难降解工业废水深度处理工艺

合集下载

工业废水处理工程技术方案

工业废水处理工程技术方案

工业废水处理工程技术方案一、项目背景随着工业化的发展,工业废水排放量持续增加,对环境产生了严重的污染。

为了保护环境和维护生态平衡,必须对工业废水进行有效处理。

本文以一家化工厂为例,提出了针对该工厂废水处理的技术方案。

二、工程概述该化工厂主要生产硫酸、盐酸、氢氧化钠等化工产品,其废水主要包括酸性废水、碱性废水和有机废水。

根据废水的水质特点,我们将采用酸碱中和和生物处理技术,对废水进行处理。

三、废水处理技术方案1. 酸碱中和处理酸碱中和是对酸性和碱性废水进行中和处理,使其pH值在6-9之间,以便于后续的生物处理。

具体工艺为:将酸性废水和碱性废水分别送入中和池中,通过控制加入石灰、氢氧化钠等中和剂的用量,使废水的pH值逐渐升高或降低,直至达到中和要求。

2. 生物处理生物处理是利用微生物的代谢活动将有机废水中的有机物降解成无害的物质。

具体工艺为:将经过酸碱中和处理的废水送入生物处理系统,通过曝气、搅拌等措施,提供充分的氧气和营养物质,引入适量的微生物,实现有机物的降解,最终出水符合排放标准。

3. 深度处理针对特定的工艺废水,可能需要进一步进行深度处理,如膜分离、离子交换等技术,以去除废水中的微量有机物、重金属离子等难降解物质,确保出水达到更严格的排放标准。

四、主要设备及工艺流程1. 酸碱中和处理设备:中和池、中和剂投加系统、pH在线监测仪等。

2. 生物处理设备:生化池、曝气设备、搅拌设备、微生物培养系统等。

3. 深度处理设备:膜分离设备、离子交换设备、超滤设备等。

工艺流程:废水→酸碱中和→生物处理→深度处理→出水五、排放标准及控制方案根据国家相关标准和地方环保要求,明确废水排放标准,制定相应的控制方案,包括实施严格的在线监测、定期抽样分析、建立完善的废水处理数据管理系统等措施,确保废水排放达标。

六、自动化控制系统立足于现代化工业生产的要求,废水处理系统应配备完备的自动化控制系统,包括监测、控制、报警等功能,以实现运行稳定、自动化程度高、运行成本低的目标。

化工废水处理现状及处理工艺分析

化工废水处理现状及处理工艺分析

化工废水处理现状及处理工艺分析摘要:根据原材料的不同,化工行业分为石化、煤化工、合成化工、精细化工、新材料和其他行业等。

化工行业的快速发展产生了巨大的经济效益,但也带来了一系列环境污染问题。

化工废水成分复杂,而且污染物含量高,常伴有有机溶剂、环状结构化合物、卤素化合物以及其他难生物降解物质。

因此,化工废水必须进行有效处理,这是生态文明建设的客观要求,也是保障化工行业可持续发展的重要基础。

关键词:化工废水;处理现状;处理工艺,工艺分析引言随着时间的推移和时代的不断改革创新,国内不同领域都实现了快速的发展,化工领域亦是如此,目前国内化工产业强调的是绿色环保发展,因此需要针对化工产业产生的废水采取相对应的处理工艺。

目前化工废水所采取的处理方式主要包含物化处理、化学、生化处理和深度净化四个过程,保证废水处理后达标排放或回用,基本上实现了绿色环保发展;这一点无论是对于化工产业的发展还是社会经济的发展,都是极为重要,也是一个必经之路。

在接下来的文章中就将针对化工废水的处理工艺进行详尽阐述。

1化工废水来源化工废水主要来源于各类酸、碱工业,石油及衍生物生产,涂料与油漆工业,合成塑料、染料、橡胶等工业的工艺生产废水及清洗废水。

例如酯化废水来源于酯化反应釜生产废水、抽真空排水,水洗工序生产废水、设备车间及地面等清洗废水。

顺酐废水来源于反应釜清洗,冷却器冷凝废水等。

化工废水中一般含有对微生物有毒害物质;有机污染性强,含强酸碱物质,废水营养占比失衡,还可能带有大量的盐类,简单的废水处理工艺难以对其进行有效处理。

化工废水若直接排到自然水体中,会使水体消耗大量的溶解氧而发生缺氧现象,造成水中动植物死亡,因此,化工废水应进行合理的处理后才能排放。

2化工废水类型及特点化工废水的种类与化工企业生产产品息息相关,不同的化工产品所产生的废水水质成分不同,一般具有含油、高COD、高挥发性、高盐、高氨氮或总氮等。

如石油炼化排放废水含石油类及高COD,精细化工废水含高COD或高盐,化肥生产废水含有高COD及总氮、总磷等;涂料及新材料生产废水含有高SS、色度、COD等;煤化工废水含有大量有机物及盐类。

PTA生产废水的处理及综合利用

PTA生产废水的处理及综合利用

P T A生产废水的处理及综合利用谢亨赞\刘贵银2(1.海南逸盛石化有限公司,海南儋州 578丨01;2.逸盛大化石化有限公司,辽宁大连116600)摘要:PTA是生产聚酯的主要原料之一,生产过程中会产生大量的生产废水,废水的水质水量变化较大,产生的污染浓度较高、可 生化性差,属于难降解废水。

相关企业必须高度重视PTA工业生产废水的综合处理和高效利用,针对废水类型采取相应的综合处理 办法,提高PTA生产废水的综合利用效率,带动聚酯生产工业的健康稳定发展:主要分析PTA生产废水的处理技术,提出综合利用 PTA生产废水的具体对策,供相关人员借鉴。

关键词:PTA生产废水;处理;综合利用中图分类号:TQ085+.4 文献标识码:B DOI:10.16621 /ki.issn1001 -0599.2021.05 D.830引言PTA,也称苯二甲酸,主要用来生产聚酯。

0前,中闰石化总 公司每年生产的PTA含量较大,在生产过程中已经建立了多个 完善的PTA生产装置,能够达到的PTA生产能力为每年300多 万吨。

针对PTA生产工艺,主要引进国外技术,涉及美国AMOCO 公司、英国帝闰化学公司(1CI)和日本三井油画公司的PTA生产 技术。

引进生产技术的同时,还要高度重视PTA生产废水的处理 工作.。

在结合先进生产工艺的基础上,分析B前生产特点,采取针 对性的废水处理技术,提高PTA生产废水的综合利用效率,带动 工业行业健康稳定发展,创造更大的经济社会价值。

1PTA生产废水水质水置特点PTA生产的主要原料为二甲苯,生产环境为醋酸介质,通 过催化氧化并得到最终的PTA。

PTA生产废水最大特点是会使 水质水量产生较大变化,同时产生较多污染物,一定程度上提高 了污染物浓度^PTA生产废水主要含有苯二甲酸(也称TA)、对二 甲苯、苯甲酸、醋酸等有机污染物,同时存在钴离子、锰离子等重 金属离子。

一般情况下,PTA废水中含有的CODcr和有机酸较 多,最多含f t高达9000 mg/L,最低也达到50 000 mg/L;甲二苯 酸最高浓度为25 000 mg/L,最低浓度为8000 mg/L;醋酸浓度范 围在8000〜I2 000 mg/L。

高效生物反应器(ABR)深度处理难降解有机废水

高效生物反应器(ABR)深度处理难降解有机废水

中国石油化工股份有限公司天津分公司污水外排原执行国家标准《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B 限值,重点污染物COD ≤60mg/L 。

