重点中学高中部自主招生数学考试试题(含答案)

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

高中自主招生数学试题及答案

高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。

A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。

7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。

8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。

9. 一个正方体的体积为27,它的边长是_________。

10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。

三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。

(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。

(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。

(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。

(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。

希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。

重点高中自主招生数学试题

重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。

2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。

3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。

三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。

将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。

重点高中自主招生数学试题3含答案

重点高中自主招生数学试题3含答案

重点高中自主招生数学模拟试题3(A 卷共100分)一、选择题:(每小题3分,共30分) 姓名 成绩一、选择题:(每小题3分,共30分) 1、下列四个点中,在双曲线x2y =上的点是( )。

A 、(1,1) B 、(-1,2) C 、(1,-2) D 、(1,2) 2、 .一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根3、某几何体的三视图如下所示,则该几何体可以是( ).4、Rt△ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43 B 。

34 C.45 D.545、现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是 ( ) A 、101 B 、103 C 、41 D 、516、如图,是一水库大坝横断面的一部分,坝高h =6m ,迎水斜坡AB =10m ,斜坡的坡角为α,则tan α的值为( )A 、53 B 、54 C 、34 D 、43 7、如图所示,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 中点,若OE =3,则菱形ABCD 的周长是( ).A 、12B 、18C 、24D 、308、下列命题中,假命题是( )A .平行四边形的对角线互相平分 B .矩形的对角线相等C .等腰梯形的对角线相等D .菱形的对角线相等且互相平分 9、如图,AB 是⊙O 直径,130AOC ∠=,则D ∠=( )A .65 B .25 C .15 D .3510、二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(每小题4分,共16分)将答案直接写在该题目中的横线上. 11.在Rt ABC △中,90C ∠=,5AC =,4BC =,(第10题图)yxO D B O A C(第9题图)A B C O E (第7题图) ABq h (第6题图)O xAB 11y则=A cos .12、小华在解一元二次方程042=-x x 时,只得出一个根是4=x , 则被他漏掉的一个根是=x13、如图,⊙O 的半径是10cm ,弦AB 的长是12cm ,OC 是⊙O 的 半径且OC AB ⊥,垂足为D ,则CD =__________cm 。

重点高中自主招生考试数学试卷集(大全集)

重点高中自主招生考试数学试卷集(大全集)

6.如图,点A 在函数=y x6-)0(<x 的图象上,过点A 作AE 垂直x 轴,垂足为E ,过点A 作AF 垂直y 轴,垂足为F ,则矩形AEOF 的面积是……( A.2 B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( ) A.22个 B.19个C.16个D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( ) A.2cm B.3cm C.4cm D.6cm 9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个10.已知a 为实数,则代数式221227a a +-的最小值为………………( ) A.0 B.3 C.33 D.9 14.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.则使等式{}[]4 2=-x x 成立的整数..=x . 16.如图,E 、F ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于 点Q ,若S △APD 15=2cm ,S △BQC 25=2cm , 则阴影部分的面积为 2cm . . (第6题图) (正视图) (俯视图) (第7题图)(第16题图)19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点,若1010sin =∠ABM ,求证:MBC NMB ∠=∠.(第21题图)N22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点P 在右半圆上移动点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q 在射线BM 上移动(点M 在点B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 恰好在⊙O 上? 若存在,求出APC ∠的大小;若不存在,请说明理由; (2)连结AQ 交PC 于点F ,设PC PFk =,试问:k 的值是否随点P 的移动而变化?证明你的结论.(第22题图) Q ABC EFPO(第23题图).1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/25 3、已知:2)3(3322=+-+x x xx ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( )A 、最小值12B 、最大值12C 、.最小值25D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球 5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样2、半径为10的圆0内有一点P ,OP=8,过点P 所有的弦中长是整数的弦有 条。

