最好的手段之一. 作无向图 G=<V,E>, 其中V={v|v为与会者},E={(u,v) | u,vV, u与v 有共同语言, 且uv}. G为简单图. 根据条件, vV, d(v) 4. 于是,u,vV, 有d(u)+d(v)8. 由定理可知G为哈密顿 图. 服务员在G中找一条哈密顿回路C,按C中相邻关系 安排座位即可. 由本题想到的:哈密顿图的实质是能将图中所有的顶点 排在同一个圈中.
14
实例
例1 哥尼斯堡七桥问题
例2 下面两个图都是欧拉图. 从A点出发, 如何一次成功地走出一条欧拉回路来?
15
8.3 哈密顿图
哈密顿通路 哈密顿回路 哈密顿图 半哈密顿图
16
哈密顿周游世界问题
17
哈密顿图的定义
哈密顿通路: 经过图中所有顶点一次且仅一次的通路. 哈密顿回路: 经过图中所有顶点一次且仅一次的回路. 哈密顿图: 具有哈密顿回路的图. 半哈密顿图: 具有哈密顿通路而无哈密顿回路的图. 几点说明: 平凡图是哈密顿图. 哈密顿通路是初级通路,哈密顿回路是初级回路. 环与平行边不影响图的哈密顿性.
3
二部图的判别法
定理 无向图G=<V,E>是二部图当且仅当G中无奇圈 例 下述各图都是二部图
4
匹配
设G=<V,E>, 匹配(边独立集): 任2条边均不相邻的边子集 极大匹配: 添加任一条边后都不再是匹配的匹配 最大匹配: 边数最多的匹配 匹配数: 最大匹配中的边数, 记为1 例 下述3个图的匹配数 依次为3, 3, 4.
24
判断是否是哈 密顿图的可行方法(续)
不满足必要条件
例 44国际象棋盘上的跳马问 题: 马是否能恰好经过每一个 方格一次后回到原处? 解 每个方格看作一个顶点, 2个 顶点之间有边当且仅当马可以从一个方格跳到另一个方格, 得到16阶图G, 如左图红边所示. 取V1={a, b, c, d}, 则p(GV1) = 6 >|V1|, 见右图. 由定理, 图中无哈密顿回路, 故问题无解. 在88国际象棋盘上, 跳马问题是否有解?
26
Hall定理中的条件称为“相异性条件”, 第二个定理中的条 件 称为 t 条件. 满足 t 条件的二部图一定满足相异性条件. 8
一个应用实例
例 某课题组要从a, b, c, d, e 5人中派3人分别到上海、广州、 香港去开会. 已知a只想去上海,b只想去广州,c, d, e都 表示想去广州或香港. 问该课题组在满足个人要求的条件 下,共有几种派遣方案? 解 令G=<V1,V2,E>, 其中V1={s, g, x}, V2={a, b, c, d, e}, E={(u,v) | uV1, vV2, v想去u}, 其中s, g, x分别表示上海、广州和香港. G如图所示. G 满足相异性条件,因而可给 出派遣方案,共有9种派遣方案 (请给出这9种方案).
定义 设G=<V1,V2,E>为二部图, |V1||V2|, M是G中最 大匹配, 若V1中顶点全是M饱和点, 则称M为G中V1 到V2的完备匹配. 当|V1|=|V2|时, 完备匹配变成完美 匹配.
例 图中红边组成各图的一个匹配,(1)为完备的, 但不是完 美的; (2)不是完备的, 其实(2)中无完备匹配; (3) 是完美的.
21
无向哈密顿图的一个充分条件
定理 设G是n阶无向简单图, 若任意两个不相邻的顶点
的度数之和大于等于n1, 则G中存在哈密顿通路.
当n3时, 若任意两个不相邻的顶点的度数之和大 于等于n, 则G中存在哈密顿回路, 从而G为哈密顿 图.
22
哈密顿通路(回路)的存在性(续)
定理中的条件是存在哈密顿通路(回路)的充分条 件, 但不是必要条件. 例如, 设G为长度为n1(n4)的路径, 它不满足定理 中哈密顿通路的条件, 但它显然存在哈密顿通路. 设G是长为n的圈, 它不满足定理中哈密顿回路的条 件, 但它显然是哈密顿图. 由定理, 当n3时, Kn均为哈密顿图. 判断某图是否为哈密顿图至今还是一个难题
23
判断是否是哈密顿图的可行方法
观察出一条哈密顿回路 例如 右图(周游世界问题)中红 边给出一条哈密顿回路, 故它 是哈密顿图. 注意, 此图不满足定理的条件.
满足充分条件 例如 当n3时, Kn中任何两个不同的顶点 u,v, 均 有d(u)+d(v) = 2(n1) n, 所以Kn为哈密顿图.