为了响应天津市政府建设美丽天津的号召,中石化天津分公司将对已有废水处理设施进行深度处理改造以满足更严格的排放标准要求,即外排污水主要指标要达到《地表水环境质量标准》(GB 3838—2002)Ⅴ类标准,其中重点污染物指标COD ≤40mg/L 。

此外,天津市地方标准《城镇污水处理厂污染物排放标准》A 级限值COD ≤30mg/L ,因此中石化天津分公司计划按最严标准(COD ≤30mg/L )来建设外排污水深度治理提标改造工程。

根据文献〔1-7〕报道,难降解有机废水深度处理需要采用高级氧化法(包括臭氧催化氧化、Fenton 试剂氧化、电子束氧化、电化学氧化、臭氧双氧水氧化、微电解法和超临界水氧化法)、混凝沉淀、活性炭或大孔树脂吸附和生物处理(包括膜生物反应器、曝气生物滤池)等相结合的措施或采用特种生物处理措施。

目前石化行业外排含盐污水常规生化处理出水COD 的极限一般在50~60mg/L 左右,而COD 稳定低于30mg/L 的运行案例尚不多。

本工程先经过了近一年的现场中试试验筛选,比较了臭氧-曝气生物滤池、臭氧-活性炭、臭氧-MBBR 、活性炭吸附和高效生物反应器(ABR )5种工艺,综合测试结果表明,ABR 可以实现在最低的运行成本下稳定满足深度处理达标要求,并最终选择ABR 应用于中石化天津分公司综合废水深度处理工程。

1ABR 的工作机理ABR 是专门针对低负荷且难生物降解(BOD 5/COD<0.2)废水深度处理的一种上向流好氧高效生物反应器专利技术〔3〕,ABR 的工作原理见图1。

图1ABR 的工作原理由图1可知,其池型结构与上向流好氧生物滤池相同,采用气水同向上向流的运行方式,水流自下而上通过ABR 载体,但空床停留时间是传统上向流好氧生物滤池的1~2倍,典型处理对象为生化处理系统出水、纳滤或反渗透或电渗析浓盐水、冷却塔排污水、树脂酸碱再生中和废水等。