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)数学参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2024•宁海县校级自主招生)在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条内角平分线的交点C.点P是△ABC三条高的交点D.点P是△ABC三条中线的交点【分析】过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,设AD=PE=x,AE=DP=y,则AP2+CP2+BP2=3(x﹣)2+3(y﹣2)2+,当x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,由=,得AM=3,M是AB的中点,同理可得AN=AC,N为AC中点,即P是△ABC三条中线的交点.【解答】解:过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,如图:∵∠A=90°,PD⊥AC,PE⊥AB,∴四边形AEPD是矩形,设AD=PE=x,AE=DP=y,Rt△AEP中,AP2=x2+y2,Rt△CDP中,CP2=(8﹣x)2+y2,Rt△BEP中,BP2=x2+(6﹣y)2,∴AP2+CP2+BP2=x2+y2+(8﹣x)2+y2+x2+(6﹣y)2=3x2﹣16x+3y2﹣12y+100=3(x﹣)2+3(y﹣2)2+,∴x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,∵∠A=90°,PD⊥AC,∴PD∥AB,∴=,即=,∴AM=3,∴AM=AB,即M是AB的中点,同理可得AN=AC,N为AC中点,∴P是△ABC三条中线的交点,故选:D.2.(4分)(2024•达州)如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,E 分别在AC,BC边上运动,连结AE,BD交于点F,且始终满足AD=CE,则下列结论:①=;②∠DFE=135°;③△ABF面积的最大值是4﹣4;④CF的最小值是2﹣2.其中正确的是()A.①③B.①②④C.②③④D.①②③④【分析】①先求出,,则,由此可证△CAE∽△ABD,然后根据相似三角形性质可对结论①进行判断确;②根据△CAE∽△ABD得∠CAE=∠ABD,再根据三角形外角性质得∠BFE=45°,由此可对结论②进行判断确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,证明点F在弧AB上运动,则当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,然后求出△ABH的面积即可对结论③进行判断确;④根据点F在弧AB上运动,得当点F与点P重合时,CF为最小,最小值为线段CP的长,然后求出线段CP的长即可对结论④进行判断确,综上所述即可得出答案.【解答】解:①∵△ABC是等腰直角三角形,∠ABC=90°,AB=4,∴∠BCA=∠BAC=45°,AB=BC=4,由勾股定理得:AC==,∴,∵AD=CE,∴,∴,又∵∠ECA=∠DAB=45°,∴△CAE∽△ABD,∴,故结论①正确;②∵△CAE∽△ABD,∴∠CAE=∠ABD,∴∠BFE=∠BAF+∠ABD=∠BAF+∠CAE=∠BAC=45°,∴∠DFE=180°﹣∠BFE=180°﹣45°=135°,故结论②正确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK ⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,如图所示:∴∠AOB=90°,∴∠AHB=180°﹣∠AOB=180°﹣×90°=135°,∵∠DFE=135°,∴点F在上运动,∵AB=4,∴当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,根据等腰直角三角形的性质得:AK=BK=AB=2,∠AOH=45°,∴AK=OK=2,在Rt△AOK中,由勾股定理得:OA==,∴OA=OH=OB=OP=,∴KH=OH﹣OK=,∴SABH=AB•KH==,△故结论③正确;④∵点F在上运动,∴当点F与点P重合时,CF为最小,最小值为线段CP的长,∵OM⊥CB,OK⊥AB,∠ABM=∠ABC=90°,∴四边形OMBK为矩形,∴OM=BK=2,BM=OK=2,∴CM=BC+BM=4+2=6,在Rt△COM中,由勾股定理得:CO==,∴CP=CO﹣OP=,即CF的最小值是,故结论④正确,综上所述:正确的结论是①②③④.故选:D.3.(4分)(2023•鄞州区校级一模)如图是由四个全等的三角形和一个正方形组成的大正方形,连结EC与BG交于M,射线BH交EC于点N,交EF于点Q,交AD于点K,连接KE,则与△DKE面积相等的图形是()A.△MEF B.△HNEC.四边形MNQF D.△CGM【分析】通过边长设元计算直接求出△DKE的面积,及选项中可求面积,得到面积相等的图形.计算中利用含有等角的直角三角形相似得到边长比例及边长,再利用基本的三角形面积等于底乘高的一半,得到目标三角形面积,最后四配选项中图形面积得到答案.【解答】解:作HP垂直CD于P,作HQ垂直CB于Q,作ET垂直AD于T,如图,设DH=a,HG=b,DC=c,由四个直角三角形全等、正方形ABCD、正方形EFGH,可知:DH=GC=AE=BF=a,AB=BC=CD=AD=c,HG=GF=EF=HE=b,ET=HP=CQ,在Rt△DHC中,根据勾股定理得,c2=a2+(a+b)2,∵△HCQ∽△CDH,∴,∴.∴,∴BQ=CB﹣CQ=c﹣,∵△KBA∽△BHQ,∴,∴AK=AB×=c×=,∴DK=AD﹣AE=c﹣=,∴SDKE=,△∵ET=HP=CQ=,∴SDKE===,△∵△CGM∽△EFM,∴,∴GM=,CG=a,∴,∴SGMC=S△DKE,故选项D正确;△同理FM=,,故A错误;∵△HEC≌△GHB,∴∠HCE=∠GBH,∴∠GBH+∠GHB=∠HCE+∠GHB=90°,∴△HEN∽△CEH,∴,∴,故B错误;同理,,∵△HEQ∽△BFQ.∴,∴,∴梯形HGFQ的面积=,∴四边形HGMN的面积=SHCN﹣S△GMC=,△四边形MNQF的面积=梯形HGFQ的面积﹣四边形HGMN的面积==≠,故C错误;故选:D.4.(4分)(2023秋•洛江区期中)设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25【分析】利用等式(n≥3),代入原式得出数据的规律性,从而求出.【解答】解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣+﹣+﹣+…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.5.(4分)(2023•泰安)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(﹣6,4);Rt△COD中,∠COD=90°,OD=4,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.6﹣4C.2﹣2D.2【分析】由点M是BC中点,想到构造中位线,取OB中点,再利用三角形两边之差的最值模型.【解答】解:取OB中点N,连接MN,AN.在Rt△OCD中,OD=4,∠D=30°,∴OC=4,∵M、N分别是BC、OB的中点,∴MN=OC=2,在△ABN中,AB=4,BN=3,∴AN=5,在△AMN中,AM>AN﹣MN;当M运动到AN上时,AM=AN﹣MN,∴AM≥AN﹣MN=5﹣2=3,∴线段AM的最小值是3,故选:A.6.(4分)(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.PA+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,PA+PB=PA'+PB最小,即可得PA+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得SABCD=四边形(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B 共线时,PA+PB=PA'+PB最小,此时PA+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴SADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣△2m+2,SDKTC=(m+2﹣m)•2=2,梯形∴SABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣四边形1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.7.(4分)(2023•宁波自主招生)如图所示,半径为r的圆O内切于正△PQR,M为边PQ 上一点,N为边PR上一点,且直线MN与圆O相切于点E,△PMN的内切圆C与MN相切于点F.若圆C的半径为,则的值为()A.B.C.D.【分析】设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,利用等边三角形的性质、切线长定理、解直角三角形等即可求得答案.【解答】解:如图1,设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,则CD⊥PQ,CG⊥PR,PD=PG,MD=MF,NF=NG,ME=MT,NE=NK,PT=PK,∵CD=CG,∴PC平分∠QPR,同理,PO平分∠QPR,∴P、C、O三点共线,∵△PQR是等边三角形,∴∠QPR=60°,∴∠OPQ=∠QPR=30°,∴PD===r,CP=2CD=r,∵PD=PG=,∴=r①,在Rt△POT中,PT===r,OP=2OT=2r,∵PT=PK,PT+PK=PM+MT+PN+NK=PM+ME+PN+NE=PM+PN+MN,∴PT=,∴=r②,∴②﹣①得:MN=r,如图2,过点C作CL⊥OE,交OE的延长线于L,则∠L=∠CFE=∠FEL=90°,∴EL=CF=r,CL=EF,∴OL=OE+EL=r+r=r,OC=OP﹣CP=2r﹣r=r,在Rt△OCL中,CL===r,∴EF=r,∴==.故选:D.8.(4分)(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA =30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A.B.C.D.【分析】作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.证明KM=TB=2,推出点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大.【解答】解:如图,作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.∵∠ATO=2∠ABO=60°,TO=TA,∴△OAT是等边三角形,∵A(4,0),∴TO=TA=TB=4,T(2,2),K(1,),∵OK=KT,OM=MB,∴KM=TB=2,∴点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大,∵△OTA是等边三角形,OK=KT,∴AK⊥OT,∴AK===2,∵AM是切线,KM是半径,∴AM⊥KM,∴AM===2,过点M作ML⊥OA于点L,KR⊥OA于点R,MP⊥RK于点P.∵∠PML=∠AMK=90°,∵∠P=∠MLA=90°,∴△MPK∽△MLA,∴====,设PK=x,PM=y,则有ML=y,AL=x,∴y=+x①,y=3﹣x,解得,x=,y=,∴ML=y=,∴sin∠OAM===.故选:A.9.(4分)(2022•常州自主招生)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB =6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边△DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2;其中正确结论的序号为()A.①④B.①②③C.②③D.①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠EDF=∠EFD=∠DEF=60°,即可得出结论①正确;②如图,连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,从而得出结论④正确;【解答】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,∴点E运动的路程是2,故结论④正确;故选:D.10.(4分)(2022•九龙坡区自主招生)如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP.再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.当AD=CP时,则的值为()A.B.2C.2D.【分析】根据折叠的性质和平角定义,证明∠DAB=90°,四边形APCD是平行四边形,根据平行四边形的性质和含30度角的直角三角形即可解决问题.【解答】解:由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,∵AD∥BC,AD=CP,∴四边形APCD是平行四边形,∴AR=PR,∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故选:A.二.填空题(共6小题,满分30分,每小题5分)11.