Fenton工艺深度处理垃圾渗滤液中难降解有机物

Fenton工艺深度处理垃圾渗滤液中难降解有机物

第39卷 第8期2007年8月哈 尔 滨 工 业 大 学 学 报JOURNAL OF HARB I N I N STI T UTE OF TECHNOLOGYVol 139No 18Aug .2007Fen ton 工艺深度处理垃圾渗滤液中难降解有机物赵冰清1,陈 胜1,孙德智1,Jong Shik Chung1,2(1.哈尔滨工业大学市政环境工程学院,哈尔滨150090;2.Depart m ent of Che m ical Engineering,Pohang University of Science and Technol ogy,Korea )摘 要:选用Fent on 工艺对经过生化处理后的城市垃圾渗滤液进行深度处理.结果表明,该工艺具有氧化和混凝的双重作用,其最优工艺条件为:[H 2O 2]=3818mmol/L 、[Fe 2+]=30mmol/L 、初始pH 为3、混凝pH 为8,反应时间60m in,H 2O 2为一次投加.在此条件下,COD 和T OC 的去除率分别达63143%和80158%.同时分析了各种影响因子对Fent on 试剂处理效果的作用机理.关键词:Fent on 工艺;垃圾渗滤液;难降解有机物中图分类号:X501文献标识码:A文章编号:0367-6234(2007)08-1285-04Rem ova l of refractory pollut an ts i n l andf ill leacha te by Fen ton processZHAO B ing 2qing 1,CHEN Sheng 1,S UN De 2zhi 1,Jong Shik Chung1,2(1.School of Munici pal and Envir on mental Engineering,Harbin I nstitute of Technol ogy,Harbin 150090,China;2.Depart m ent of Che m ical Engineering,Pohang University of Science and Technol ogy,K orea )Abstract:Fent on p r ocesswas chosen t o treat the landfill leachate that had been bi ol ogically pre -treated .The ex 2peri m ental results sho wed that Fent on pr ocess possessed dual functi ons of oxidati on and coagulati on .The opti m al operati on conditi ons were deter m ined as f oll o ws :[H 2O 2]=3818mmol/L,[Fe2+]=30mmol/L,initial pH =3,coagulati on pH =8,60m in reacti on ti m e with H 2O 2added at one ti m e .Under this opti m u m conditi on,the C OD and T OC re moval efficiency was up t o 63143%and 80158%res pectively .Mean while,the mechanis m of all affect 2ing fact ors on Fent on p r ocess treat m ent efficiency was analyzed based on the ex peri m ental results .Key words:Fent on p r ocess;landfill leachate;refract ory pollutants收稿日期:2005-10-13.基金项目:国家重点基础研究发展计划资助项目(2004CB418505).作者简介:赵冰清(1982—),女,硕士研究生;孙德智(1960—),男,教授,博士生导师. 城市垃圾渗滤液属于一种组分复杂,水质水量变化大的高浓度有机废水,处理不当会对周围环境构成严重威胁.目前垃圾渗滤液的处理方法中生化法最广泛[1],该法经济实用,但当垃圾渗滤液水质和水量变化较大,尤其当氨氮浓度高或温度低时,生物将受到抑制,出水水质明显恶化,而且对“场龄”长的垃圾渗滤液中含有的有机难降解物则更是无能为力,所以,后续的物化处理是非常必要的.目前常用的物化处理方法有混凝、膜分离、高级氧化等[2].混凝法投药量大且污泥产量高;膜技术存在膜污染和堵塞问题、且一次性投资大的缺点.高级氧化技术是近年发展起来一种快速高效的处理难降解有机污染物技术[3],可使带有苯环、羟基、羧基、-S O 3H 、-NO 2等取代基的有机物氧化分解.Fent on 法作为一种高级氧化技术,具有氧化剂与催化试剂来源广且便宜无毒、均相传质、操作简便等优势[4-6];投加的Fe 2+还具有混凝协同作用.笔者曾采用复合式厌氧-好氧移动床生物膜技术处理城市垃圾渗滤液,获得很好处理效果,但出水还是不能达到国家二级排放标准,因此,选用Fent on 工艺作为后处理来深度处理垃圾渗滤液.1 试 验111 废水水质特征垃圾渗滤液取自哈尔滨市某垃圾填埋场,原液C OD 在7000~18000mg/L 、BOD 5在2198~821614mg/L、T OC在189513~4897mg/L之间.在实验室经过厌氧-好氧移动床生物膜反应器小试处理后,出水依然包含一定量的难生物降解的有机物,难以达到国家二级排放标准(C OD小于300mg/L,排入地表水).废水外观呈红棕色,无明显恶臭味,水质较清澈,其主要水质参数如表1所示. 表1 试验用水主要水质参数 m g/Lρ(COD)ρ(BOD5)m(BOD5)/m(COD)ρ(T OC)ρ(NH4+-N)ρ(NO3-)ρ(S O42-)ρ(Cl-)550~120042~104<011125~2331654144~81353441631931771165112 Fen ton法原理Fent on试剂是由H2O2与Fe2+组成的混合体系,它通过Fe2+催化分解H2O2产生・OH进攻有机物分子夺取氢,将大分子有机物降解为小分子有机物或完全矿化[7,9],其化学反应方程式为Fe2++H2O2→Fe3++OH-+・OH(1)R-H+・OH→R・+H2O(2)R・+Fe3+→Fe2++产物(3)H2O2+・OH→H2O+H2O・(4)2H2O2→H2O+O2(5) 显然,Fent on反应是一个自由基反应的过程,・OH在过程中起着至关重要的作用,其产生量和速率都直接影响到反应进行的程度.溶液的pH、反应温度、H2O2浓度、Fe2+的浓度都是影响・OH产生的重要因素.在反应过程中,Fent on试剂存在一个最佳的H2O2与Fe2+投加摩尔比,过量的H2O2消耗・OH,生成HO2・和H2O,而过量的Fe2+则会与・OH反应生成Fe3+,Fe3+又将进一步消耗H2O2.另外,反应中也存在(4)、(5)这样的副反应,消耗了H2O2,对反应不利.113 Fen ton实验步骤取一定量水样,以Na OH或H2S O4调节到拟定的初始pH,同时加入一定量的FeS O4・7H2O固体和30%的H2O2,置于六联搅拌器上反应一定时间,再以Na OH或H2S O4调节混凝pH,而后静置沉淀,取上清液测COD和T OC值.由于反应中残留的H2O2会影响COD值测定的准确性,所以,同时也采用T OC来表征反应的处理效果[8].114 分析方法试验需要测定的指标均采用国家标准分析方法:COD,重铬酸钾法;BOD5,5日恒温培养法; T OC,岛津T OC-5000A快速测定仪;NH4+-N,纳氏比色法;阴离子,戴安公司4500i型离子色谱法;pH,pHS-3C精密酸度计.2 结果与讨论211 H2O2投加量对Fen ton法处理效果的影响固定初始pH为3,FeS O4浓度为30mmol/L,反应时间3h后,取样测得COD含量变化,而后调节pH为7,再次取样测得C OD含量变化,其与前者差值即为COD混凝去除率,进而得到不同H2O2用量对废水COD和T OC去除率的影响曲线,见图1.图1 H2O2投加量对处理效率的影响 从图1中可以看出,随着H2O2用量的增加, T OC的去除率逐渐增加,而COD的去除率先增大,在H2O2投加量为3818mmol/L时达到最大值,而后COD去除率出现下降.这种现象可以理解为在H2O2的浓度较低时,H2O2的浓度增加,产生的・OH量增加;当H2O2的浓度过高时,过量的H2O2不但不能通过分解产生更多的・OH自由基,反而在反应一开始就把Fe2+迅速氧化为Fe3+,而使氧化过程在Fe3+的催化下进行,这样既消耗了H2O2又抑制了・OH的产生.此外,过量的H2O2其还原性很大程度上增加了出水中的COD 值,进而也导致了COD去除率的下降.从图中也可以看出,COD的去除由氧化和混凝两部分组成,以氧化为主,这说明在Fent on反应中既有氧化又有混凝的作用.212 FeS O4・7H2O投加量对Fen ton法处理效果的影响固定初始pH为3,H2O2浓度为3818mmol/ L,反应3h后,调节pH为7,测定不同FeS O4浓度对废水COD和T OC总去除率的影响,其结果详见图2.从图2中可以看出,当Fe2+的浓度增加到20mmol/L,T OC去除率一直增加到80%,随后是略有增加;而COD去除率在Fe2+的浓度为30mmol/L时达到最大,当Fe2+的浓度高于30mmol/L时,随着Fe2+的浓度增加COD去除率・6821・哈 尔 滨 工 业 大 学 学 报 第39卷 不再增加反而有减小的趋势.其原因在于,Fe 2+是催化产生自由基的必要条件,在无Fe 2+条件下,H 2O 2难以分解产生・OH 自由基,当Fe 2+的浓度过低时,反应Fe 2++H 2O 2→Fe 3++OH -+・OH 速度极慢,因此,自由基的产生量和产生速度都很小,降解过程受到抑制[9];当Fe 2+过量时,它还原H 2O 2且自身氧化为Fe3+,消耗药剂的同时增加出水色度.图2 FeS O 4・7H 2O 投加量对处理效率的影响213 初始pH 对Fen ton 法处理效果的影响固定FeS O 4浓度为30mmol/L,H 2O 2浓度为3818mmol/L,反应时间3h,调节pH 为7,测定不同初始pH 对废水COD 和T OC 去除率的影响,其结果详见图3.图3 初始pH 对处理效率的影响 Fent on 试剂是在酸性条件下发生作用的,在中性和碱性的环境中,Fe 2+不能催化H 2O 2产生・OH,因为Fe 2+在溶液中的存在形式受制于溶液的pH.从图3可以看出,pH 在3附近时COD 和T OC 的去除率都达到最大,pH 超过3以后,随着pH 的增加,COD 和T OC 的去除率均降低,但T OC去除率降低的幅度小于COD 降低的幅度.按照经典的Fent on 试剂反应理论[7],pH 升高不仅抑制了・OH 的产生,而且使溶液中的Fe (Ⅱ)以氢氧化物的形式沉淀而失去催化能力.当pH 低于3时,溶液中的H +浓度过高,反应Fe3++H 2O 2→Fe2++HO 2・+H +受到抑制,Fe (Ⅲ)不能顺利地被还原为Fe (Ⅱ),催化反应受阻.即pH 的变化直接影响到Fe 2+、Fe 3+的络合平衡体系,从而影响Fent on 试剂的氧化能力.214 调节pH 对Fen ton 法处理效果的影响固定初始pH 为3,FeS O 4浓度为30mmol/L,H 2O 2浓度为3818mmol/L,反应时间3h,测定不同调节pH 对废水COD 和T OC 去除率的影响,其结果详见图4.图4 调节pH 对处理效率的影响 由图4可见,随着pH 的增大,T OC 的去除率呈略微下降趋势,但变化幅度不大;而COD 的去除率则先增大,在调节pH 为8时达到最大,而后逐渐下降,这说明Fent on 试剂在pH =8时混凝效果最好.这是因为高pH 条件下对絮凝剂的矾花形成不利,而在低pH 条件下,水中有机胶体会以稳定非离解的中性分子状态存在,不易通过混凝作用去除.文献[5]表明Fent on 试剂本身是氧化和混凝作用的协同,主要是利用反应中产生氧化能力极强的・OH 以及引发的其他自由基与水样中的有机物发生反应,促使有机物分解或改变其电子云密度和结构,利于凝聚和吸附过程的进行.反应产生的Fe 3+会形成氧化铁络合物和羟基离子,在pH 为310-710时有明显的聚合趋势,在反应结束后调节pH 混凝沉淀,大量的铁聚合物沉淀形成可去除一部分有机物,COD 得以进一步去除.215 反应时间对Fen ton 法处理效果的影响固定初始pH 为3,FeS O 4浓度为30mmol/L,H 2O 2浓度为3818mmol/L,调节pH 为8,测定不同反应时间对废水COD 和T OC 去除率的影响,其结果详见图5.从图5可以看到,随着时间的推移,T OC 的去除率呈缓慢升高的趋势,COD 去除率在1h 时达到最大值,随后呈缓慢下降趋势.这种现象可以理解为废水中的一些大分子难降解有机物在测定COD 时难以被K 2Cr 2O 7氧化,但是经Fent on 氧化后成为有机中间体(如小分子有机酸等)从而使测得COD 升高,进而导致COD 去除率下降.216 H 2O 2投加次数对Fenton 法处理效果的影响固定初始pH 为3,FeS O 4浓度为30mmol/L,・7821・第8期赵冰清,等:Fent on 工艺深度处理垃圾渗滤液中难降解有机物H 2O 2浓度为3818mmol/L,反应时间3h,调节pH 为8,测定不同H 2O 2投加次数对废水COD 和T OC去除率的影响,其结果详见图6.由图6可见,投加次数对废水T OC 与COD 去除率的影响均不大,可以确定采取1次投加时,操作简便,同时T OC 和COD 的去除率也很理想.3 结 论1)Fent on 试剂用于城市垃圾渗滤液生化处理后的后处理非常有效,其COD 和T OC 的去除率分别可达60%和80%以上.2)最优工艺条件为:[H 2O 2]=3818mmol/L 、[Fe2+]=30mmol/L 、初始pH 为3、混凝pH 为8,反应时间60m in,H 2O 2为一次投加.在此条件下,COD 和T OC 的去除率分别达63143%和80158%,出水达到了国家二级排放标准.参考文献:[1]孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题[J ].给水排水,2003,29(10):26-30.[2]张跃升,松全元,赵书平.物理化学法处理垃圾填埋场渗滤液研究进展[J ].城市环境,2002,16(1):38-40.[3]HUANG C P,DONG C,T ANG Z .Advanced chem icaloxidati on:Its p resent r ole and potential future in hazard 2ous waste treat m ent[J ].W aste Manage,1993,13:361-377.[4]B I G DA R J.Consider Fent on’s che m istry f or waste watertreat m ent[J ].Che m Eng Pr og,1995(91):62-66.[5]K ANG YW ,H WAG K Y .Effects of reacti on conditi onson the oxidati on efficiency in the Fent on p r ocess [J ].W ater Research,2000,34(10):2786-2790.[6]陈卫国,朱锡海.电催化产生H 2O 2和・OH 及去除废水中有机污染物的应用[J ].中国环境科学,1998,18(2):148-150.[7]陈胜兵,何少华,娄金生.Fent on 试剂的氧化作用机理及其应用[J ].环境科学与技术,2004,5(3):105-107.[8]K ANG YW ,CHO M J,H WANG K Y .Correcti on of hy 2dr ogen per oxide interference on standard che m ical oxygen de mand test[J ].W ater Research,1999,33(5):1247-1251.[9]陈传好,谢波,任源,等.Fent on 试剂处理废水中各影响因子的作用机制[J ].环境科学,2000,21(5):93-96.(编辑 刘 彤)・8821・哈 尔 滨 工 业 大 学 学 报 第39卷 。

工业废水的工艺流程

工业废水的工艺流程

工业废水的工艺流程
《工业废水处理工艺流程》
工业废水处理是指对工业生产过程中产生的废水进行处理,使其达到排放标准,或者可被循环利用。

下面是一种常见的工业废水处理工艺流程:
1. 预处理
工业废水通常含有大量的悬浮物、油脂和有机物,需要进行预处理。

预处理的方法包括物理方法如筛网过滤和沉淀、化学方法如加入凝固剂和中和剂以去除杂质。

2. 生化处理
生化处理是指利用生物微生物的活性去除废水中的有机物和氨氮。

通常采用活性污泥法、生物膜反应器法等生化方法,通过好氧或厌氧条件下微生物的降解作用,去除废水中的有机物和氨氮。

3. 深度处理
深度处理是指在生化处理后对废水进行进一步的处理。

通常采用吸附、膜分离、高级氧化等技术来去除废水中的微量有机物和重金属。

4. 消毒
消毒是指对处理后的废水进行消毒杀菌,以防止再次污染环境。

通常采用氯气或次氯酸钠进行消毒处理。

5. 压滤和固体处理
最后,处理后的废水中的固体物质需要通过压滤等物理方法进行处理,以减少固体废物的排放。

以上是一种常见的工业废水处理工艺流程,不同的工业废水可能需要采用不同的处理方法。

目前,随着技术的进步,越来越多的先进技术被应用到工业废水处理中,以更好地净化废水,保护环境。

污水处理工艺流程深度处理与活性炭吸附

污水处理工艺流程深度处理与活性炭吸附

污水处理工艺流程深度处理与活性炭吸附污水处理是对废水中的有害物质进行去除和净化的过程,以确保水体环境的健康与安全。

深度处理和活性炭吸附是常用的污水处理工艺,本文将探讨这两种工艺的原理、应用和效果。

一、深度处理工艺原理深度处理工艺是指对经过常规处理后的污水再进行进一步的处理,以彻底去除残留的有机物、重金属等有害物质。

其核心原理是通过各种物理、化学和生物方法对污水进行处理,以达到更严格的排放标准。

在深度处理工艺中,常用的方法包括氧化、高级凝聚、膜分离等。

例如,氧化技术通过添加强氧化剂如臭氧或过氧化氢来降解有机物。

高级凝聚则利用混凝剂对残留悬浮物和胶体进行聚集和沉淀。

膜分离工艺则通过微孔过滤膜或渗透膜对污水进行过滤和分离。

二、深度处理工艺应用深度处理工艺广泛应用于工业废水、生活污水和农业污水处理领域。

在工业废水处理中,深度处理可以对含有有机物、重金属等的废水进行高效净化,以满足环境排放标准;在生活污水处理中,深度处理可以有效去除污水中的细菌、病毒和其他有机污染物;在农业污水处理中,深度处理可以对农田排水和养殖废水进行综合处理,以保护农业土壤和水源安全。

三、活性炭吸附原理活性炭吸附是指利用活性炭对污水中的有机污染物进行吸附和分离的过程。

活性炭是一种多孔吸附材料,具有较大的比表面积和高吸附能力,可以有效去除污水中的溶解性有机物、颜料、农药等有害物质。

活性炭吸附的原理是通过物质在固体表面上的附着、吸附和浓缩,实现污染物与活性炭的分离。

活性炭的孔隙结构和化学性质会影响吸附性能,因此选择适当的活性炭材料和调节工艺条件对吸附效果至关重要。

四、活性炭吸附工艺应用活性炭吸附广泛应用于水处理、空气净化和环境修复等领域。

在水处理中,活性炭通常用于去除水中的有机物、余氯和重金属等污染物,提高水质的净化效果。

在空气净化中,活性炭能够去除空气中的有机气体、异味等有害物质,提高空气质量。

在环境修复中,活性炭被广泛用于处理土壤和地下水中的有机污染物,以恢复环境的自净能力。

污水深度处理工艺

污水深度处理工艺

污水深度处理工艺一、引言污水处理是保护环境、维护人类健康的重要环节。

随着城市化进程的加快和工业化的发展,污水排放量不断增加,对水资源和环境造成了严重的污染。

因此,污水深度处理工艺的研究和应用变得尤为重要。

本文将介绍污水深度处理工艺的基本概念、工艺流程和关键技术。

二、污水深度处理工艺的基本概念污水深度处理工艺是指在传统的污水处理工艺基础上,进一步采用先进的技术和方法对污水进行更加彻底的处理。

其目的是达到更高的水质要求,减少对环境的影响。

污水深度处理工艺通常包括生物处理、物理化学处理和高级氧化处理等工艺单元。

三、污水深度处理工艺的工艺流程1. 初级处理:包括格栅、沉砂池和沉淀池等单元,用于去除污水中的大颗粒物质和悬浮物。

2. 生物处理:采用生物反应器,如活性污泥法、固定床生物反应器等,通过微生物的作用将有机物质降解为无机物质。

3. 物理化学处理:包括沉淀、吸附、过滤等单元,用于去除污水中的溶解性物质和胶体物质。

4. 高级氧化处理:采用光催化、臭氧氧化等技术,对难降解的有机物质进行氧化分解,提高水质的进一步处理效果。

5. 深度过滤:通过过滤介质,如砂滤池、活性炭过滤器等,去除微小颗粒物质和残余的有机物质。

6. 消毒:采用紫外线灭菌、臭氧消毒等方法,杀灭残留的细菌和病毒,保证出水的卫生安全。

四、污水深度处理工艺的关键技术1. 生物反应器的优化:通过调节温度、pH值、曝气量等参数,提高微生物的降解能力,加强生物处理效果。

2. 高级氧化技术的应用:采用光催化、臭氧氧化等技术,提高有机物质的降解效率,减少处理时间。

3. 膜分离技术的应用:利用超滤、纳滤、反渗透等膜分离技术,去除微小颗粒物质和溶解性物质,提高出水质量。

4. 智能监控系统的建设:通过传感器和自动控制系统,实时监测和调节处理过程中的参数,提高处理效果和运行稳定性。

5. 能源回收利用:采用生物气体发酵、热泵等技术,将废水中的有机物质转化为能源,提高处理过程的经济性和可持续性。

工业废水电催化氧化深度处理技术规程

工业废水电催化氧化深度处理技术规程

工业废水电催化氧化深度处理技术规程一、总则本技术规程旨在规范工业废水中的电催化氧化深度处理技术的操作和应用,确保废水处理效果稳定、可靠,并符合国家和地方的环保标准。