(5分)(2024•九龙坡区自主招生)如图,四边形ABCD为矩形,AB=,BC=,点E为AB边上一点,将△BCE沿CE翻折,点B的对应点为点F,过点F作FG∥CE交DC于点G,若DG:GC=1:4,则FG的长为.【分析】设EF与CG的交点为M,可得△CEM和△GFM是等腰三角形,设GM=x,则CM=2﹣x,在Rt△CFM中,根据勾股定理可建立方程,求出x的值,表达GM和CM 的值,进而可得BE的长;再根据勾股定理可得CE的长,由平行可得△GFM和△CEM 相似,根据相似比可得最终结果.【解答】解:设EF与CG的交点为M,在矩形ABCD中,AB=CD=,AD=BC=,AB∥CD,∴∠DCE=∠BEC,由折叠可知,∠BEC=∠FEC,BE=EF,BC=CF=,∴∠FEC=∠DEC,∴EM=CM,∵FG∥CE,∴△GFM∽△CEM,∴GM:FM=CM:EM=1:1,FG:CE=GM:EM,∴GM=FM,EF=CG=2,∵DG:GC=1:4,AB=,∴DG=,CG=EF=2,∴CE==,设GM=x,则CM=2﹣x;∴FM=GM=x,CM=EM=2﹣x,在Rt△CFM中,∠CFM=∠B=90°,由勾股定理可得CF2+FM2=CM2,即()2+x2=(2﹣x)2,解得x=,∴GM=FM=,CM=EM=,∴GF:=:,∴GF=.故答案为:.12.(5分)(2024•重庆)我们规定:若一个正整数A能写成m2﹣n,其中m与n都是两位数,且m与n的十位数字相同,个位数字之和为8,则称A为“方减数”,并把A分解成m2﹣n的过程,称为“方减分解”.例如:因为602=252﹣23,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成602=252﹣23的过程就是“方减分解”.按照这个规定,最小的“方减数”是82.把一个“方减数”A进行“方减分解”,即A=m2﹣n,将m放在n的左边组成一个新的四位数B,若B除以19余数为1,且2m+n=k2(k为整数),则满足条件的正整数A为4564.【分析】设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),根据最小的“方减数”可得m=10,n=18,即可求解;根据B除以19余数为1,且2m+n=k2(k为整数),得出为整数,30a+b+8是完全平方数,在1≤a≤9,0≤b≤8,逐个检验计算,即可求解.【解答】解:①设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),由题意得:m2﹣n=(10a+b)2﹣(10a+8﹣b),∵1≤a≤9,∴要使“方减数”最小,需a=1,∴m=10+b,n=18﹣b,∴m2﹣n=(10+b)2﹣(18﹣b)=100+20b+b2﹣18+b=82+b2+21b,当b=0时,m2﹣n最小为82;②设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),∴B=1000a+100b+10a+8﹣b=1010a+99b+8,∵B除以19余数为1,∴1010a+99b+7能被19整除,∴=53a+5b+为整数,又2m+n=k2(k为整数),∴2(10a+b)+10a+8﹣b=30a+b+8是完全平方数,∵1≤a≤9,0≤b≤8,∴30a+b+8最小为49,最大为256,即7≤k≤16,设3a+4b+7=19t,t为正整数,则1≤t≤3,(Ⅰ)当t=1时,3a+4b=12,则b=3﹣a,30a+b+8=30a+3﹣a+8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅱ)当t=2时,3a+4b=31,则b=,30a+b+8=30a++8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅲ)当t=3时,3a+4b=50,则,是完全平方数,若a=6,b=8,则3a+4b+7=57=19×3,30×6+8+8=196=142,∴t=3,k=14,此时m=10a+8=68,n=10a+8﹣a=60,∴A=682﹣60=4564,故答案为:82,4564.13.(5分)(2024•成都)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.【分析】连接CE,过E作EF⊥BC于F,设BD=x,则BC=x+2,由∠ACB=90°,E为AD中点,可得CE=AE=DE=AD,有∠CAE=∠ACE,∠ECD=∠EDC,证明△ECD∽△BCE,可得=,∠CED=∠CBE,故CE2=CD•BC=2(x+2)=2x+4,再证△ABC∽△BEF,得=,而AC=2EF,即得2EF2=(x+1)(x+2),从而=(2x+4)﹣12,即可解得答案.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.14.(5分)(2024•宁海县校级自主招生)如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,BE平分∠ABD交CD于点E,则的最小值是.【分析】如图,取AB的中点O,连接OC,OD,AE.想办法证明CE=CA,当CD是直径时的值最小.【解答】解:如图,取AB的中点O,连接OC,OD,AE.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A,C,B,D四点共圆,∵CA=CB,∴∠CBA=∠CAB=45°,∴∠CDA=∠CBA=45°,∠CDB=∠CAB=45°,∴∠CDB=∠CDA,∴DE平分∠ADB,∵BE平分∠ABD,∴点E是△ABD的角平分线的交点,∴AE平分∠BAD,∴∠BAE=∠DAE,∵∠CAE=∠CAB+∠BAE=45°+∠BAE,∠CEA=∠EDA+∠EAD=45°+∠DAE,∴∠CAE=∠CEA,∴CA=CE=定值,∴当CD的值最大时,的值最小,∴CD是直径时,的值最小,最小值==,故答案为.15.(5分)(2024•渝中区校级自主招生)如图所示,平面直角坐标系中,四边形OABC是矩形,点A在第一象限,点B、C在第二象限,SOAB=,将△OAB沿OB翻折至△△OA′B,反比例函数恰好经过点B和点A′,连接A′C交x轴于点M,则点M的坐标为.【分析】过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,根据矩形及翻折的性质得∠BA'O=90°,SOA'B=S△OAB=S△OBC=,再根据反比例函数比例系数的几何意义得:S△OBE=S△OA'D △=,由此可得SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,则SA'BED=(A'D+BE)•DE=梯形,整理得2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,据此可得a=2b,则点A',设直线OB的表达式为y=mx,将B代入y=mx,得,直线OB的表达式为,再证四边形A'CHG为矩形得A'C∥OB,可设直线A'C的表达式为,将点A'代入,得,则直线A'C的表达式为,进而得点,证△A'OD和△BA'F相似得BF:A'D=A'F:OD,根据A',B得BF=﹣b,,,OD=a=﹣2b,则由此解出b即可得点M的坐标.【解答】解:过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,如图所示:∵四边形OABC为矩形,且SOAB=,△∴SOBC=S△OAB=,△∵将△OAB沿OB翻折至△OA′B,∴SOA'B=S△OAB=,∠BA'O=90°,△∴SOA'B=S△OAB=S△OBC=,△根据反比例函数比例系数的几何意义得:SOBE=S△OA'D=,△∵A'D⊥x轴,BE⊥x轴,∴四边形A'BED为梯形,∵SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,∴SA'BED=(A'D+BE)•DE=,梯形∴,整理得:2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,∵a<b<0,∴2a+b<0,∴a﹣2b=0,∴a=2b,∴点A'.设直线OB的表达式为:y=mx,将B代入y=mx,得:,∴直线OB的表达式为:,∴SOA'B=OB•A'G=,S△OAC=OB•CH=,△∴OB•A'G=OB•CH,∴A'G=CH,又∵A'G⊥OB,CH⊥OB,∴四边形A'CHG为矩形,∴A'C∥OB,设直线A'C的表达式为:y=tx+n,则,∴直线A'C的表达式为:入,将点A'代入,得:,∴直线A'C的表达式为:,对于,当y=0时,,∴点M的坐标为,∵A'D⊥x轴,BF⊥DA',∴∠A'DO=∠BFA'=90°,∠FBA'+∠FA'B=90°,∵∠BA'O=90°,∴∠FA'B+∠DA'O=90°,∴∠DA'O=∠FBA',∴△A'OD∽△BA'F,∴BF:A'D=A'F:OD,∵A',B,∴BF=﹣b,,,OD=a=﹣2b,∴,整理得:b4=36,∴,(不合题意,舍去),∴,∴点M的坐标为.故答案为:.16.(5分)(2022•成都自主招生)在平面直角坐标系xOy中有两点A,B,若在y轴上有一点P,连接PA,PB,当∠APB=45°时,则称点P为线段AB关于y轴的“半直点”.例:如图,点A(﹣3,1),B(﹣3,﹣2),则点P(0,1)就是线段AB关于y轴的一个“半直点”,线段AB关于y轴的另外的“半直点”的坐标为(0,﹣2);若点C(3,3),点D(6,﹣1),则线段CD关于y轴的“半直点”的坐标为(0,2)或(0,﹣3).【分析】观察直接可得线段AB关于y轴的另外的“半直点”P'的坐标,以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF于G,过D作DF⊥GF于F,设E(m,n),由△DEF≌△ECG(AAS),得EF=CG,DF=GE,可得,解得E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,由∠CND=∠CED=×90°=45°,知N是线段CD关于y 轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,根据E(,﹣),C(3,3),得NH==,N(0,2),同理MH=,M(0,﹣3).【解答】解:如图:∵A(﹣3,1),B(﹣3,﹣2),∴线段AB关于y轴的另外的“半直点”P'的坐标为(0,﹣2),以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF 于G,过D作DF⊥GF于F,如图:设E(m,n),∵∠CED=90°,∴∠DEF=90°﹣∠CEG=∠GCE,又∠F=∠G=90°,DE=CE,∴△DEF≌△ECG(AAS),∴EF=CG,DF=GE,∵点C(3,3),点D(6,﹣1),∴,解得,∴E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,如图:∵∠CND=∠CED=×90°=45°,∴N是线段CD关于y轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,∵E(,﹣),C(3,3),∴CE==EN,HE=,∴NH==,∴N(0,2),同理MH=,M(0,﹣3),∴线段CD关于y轴的“半直点”坐标是(0,2)或(0,﹣3),故答案为:(0,﹣2),(0,2)或(0,﹣3).三.解答题(共8小题,满分80分,每小题10分)17.(10分)(2024•福建)已知实数a,b,c,m,n满足,.(1)求证:b2﹣12ac为非负数;(2)若a,b,c均为奇数,m,n是否可以都为整数?说明你的理由.【分析】(1)根据题意,可得b=a(3m+n),c=amn,将其代入原式中,再利用公式法与提公因式法进行因式分解,可得原式=a2(3m﹣n)2,根据a,m,n是实数,可知a2(3m﹣n)2≥0,即可证b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,分别进行论证讨论即可.【解答】解:(1)证明:∵,∴b=a(3m+n),c=amn,则b2﹣12ac=[a(3m+n)]2﹣12a2mn=a2(9m2+6mn+n2)﹣12a2mn=a2(9m2﹣6mn+n2)=a2(3m﹣n)2,∵a,m,n是实数,∴a2(3m﹣n)2≥0,∴b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,①当m,n都为奇数时,则3m+n必为偶数,又∵,∴b=a(3m+n),∵a为奇数,∴a(3m+n)必为偶数,这与b为奇数矛盾;②当m,n为整数,且其中至少有一个为偶数时,则mn必为偶数,又∵,∴c=amn,∵a为奇数,∴amn必为偶数,这与c为奇数矛盾;综上所述,m,n不可能都为整数.18.(10分)(2024•广东)【知识技能】(1)如图1,在△ABC中,DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′.当点E的对应点E′与点A重合时,求证:AB=BC.【数学理解】(2)如图2,在△ABC中(AB<BC),DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′,连接A′B,C′C,作△A′BD的中线DF.求证:2DF•CD=BD•CC′.【拓展探索】(3)如图3,在△ABC中,tan B=,点D在AB上,AD=.过点D作DE⊥BC,垂足为E,BE=3,CE=.在四边形ADEC内是否存在点G,使得∠AGD+∠CGE=180°?若存在,请给出证明;若不存在,请说明理由.【分析】(1)利用等腰三角形+平行线证明∠DAE=∠BCA即可得证;(2)先证△ADA′∽△CDC得到,再证AA'=2DF,代入变形即可得证;(3)利用特殊点,∠AGD=90°,∠CGE=90°,则G就是以AD为直径的圆和以CE 为直径的圆的交点,根据题意证G在内部即可.