本规程适用于各类工业废水,特别是含有难降解有机物和有毒有害物质的废水处理。

二、处理流程与原理电催化氧化深度处理技术是一种高效、环保的废水处理方法,其原理是利用电解氧化法将废水中的有机物和重金属离子转化为无害或低毒性的物质,同时通过氧化作用杀灭废水中的细菌和病毒。

该技术主要包括预处理、电催化氧化处理和后处理三个阶段。

1. 预处理:预处理的目的是去除废水中的悬浮物、油类物质和其他杂质,为后续的电催化氧化处理提供良好的水质条件。

预处理阶段包括格栅过滤、沉淀、除油等工艺。

2. 电催化氧化处理:电催化氧化处理是整个处理流程的核心,通过电解反应将废水中的有机物和重金属离子转化为无害或低毒性的物质。

该阶段主要利用电化学反应原理,通过施加外部电压促使废水中的离子发生氧化还原反应,从而达到降解有机物和去除重金属离子的目的。

3. 后处理:后处理的目的是进一步去除经过电催化氧化处理后的废水中的残余有机物、重金属离子和其他杂质,使废水达到国家或地方规定的排放标准。

后处理阶段通常包括吸附、沉淀、过滤等工艺。

三、设备与操作要求1. 设备要求:电催化氧化深度处理设备应具有良好的防腐、防垢性能,能够有效降低能耗和减少维护成本。

设备应具备自动化控制和监测系统,以便实时监测水质和运行参数。

2. 操作要求:操作人员应定期检查设备的运行状况,确保设备正常运转;定期对设备进行保养和维护,延长设备使用寿命;及时记录和处理异常情况,防止事故发生。

3. 参数控制:在电催化氧化处理过程中,应控制适当的电流密度、电解液浓度、反应温度和pH值等参数,以确保最佳的处理效果。

同时,应根据废水的水质和水量变化,适时调整设备运行参数。

四、处理效果评估与优化1. 评估指标:处理效果的评估主要依据废水中有机物、重金属离子和其他污染物的去除率来进行。

高浓度、高氨氮、难降解废水处理工艺

高浓度、高氨氮、难降解废水处理工艺

高浓度、高氨氮、难降解废水的处理工艺工业废水具有广泛的来源和类型。

随着工业生产技术的进步,工业废水中的成分也变得多样化。

其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。

1.高浓度废水高浓度废水处理是指化学耗氧量COD高于2000mg/L的高浓度,甚至有的高达1-2万mg/L的高污染废水,如养猪场废水、电镀废水、油墨废水、表面活性剂废水、印染废水、含酚废水、垃圾渗滤液、洗煤废水等。

1.1.印染废水印染废水的特点如下:(1)水量大,无论单位产品排水量或全行业排水总量均是如此。

(2)以有机污染为主,但是可生化性(B/C)低,处理难度高。

(3)属高浓度有机废水,其中某些工序如退浆、煮练、碱减量属极高浓度。

(4)废水中的污染物主要是前处理工艺中的纤维残余物,如纤维屑、胶质、蜡、浆料等;染色、印花工艺中残留于废水中的染料、助剂;整理工艺中残留于废水中的添加物质。

(5)污染物基本上是有害物质(指其长远影响小于有毒物质)。

根据东华大学长期研究,由于染料上染率都很高,残留物经过废水处理基本分解,部分工艺用到铬化合物,但用量较少,一般经处理后能达到废水排放标准。

(6)绝大部分废水呈碱性,色泽较深,尤其是染色废水,颜色随染料而异。

1.1.1.棉及棉混纺印染废水处理工艺(1)混合废水处理工艺格栅一pH值调整一调节池一水解酸化一好氧生物处理一物化处理(2)废水分质处理工艺煮练、退浆等高浓度废水经厌氧或水解酸化后,再与其它废水混合处理;碱减量的废碱液经碱回收再利用后,再与其它废水混合处理。

1.1.2.毛印染废水处理工艺格栅-调节池-水解酸化一好氧生物处理洗毛废水应先回收羊毛脂,再采用厌氧生物处理+好氧生物处理,然后混人染整废水合并处理或进入城镇污水处理厂。

1.1.3.丝绸染整废水处理工艺格栅-叶调节池-水解酸化-好氧生物处理绢纺精炼废水宜采用的处理工艺为:格栅冷水池(可回收热能)叶调节池一厌氧生物处理好氧生物处理。

污水深度处理工艺

污水深度处理工艺

污水深度处理工艺一、引言污水深度处理工艺是指对废水进行进一步处理,以达到更高的处理效果和水质要求的工艺过程。

本文将详细介绍一种污水深度处理工艺,包括工艺流程、设备选型、操作条件以及处理效果等方面的内容。

二、工艺流程1. 初级处理:污水经过格栅除渣、沉砂池去除悬浮物和沉淀物。

2. 生物处理:将初级处理后的污水进一步送入生物反应器,经过好氧或者厌氧条件下的微生物降解有机物。

3. 深度处理:将生物处理后的污水进入深度处理单元,采用以下工艺进行处理:a. 活性炭吸附:将污水通过活性炭床,去除有机物、异味和色度。

b. 膜分离:采用超滤或者反渗透膜对污水进行过滤,去除弱小悬浮物、胶体和溶解物质。

c. 高级氧化:利用紫外光、臭氧等氧化剂对污水进行氧化降解,去除难降解有机物和微污染物。

d. 深度沉淀:通过重力沉淀或者离心沉淀等方式,将处理后的污水中的沉淀物进一步去除。

e. 活性污泥吸附:通过活性污泥吸附污水中的有机物和微污染物,提高处理效果。

三、设备选型1. 格栅:采用机械格栅,具有自动清理功能,能有效去除大颗粒悬浮物和固体废物。

2. 沉砂池:选择具有较大沉砂区域和慢速进水设计的沉砂池,以提高固体沉降效果。

3. 生物反应器:常用的有好氧生物反应器和厌氧生物反应器,根据实际情况选择合适的类型和尺寸。

4. 活性炭吸附装置:采用填充式活性炭吸附装置,活性炭的种类和用量根据水质分析确定。

5. 膜分离设备:选择适合的超滤或者反渗透膜设备,根据处理量和出水要求确定设备规格。

6. 高级氧化装置:根据处理量和处理效果要求,选择合适的紫外光或者臭氧发生器。

7. 深度沉淀装置:根据处理量和沉淀效果要求,选择合适的沉淀池或者离心机。

8. 活性污泥吸附装置:选择具有良好吸附性能的活性污泥,根据处理量和吸附效果要求确定装置规格。

四、操作条件1. 温度:根据具体工艺要求,控制污水处理过程中的温度,普通在20-35摄氏度之间。

2. pH值:根据不同处理单元的要求,调节污水的pH值,普通在6-9之间。

121119电磁强氧化技术处理难降解废水

121119电磁强氧化技术处理难降解废水

电磁强氧化处理难降解工业废水技术 我国工业处理废水现状堪忧治理工业废水污染——迫在眉睫20世纪以来,全球工业用水消费增加了30倍,亚洲境内,受工业废水污染影响最为严重;在我国,工业用水重复利用率仅30%,全国废、污水每日排放量近1.64亿吨,80%未经处理直接排入水域,造成“有水皆污”的后果;在我国,7亿人在饮用大肠杆菌含量超标的水,1.7亿人饮用被有机物污染的水,3500万人饮用硝酸盐超标的水。