【解答】(1)证明:∵△ADC绕点D按逆时针方向旋转,得到△A′DC',且E'与A重合,∴AD=DE,∴∠DAE=∠DEA,∵DE是△ABC的中位线,∴DE∥BC,∴∠DEA=∠BCA,∴∠DAE=∠BCA,∴AB=BC.(2)证明:连接AA',∵旋转,∴∠ADA′=∠CDC′,AD=A'D,CD=C'D,∴,∴△ADA′∽△CDC′,∴,∵DE是△ABC的中位线,DF是△A'BD的中线,∴AD=BD,BF=A'F,∴DF是△AA'B的中位线,∴AA'=2DF,∴,∴2DF•CD=BD•CC'(3)解:存在,理由如下,解法一:取AD中点M,CE中点N,连接MN,∵AD是⊙M直径,CE是⊙N直径,∴∠AGD=90°,∠CGE=90°,∴∠AGD+∠CGE=180°,∵tan B=,BE=3,∴BD=5,∵CE=,∴EN=CE=,∴BN=BE+EN=,∵DE⊥CE,∴DE是⊙N的切线,即DE在⊙N外,作NF⊥AB,∵∠B=∠B,∠BED=∠BFN=90°,∴△BDE∽△BNF,∴,∴NF=>,即NF>r n,∴AB在⊙N外,∴G点在四边形ADEC内部.作MH⊥BC,∵BM=,tan B=,∴BH=,MH=,∴NH=,∴MN=≈7.4<AM+CN∴⊙M和⊙N有交点.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.解法二:相似互补弓形,分别以AD,CE为弦作⊙O2和⊙O,使得△O2AD∽△OEC,两圆的交点即为所求.作图步骤:①在四边形ADEC内任取一点F,作△EFC得外接圆,圆心为O,连接OE,OC,②作AD的中垂线,③以D为圆心,OC为半径画圆交AD中垂线于点O2,④以O2为圆心,O2A为半径画圆,交⊙O于点G,点G即为所求.证明:∵==,∴△O2AD∽△OEC,∴∠AO2D=∠EOC,∵∠AGD=(360°﹣∠AO2D)=180°﹣∠AO2D,∠EGC=∠EOC,∴∠AGD+∠EGC=180°.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.19.(10分)(2023•鼓楼区校级自主招生)已知a+b+c=2023,,求的值.【分析】依据题意,设,从而a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy),再代入式子中进行计算可以得解.【解答】解:由题意,设,∴a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy).∴原式=====k(x2﹣yz)+k(y2﹣xz)+k(z2﹣xy)=a+b+c=2023.20.(10分)(2023•安徽自主招生)如图,在平面直角坐标系xOy中,一次函数y=x+m 的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y =ax2+bx+c(a≠0)经过A,C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式;(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF 的周长最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由;(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1,若当1<x ≤m时,y2≥﹣x恒成立,求m的最大值.【分析】(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2与y=﹣x的两交点的横坐标分别为x0,x1,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x1的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.【解答】解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m,∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是直线x=2,代入得:,解得,∴y=﹣x2+x+.∴a的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)+为定值;理由如下:要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5,∴B(5,0),∵D(0,),∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b1,则=2k+b1,∴b1=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由,得x2﹣(4﹣4k)x﹣8k=0,∴x1+x2=4﹣4k,x1x2=﹣8k,∵y1=kx1+﹣2k,y2=kx2+﹣2k,∴y1﹣y2=k(x1﹣x2),∴M1M2======4(1+k2),M1F===,同理M2F=,∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2,∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y,设M 1(x 1,y 1),则有(x 1﹣2)2=9﹣4y 1.∴M 1F ===﹣y 1;设M 2(x 2,y 2),同理可求得:M 2F =﹣y 2.∴+===①.直线M 1M 2的解析式为y =kx +﹣2k ,即:y ﹣=k (x ﹣2).联立y ﹣=k (x ﹣2)与抛物线(x ﹣2)2=9﹣4y ,得:y 2+(4k 2﹣)y +﹣9k 2=0,∴y 1+y 2=﹣4k 2,y 1y 2=﹣9k 2,代入①式,得:+==1.(3)设y 2与y =﹣x 的两交点的横坐标分别为x 0,x 1,∵抛物线C 2:y 2=﹣(x ﹣h )2可以看成由y =﹣x 2左右平移得到,观察图象可知,随着图象向右移,x 0,x 0′的值不断增大,∴当1<x ≤m ,y 2≥﹣x 恒成立时,m 最大值在x 1处取得∴当x 0=1时,对应的x 1即为m 的最大值将x 0=1代入y 2=﹣(x ﹣h )2=﹣x 得(1﹣h )2=4,∴h =3或﹣1(舍),将h =3代入y 2=﹣(x ﹣h )2=﹣x 有:﹣(x ﹣3)2=﹣x ,∴x 0=1,x 1=9.∴m 的最大值为9.21.(10分)(2022•宣城自主招生)如图,△ABC中,AB=AC,D,E在边BC上,延长AD,AE与△ABC的外接圆分别交于P,Q两点.(1)求证:D,E,Q,P四点共圆;(2)若AD=BD=3,AE=4,DC=5,求弦AQ的长度.【分析】(1)连接BQ,根据同弧所对圆周角相等可得∠C=∠AQB,∠BAP=∠BQP,由∠ADB+∠ABC+∠BAD=180°结合等腰三角形性质可证∠PDE+∠EQP=180°,最后得证∠P+∠DEQ=180°即可;(2)先证明△ABC∽△DAB,根据相似三角形的性质求得,再证明△ABE∽△AQB,最后根据相似三角形的性质即可求解.【解答】(1)证明:如图,连接BQ,∴∠C=∠AQB,∠BAP=∠BQP,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠AQB,∵∠ADB+∠ABC+∠BAD=180°,∴∠PDE+∠AQB+∠BQP=180°,∴∠PDE+∠EQP=180°,∵∠PDE+∠DEQ+∠EQP+∠P=360°,∴∠P+∠DEQ=180°,∴D,E,Q,P四点共圆;(2)解:∵AD=BD=3,DC=5∴∠ABD=∠BAD,BC=8,由(1)知∠ABC=∠C,∴∠ABD=∠BAD=∠C,∴△ABC∽△DAB,∴,即,∴,由(1)可知∠ABE=∠AQB,∵∠BAE=∠QAB,∴△ABE∽△AQB,∴,即,解得AQ=6.22.(10分)(2022•南京自主招生)已知a,b为方程x2﹣2x+t﹣3=0的两根,求(2a+5﹣t)(b2+2)的最小值.【分析】利用根与系数的关系及方程根的定义,利用整体的思想方法,用含t的代数式表示要求代数式的积得结论.【解答】解:∵a,b为方程x2﹣2x+t﹣3=0的两根,∴a+b=2,ab=t﹣3,b2﹣2b+t﹣3=0.∴b2=2b+3﹣t.∴(2a+5﹣t)(b2+2)=(2a+5﹣t)(2b+3﹣t+2)=(2a﹣t+5)(2b﹣t+5)=4ab﹣2bt+10b﹣2at+t2﹣5t+10a﹣5t+25=t2+4ab﹣2t(a+b)+10(a+b)﹣10t+25.把a+b=2,ab=t﹣3代入得t2+4(t﹣3)﹣2t×2+10×2﹣10t+25=t2+4t﹣12﹣4t+20﹣10t+25=t2﹣10t+25+8=(t﹣5)2+8.∵a,b为方程x2﹣2x+t﹣3=0的两根,∴Δ=(﹣2)2﹣4×1×(t﹣3)=4﹣4t+12=﹣4t+16≥0,∴t≤4.∵(t﹣5)2≥0,∴当t=4时,(t﹣5)2+8=(4﹣5)2+8=1+8=9.∴(2a+5﹣t)(b2+2)的最小值是9.23.(10分)(2022•成都自主招生)如图,抛物线y=﹣x2+2mx+m+2与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,OB=3OA.(1)求抛物线的解析式;(2)设D是第四象限内抛物线上的点,连接AD、OD、CD,SCOD:S△AOD=12:5.△①求点D的坐标;②连接BD,若点P,Q是抛物线上不重合的两个动点,在直线x=a(a>0)上是否存在点M,N(点A,P,M按顺时针方向排列,点A,Q,N按顺时针排列),使得△APM≌△AQN且△APM∽△ABD?若存在,求出a的值;若不存在,请说明理由.【分析】(1)设A坐标(﹣x0,0)B(3x0,0),x0≠0且x0>0,把A、B代入抛物线解析式得到关系式:8﹣8mx0=0,由两根的积等于,所以可得m的值和解析式;(2)①设D(x0,y0),已知S△COD:S△AOD=12:5,S△COD=CO×x0,S△AOD=AO•(﹣y),可得出x0,y0关系式y0=﹣x0,D在抛物线上,把D代入抛物线,可得D的坐标;②由题意知△APM≌△AQN,所以AM=AN,即M、N关于x轴对称,假设存在这样的P、Q,根据题意可得出△APQ∽△AMN,△AMN的中线在x轴上且与△APQ中线夹角为45°,可得出△APQ的中线在y=x+1上,同时,P、Q关于y=x+1对称,设P、Q解析式为y=﹣x+b,PQ中点为(m,n)解方程组得到AR的长度,即x=a与x轴交于H,由△APQ∽△AMN,可得到a的值.【解答】解:(1)由题设A坐标(﹣x0,0),则B为(3x0,0),x0≠0且x0>0,则有,①﹣②得8﹣8mx0=0,又∵﹣x0•3x0==﹣m﹣2,则解得m=1或﹣(舍去),即m=1,所以抛物线解析式为y=﹣x2+2x+3;(2)如图所示:①设D(x0,y0),则SCOD=×CO•x0=x0,△SAOD=×AO×(﹣y0)=﹣y0,△又∵SCOD:S△AOD=12:5,△∴=①,又∵点D在抛物线上,∴y0=﹣+2x0+3②,联立①②解得:x0=4或x0=﹣(舍去),则x0=4,y0=﹣5,即点D的坐标为(4,﹣5),②由(1)得B(3,0),如图2,∵△APM≌△AQN,∴AM=AN,又∵P、Q不重合,则M、N不重合,且MN都在x=a上,∴M、N关于x轴对称,假设存在这样的P、Q,∵△APM∽△ABD,∴△AQN∽△ABD,且相似比相同,∴△APQ∽△AMN,且∠NAQ=∠DAB=45°,∴△AMN的中线与△APQ中线夹角也为45°,而△AMN的中线在x轴上,∴△APQ的中线在y=x+1上,∴P、Q关于y=x+1对称,PQ垂直y=x+1.设PQ解析式为:y=﹣x+b,PQ中点为R(m,n),联立,∴x2﹣3x+b﹣3=0,x1+x2=3,∴m=,将R(,n)代入y=x+1得n=,∴R(,),∴AR=,设x=a与x轴交于H,则由△APQ∽△AMN可得,===,∴AH=,∴a=.24.(10分)(2022•洪山区校级自主招生)如图,在平面直角坐标系xOy中,直线y=x+6与x轴,y轴的交点分别为P,Q,且经过P,Q两点的抛物线y=x2+mx+n与x轴的另外一个交点为点M.(1)求抛物线的解析式;(2)已知E是直线PQ下方的抛物线上的一动点(不包括P,Q两点).①过点E作与x轴垂直的直线EF交直线PQ于点F,若点N为y轴上的一动点,当线段EF的长度最大时,求的最小值;②当tan∠EPM=tan∠MQP时,求点E的坐标.【分析】(1)用待定系数法即可求解;(2)①过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,E、N、H共线时,=EN+HN=EH最小,进而求解;②求出tan∠PQM==,得到tan∠EPM=1,进而求解.【解答】解:(1)对于y=x+6,当x=0时,y=6,令y=x+6=0,则x=﹣6,故点P、Q的坐标分别为(﹣6,0)、(0,6),将点P、Q的坐标代入抛物线解析式得:,解得:,故抛物线的解析式为:y=x2+7x+6;(2)①设点F(x,x+6),则点E(x,x2+7x+6),则EF=(x+6)﹣(x2+7x+6)=﹣x2﹣6x,∵﹣1<0,故EF有最大值,此时x=﹣3,即点E(﹣3,﹣6),过点O作OH,使OH和y轴负半轴的夹角为45°,过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,则=EN+HN,则E、N、H共线时,=EN+HN=EH最小,则直线OH和x轴的夹角为45°,故OH的解析式为:y=﹣x,直线EH的解析式为:y=(x+3)﹣6=x﹣3,联立y=﹣x和y=x﹣3并解得:x=,则点H(,﹣),由点E、H的坐标得,EH==;②过点M作MH⊥PQ于点H,由PQ的表达式知,∠QPO=∠PQO=45°,由点P、Q的坐标得,PQ=6,则HM=HP=PM=,则HQ=PQ﹣PH=6=,则tan∠PQM==,∵tan∠EPM=tan∠MQP,则tan∠EPM=1,即直线PE和x轴正半轴的夹角为45°,故直线PE的解析式为:y=﹣(x+6)=﹣x﹣6,联立y=﹣x﹣6和y=x2+7x+6并解得:,即点E(﹣2,﹣4).。