2006年,全国工业废水排放量240.2亿吨,占废水排放总量的44.7%;长江流域2006年的污水排放量总计达305.5 吨,其中,工业废水达208亿吨,占68.1%,污水排放量年均增幅超过5%; 全国每年约1.8亿吨焦化废水排放难以达标;全国印染废水每天排放量为约400万吨;全国造纸业排放废水每年约4亿吨。

工业废水排放污染——触目惊心焦化废水成分复杂,含有数十种难降解的苯环和杂环有机化合物,传统生化处理工艺CODcr去除率仅为50%;印染废水水量大、难生化降解有机物含量高,生化处理后出水CODcr及色度难以达到排放标准,成为行业难点;制浆造纸取水量大,污染负荷高,中段污水处理技术相对落后,色度和CODcr含量都难以达到排放要求;电镀废水中镍、铜等重金属离子及氰化物含量高,毒性较大,难以有效脱除回用;化工废水取水量大、用水指标高、化学成分复杂、废水污染严重、铬、酚、氰、氨等有害物质传统工艺去除效果不佳,回用难度大。

当前水处理技术不能解决污染难题工业难处理废水的新突破电磁强氧化及辐照综合水处理工艺在特定氧化剂和能量转化物质存在的条件下、在特定的强电磁场中,使废水的有害物质发生强烈的、自身或被动的分子裂解、氧化分解反应,生成为无害气体或固体沉淀物从水体中分离出去,达到废水净化的效果,同时在强电磁场的辐射作用下使细菌、藻类等生物细胞被分解、破坏而杀死,达到杀菌、灭藻的目的。

该工艺的基本原理完全不同于现有的废水处理工艺、技术,具有低能耗、高效率的优点,能达到其它传统工艺无法达到的净化废水的结果。

焦化废水深度处理技术及工艺现状

焦化废水深度处理技术及工艺现状

焦化废水是一种高浓度、高污染的有机废水,其毒性大,可生物降解性差,是钢铁工业最难处理的一类废水。

目前钢铁企业普遍采用预处理+生化处理+混凝沉淀处理工艺,出水多回用于湿法熄焦、煤场散水等对水质要求不高的用户。

随着国家环保标准的日益严格以及水资源的日益紧张,对焦化废水进行深度处理并回用于钢铁生产变得日益迫切。

焦化废水主要是指在煤炼焦、煤气净化、化工产品回收和化工产品精制过程中产生的废水。

由于受原煤性质、产品回收、生产工艺等多种因素的影响,导致废水成分异常复杂。

焦化废水中所含有机物主要以酚类化合物为主,其含量达到有机物总量的一半以上,剩余有机化合物主要为含硫、氧、氮的杂环有机化合物以及多环芳香族有机化合物等。

焦化废水以其排放量大、成分复杂、处理困难等特点使焦化废水极难再循环利用或者达标排放。

因此,降低焦化废水中的污染物浓度,提高废水的循环利用率是亟待解决的问题。

一、慨述焦化废水是煤高温干馏、煤气净化以及化工产品精制过程中所产生的高浓度有机废水。

其组成十分复杂,含有酚、苯、吡啶、吲哚和喹啉等有机污染物,还含有氰化物、硫化物和氨氮等有毒有害物质,废水色度高。

处理前焦化废水的COD浓度在3000~5000mg/L,氨氮浓度在300~500mg/L,由此可见,焦化废水是一种典型的高污染、有毒、难降解的工业废水。

目前,国内大多数企业采用预处理重力除油、浮选除油、污水调节、生物脱氮处理及后混凝处理等工艺,基本可实现达标排放。

但排放的焦化废水仍会对水体产生不利影响,许多企业开始探索将需外排的废水经深度处理后回用于生产,以实现焦化废水不外排。

另外,焦化厂循环冷却水在使用之后,水中的钙、镁、氯根、硫酸根等离子,溶解性固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水系统,使焦化厂循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至是设备管道腐蚀穿孔。

污水的深度处理工艺主要有

污水的深度处理工艺主要有

污水的深度处理工艺主要有
1. 机械处理:通过物理操作去除污水中的固体颗粒物质,如格栅过滤、沉砂池沉淀、气浮污泥浮升等。

2. 生物处理:利用微生物的能力来分解有机污染物,包括好氧处理和厌氧处理两种方式。

好氧处理主要通过曝气设备提供氧气供微生物生长,将有机物质氧化分解;厌氧处理则是在缺氧环境下,利用厌氧菌对有机物进行酸化、产酸与产气反应。

3. 化学处理:通过给污水添加化学药剂,如氯化铁、聚合氯化铝等,与水中的污染物发生化学反应,使其沉降和沉淀。

常见的化学处理方法包括混凝、沉淀、络合、氧化等。

4. 物理化学联合处理:将机械处理、生物处理和化学处理等工艺结合起来,相互补充,提高污水的处理效果。

常见的联合处理工艺有A2/O工艺、MBR工艺、SBR工艺等。

5. 高级氧化处理:利用高级氧化剂(如臭氧、过氧化氢、紫外光等)对污水中的有机物进行氧化分解。

这种工艺可有效降解难降解的有机污染物和去除部分毒性物质。

6. 膜分离工艺:利用薄膜的选择性渗透性,将水和溶解其中的污染物分离。


见的膜分离工艺有微滤、超滤、纳滤和反渗透等。

这些深度处理工艺可根据实际情况进行组合和调整,以达到对污水进行高效、全面的处理和回收利用。

污水深度处理工艺

污水深度处理工艺

污水深度处理工艺一、引言污水深度处理工艺是指对污水进行进一步处理,以去除其中的有机物、悬浮物、重金属和其他污染物质,使其达到环境排放标准或可再利用的水质要求。

本文将详细介绍污水深度处理工艺的标准格式。

二、工艺流程1. 污水进水污水通过管道进入处理系统,进水口应设置格栅和沉砂池,以去除大颗粒的固体物质和沉积物。

2. 初级处理污水进入初级处理单元,包括沉淀池和调节池。

在沉淀池中,污水通过重力沉降,固体物质沉淀到底部形成污泥。

调节池用于平衡进水水质和流量的波动,以稳定处理系统的运行。

3. 生物处理经过初级处理的污水进入生物处理单元,主要采用活性污泥法。

在活性污泥池中,通过加入活性污泥和空气供氧,利用微生物降解有机物质。

同时,反硝化和除磷等过程也可在此进行。

4. 深度处理经过生物处理的污水进入深度处理单元,主要包括过滤和吸附。

过滤过程中,采用砂滤或活性炭滤池,去除残余的悬浮物和微生物。

吸附过程中,通过添加吸附剂,如活性炭或陶瓷颗粒,去除有机物、重金属等难降解的污染物。

5. 消毒经过深度处理的污水进入消毒单元,常用的消毒方法包括紫外线照射、臭氧氧化和氯化等,以杀灭残留的细菌和病原体。

6. 出水经过消毒的污水达到环境排放标准或可再利用的水质要求后,通过出水口排放或回用于农田灌溉、工业用水等。

三、工艺参数1. 进水水质进水水质参数包括COD(化学需氧量)、BOD(生化需氧量)、SS(悬浮物)、NH3-N(氨氮)等。

根据不同行业和地区的要求,进水水质参数有所差异。

2. 处理效果处理效果参数包括出水水质和去除率。

出水水质应满足环境排放标准或再利用要求,去除率可根据实际情况进行调整。

3. 设备运行参数设备运行参数包括污水处理量、污泥产量、能耗等。

根据工艺流程和处理需求,确定设备的运行参数,以保证工艺的稳定运行和经济性。

四、设备选型根据处理工艺和参数要求,选择合适的设备。

常用的设备包括格栅、沉砂池、活性污泥池、过滤器、吸附剂等。

国星生化污水处理厂提标改造 ——强化二级处理、臭氧+BAF深度处理

国星生化污水处理厂提标改造 ——强化二级处理、臭氧+BAF深度处理

国星生化污水处理厂提标改造——强化二级处理、臭氧+BAF深度处理摘要:国星生化污水处理厂原主体工艺采用水解酸化+CASS工艺,执行《污水综合排放标准》中的一级标准。

该厂通过对现状工艺设备进行优化重置强化二级处理,后续采用臭氧氧化+BAF联用工艺强化去除有机物,出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。

关键词:深度处理;提标改造;农化废水;臭氧氧化;BAF臭氧+BAF联用工艺主要适用于高浓度、难降解工业废水的深度处理,将化学氧化和生物氧化技术有机结合起来,充分利用了BAF与臭氧氧化各自的优势,从而达到相互补充的效果。

在全国重点工业迅速发展,其配套污水处理设施无法满足其处理要求的严峻时刻,臭氧与曝气生物滤池组合工艺的应用将极大地缓解各企业面临的压力,在国内具有十分广阔的应用前景。

1 工程概况安徽国星生物化学有限公司污水处理厂原设计规模为30000 m3/d,工艺为:调节池+水解酸化+CASS。

该污水处理厂主要处理企业生产废水和职工生活污水,原出水水质为《污水综合排放标准》中的一级标准。

由于运行时间长,污水中腐蚀性物质多,厂区内现状管道腐蚀现象严重急需进行改造,要求改造后处理规模为10000 m3/d,出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。

根据企业产品类型分析,该厂围绕吡啶碱产业链、有机磷环保农药产业链、杀菌剂产业链发展,污水中主要污染因子为:氟化物、氯化物、硝酸盐、硫酸盐、硫化物、甲醛、苯、甲苯、石油类、COD、BOD5、挥发酚、氨氮、悬浮物、氰化物、硫化物、总磷、吡啶、氯苯、乙醛、苯并芘等。

农药废水是一类难治理的有机化工废水,其成分复杂,水质水量波动大,可生化性较差,污染物浓度高且难降解,其中卤代烃类、苯类、甲苯类、氯苯类、吡啶类等物质,对生化系统中微生物有较强的毒性和抑制性,还含有酸、碱等生物抑制物质,有毒物质含量高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1难降解工业废水深度处理工艺1.1加药沉淀法加药沉淀法是用易溶的化学药剂在废水中形成难溶的盐、氢氧化物或者络合物以达到去除有机物的目的,另外通过药剂在水中形成的胶体可以达到凝聚吸附有机物的作用,最终通过沉淀作用以化学污泥的方式净化污水。

在TNT、RDX、阳离子染料废水、硫醇废水以及含酚、含醌废水的处理中常使用加药沉淀法。

一般水厂二沉池均采用类似工艺。

加药沉淀工艺对原水的选择性较强,不同性质的污水处理效果大相径庭。

对多种水质情况的研究结果表明,投加某种混凝剂的情况下,COD去除有一定效果,但是单纯的加药成本较高,且排泥量大,控制复杂难于保证稳定达标。

因此,加药沉淀法一般作为废水处理预处理工艺,需配合其他工艺进行废水深度处理。

1.2吸附法吸附法是利用多孔性的固体物质(即吸附剂),使废水中的一种或多种物质被吸附在固体表面而去除的方法。

常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂(如硅胶、氧化铝、分子筛、天然黏土等)。

活性炭基材料在常、低温下由于具有较大的吸附容量,在污水处理中被推荐作为溶解性难生物降解COD的吸附剂。

目前活性炭基材料吸附剂可归结为4类:活性炭、活性焦、活性炭纤维和活性半焦。

活性炭是一种多孔径的炭化物,有极丰富的孔隙构造,具有良好的吸附特性,它的吸附作用藉物理及化学的吸咐力而成的,其外观色泽呈黑色。

其成份除了主要的炭以外,还包含了少量的氢、氮、氧,其结构则外形似以一个六边形,由于不规则的六边形结构,确定了其多也体枳及高表面积的特点,每克的活性炭所具的有比表面相当于1000平方米之多。

目前活性炭已经较为广泛的应用到水处理工艺中,如直接往污水中投加粉末活性碳和用颗粒状活性炭进行过滤等。

活性炭对水中的微污染、色度等均有较好的去除效率。

活性炭使用具有不可逆性,运营成本较高;此外,活性炭吸附污染物沉降后产生大量污泥,工艺操作较为复杂。

再结合污泥存在被定义为危险废弃物的风险,活性炭吸附作为废水深度处理工艺,不宜长期使用。

1.3高级氧化技术1.3.1高级氧化技术原理在废水处理中对于高浓度的医药、化工、染料等工业废水由于有机物含量高、成分复杂、可生化性差采用的一般的生化工艺很难进行有效的处理,而高级氧化可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。

早在上世纪八十年代,Gaze等人将水处理过程中以羟基自由基为主要氧化剂的氧化过程称为AOPs(Advanced Oxidation Processes)过程,用于水处理则称为AOP法。

高级氧化技术是20世纪80年代发展起来的处理废水中有毒有害高浓度污染物的新技术。

它的特点是在高温高压、电、声、光辐照、催化剂等反应条件下,通过反应把氧化性很强的羟基自由基(•OH)释放出来,将大多数有机污染物矿化或有效分解,甚至彻底地转化为无害的小分子无机物。

由于该工艺具有显著的优点,因此引起世界各国的重视,并相继开发了各种各样的处理工艺和设备,使高级氧化系统具有很强的生命力和竞争力,应用前景广阔。

根据所用氧化剂及催化条件的不同,高级氧化技术通常可分为六大类:化学氧化法;化学催化氧化法;湿式氧化法;超临界水氧化法;光化学氧化法和光化学催化氧化法;电化学氧化还原法。

通常单一的臭氧或者单一的光催化等技术很难使有机废水完全降解,并且臭氧处理过程中还可能产生危害重大的物质,但是如果将O3、H2O2和UV等组合起来会很好的去除这些有机污染物,提高去除效率。

图2 高级氧化原理示意图高级氧化技术已成为治理生物难降解有机有毒污染物的主要手段,并已应用于各种水的处理中。

它具有反应时间短、反应过程可以控制、对多种有机污染物能全部降解等优点。

典型的均相AOPs过程有O3/UV、O3/H2O2、UV/H2O2、H2O2/Fe2+(Fenton试剂)等,在高pH值情况下的臭氧处理也可以被认为是一种AOPs过程,另外某些光催化氧化也是AOP过程。

目前在国内工程上应用较多就是化学氧化法,其中在工业水处理中应用的有臭氧氧化、投加芬顿试剂和UV/H2O2/O3结合的高级氧化技术。

下面就针对这几种技术做详细的分析说明。

1.3.2臭氧氧化法原理及特点1)臭氧氧化机理臭氧的氧化能力很强,能与许多有机物或官能团发生反应.如C=C、C≡C、芳香化合物、杂环化合物、N=N、C=N、C-Si、-OH、-SH、-NH2、-CHO等,通常认为臭氧与有机物的反应有两种途径:一是臭氧以氧分子形式与水体中的有机物进行直接反应;二是在中性或者碱性条件下臭氧在水体中分解后产生氧化性更强的羟基自由基等中间产物,发生间接氧化反应。

臭氧氧化作用的标准电极电位如下:O3+2H++2e→O2+H2O,Eө=2.072)臭氧氧化特点臭氧是氧气的同素异形体,常温下是一种不稳定、具有鱼腥味的淡蓝色气体,微量时具有“清新”气味。

臭氧是自然界最强的氧化剂之一,其氧化还原电位仅次于氟,位居第二;臭氧的强氧化能够导致难生物降解有机分子破裂,通过将大分子有机物转化为小分子有机物改变分子结构,降低了出水中的COD,提高废水的可生化性。

臭氧氧化处理难降解有机废水有以下特点:a)氧化能力强,对除臭、脱色、杀菌、去除有机物都有明显的效果;b)处理后废水中的臭氧易分解,不产生二次污染;c)制备臭氧的空气和电不必贮存和运输,操作管理也较方便;d)处理过程中一般不产生污泥。

3)臭氧氧化系统的组成臭氧系统由气源、发生系统、接触池、尾气破坏系统和控制系统五部分组成。

图3 臭氧系统组成图a)气源臭氧气源主要有三种,即使用成品纯液态氧、现场用空气制备纯气态氧和直接利用空气。

为了提高臭氧浓度,同时节省能耗,降低设备及管道尺寸,目前较先进的臭氧发生器多采用前两种方式制备臭氧,第三种方式适用于臭氧产量较小的场合。

b)臭氧发生系统臭氧发生是由臭氧发生器来完成的,目前使用最广的臭氧发生器一般分为管式与板式两种两类,臭氧发生器的备用率一般应大于30%,备用的方式有设备台数备用(硬备用)与设备发生能力备用(软备用)两种。

c)投加系统此系统采用接触池好氧的投加方式,主要器件为微孔好氧盘。

好氧盘一般布置在有效水深6m的池底,从池顶进水,气泡和水流之间形成逆流运动。

好氧盘产生孔径60-70um的微小气泡,两者结合提供充分的时间来延长臭氧气泡和水的接触,提高臭氧的溶解效率。

d)尾气破坏系统为了确保安全,需要臭氧尾气分解破坏装置来取走未溶解的臭氧气体并将其转化为氧气,这可由臭氧催化破坏装置来实现。

尾气破坏器一般放置于接触池顶部。

本项目进水COD较高,采用单独的臭氧氧化工艺投资及运营成本较高,需新建臭氧接触池,工程上通常采用臭氧结合光催化或是催化剂的方式来降低运行成本。

1.3.3芬顿试剂法原理及特点芬顿试剂去除溶解性难降解COD有较好效果。

但是芬顿试剂工艺存在的问题依然较多,主要是处理过程有的过于复杂、处理费用普遍偏高、氧化剂消耗大,一般难以广泛推广,仅适应于高浓度、小流量和水质稳定的废水处理。

1)芬顿试剂原理芬顿试剂,即过氧化氢与亚铁离子的复合,是一种氧化性很强的氧化剂。

其在工业废水处理中的应用研究越来越受到重视。

芬顿反应作用机理目前,学术界主要存在两种不同的芬顿反应作用机理理论,即自由基机理和高价铁络合物机理。

并且,大量研究表明其各自都有合理之处。

目前,世界比较公认的芬顿反应机理是自由基机理。

自由基理论可以概述为:在酸性溶液下,H2O2由于Fe2+得催化作用,产生了高活性的·OH,并引发自由基的链式反应,自由基作为强氧化剂氧化有机物分子,使有机物被矿化降解形成CO2,H2O等无机物质。

·OH具有很高的氧化电极电位(标准电极电位2.8V),在自然界中仅次于氟;·OH还具有很高的电负性或亲电性,其电子亲和能为569.3KJ,具有很强的加成反应特性,因而芬顿试剂可无选择氧化水中的大多数有机物。

此外,芬顿处理有机废水还存在混凝机理,即催化剂铁盐在碱性条件下会形成氢氧化铁或氢氧化亚铁的胶体沉淀,具有凝聚、吸附性能,可去除水中部分悬浮物和杂质,可吸附水中部分的有机物和色度,使出水水质变好。

有实验表明芬顿试剂作用下的COD去除率中,氧化作用只占到23%左右,而将近77%都是由于吸附沉淀作用完成的,尤其是在高浓度污水中更为明显。

2)芬顿试剂特点a)反应条件较温和,设备简单,适用范围广,水处理运行成本较低;b)既可作为单独处理技术应用,也可与其它处理过程相结合;c)将其作为难降解有机废水的预处理或最终深度处理方法,与其他处理方法(如生物法、混凝法等)联用,可以更好地降低废水处理成本,提高处理效率,拓宽该技术的应用范围;d)Fenton工艺中H2O2的利用率不高,不能充分矿化有机物,只能作为终端处理方式自动产生H2O2机制不完善;e)Fe2+为催化剂使H2O2产生•OH及OH-,但同时也伴随大量污泥Fe(OH)3产生需要做额外处理,增加处理费用成本;f)pH适用范围为2.0-4.0,适用范围较窄;水质、水量波动较大时,采用芬顿技术很难保证稳定达标,且会有大量的铁泥产生,铁泥需要进行特殊的处理增加了额外的运行成本。

1.3.4UV/H2O2原理及特点高级氧化技术又称深度氧化技术,以产生具有强氧化能力的羟基自由基(·OH)为特点,在高温高压、电、声、光辐照、催化剂等反应条件下,使大分子难降解有机物氧化成低毒或无毒的小分子物质。

UV+H2O2处理过程中,高性能紫外灯放射出高能量的紫外线,通过一个石英晶体管进入被污染的水体。

同时,加入到饮用水中的氧化剂—H2O2,在紫外线的照射下被激活,产生一种氧化性极强的氧化性基团,称为羟基自由基(•OH),其产生过程如下所示:H2O2 + hλ→2•OH在反应式中羟基自由基•OH,量子产率为1,即1爱因斯坦的被吸收的紫外光子可以产生1摩尔的羟基自由基。

•OH是目前所知的最强的氧化剂之一(在酸性溶液中,电位是E°= +2.7V),大量的羟基自由基与水中的溶解性污染物发生强烈的氧化反应,最终可将有机污染物进行完全氧化或矿化,在很短的时间内就可以达到理想的处理效果。

•OH与有机物反应的主要与原理有:①与脂肪烃类的脱氢反应,②与饱和或芳香烃类的插入反应,③基团与基团的反应。

UV+H2O2方法利用UV发出的高强度高能量紫外线,激发H2O2产生具有极强氧化性的羟基自由基,羟基自由基可将难降解有机物质氧化,发生断链、开环等多种反应,起到降低COD,提高B/C比的作用。

该方法在欧洲和北美已有较为广泛的应用。

UV+H2O2方法是高级氧化工艺中的一种,其特点是:①工艺流程简单,氧化效率高,羟基自由基(标准氧化电位为 2.80)仅次于氟;②与大多数有机物无选择性反应,反应速度快;③自动化程度高、无二次污染;④处理简单,能耗小节约运行费用。

相关文档
最新文档