重点高中自主招生数学(含答案)

重点高中自主招生数学(含答案)

重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。

现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。

连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

重点高中自主招生数学试题8含答案

重点高中自主招生数学试题8含答案

重点高中自主招生数学试题8含答案一.选择题:(每小题3分,共30分) 1.已知tan 33)20(0=-α,则锐角α的度数是( ) A .60°B.45°C.50°D.75°2.抛物线22y x =向左平移1个单位,再上平移3个单位,得到的抛物线的开口方向,对称轴,顶点坐标分别是( ) A.开口向上;x =-1;(-1,3) B.开口向上;x =1;(1,3) C.开口向下;x =1;(-1,-3) D.开口向下;x =-1;(1,-3) 3.把二次函数2y ax bx c =++ 的值恒为正,则a,b,c 应满足( )A .2a>0,b 40.ac -> B. 20,40a b ac >-< C. 20,40a b ac <-> D. 20,40a b ac <-< 4、一个几何体的三视图如图所示,则这个几何体是( ).5.AC 是电杆AB 的一根拉线,测得BC=6米,52ACB ∠=,则拉线AC 的长为( )A.︒526sin 米 B. ︒526tan 米 C. 6·cos 52°米 D. ︒526cos 米 6.已知112233(2)(1)(2)P y P y P y --,,,,,是反比例函数 2y x=的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y <<B.123y y y << C.213y y y << D. 以上都不对7. 、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( )A .变长B .变短C .先变长后变短D .先变短后变长8. 已知关于x 的方程x 2―(2k ―1)x+k 2=0有两个不相等的实数根,那么k 的最大整数值是( ) A .0 B .―1 C .―2 D .19.如图所示,在四边形ABCD 中,AD ∥BC,要使四边形ABCD 成为平行四边形还需要条件( ) A.AB=DC B. ∠1=∠2 C. AB=AD D.∠D=∠B10. 如图所示, ⊙O 是△ABC 的外接圆,已知∠ABO = 20º,则∠C 的度数为( ) A.45º B.60º C.70º D.90º二.填空题(每小题3分,共15分)A B C D 主视图左视图俯视图(第4题) ABC┐11.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.12.初三(1)班研究性学习小组为了测量学校旗杆的高度(如图),他们在离旗杆底部E 点30米的D 处,用测角仪测得旗杆顶端的仰角为30º,已知测角仪器高AD=1.4米,则旗杆BE 的高为________米(结果保留根号).13. 如图四边形ABCD 内接于⊙O,AB 为直径,PD 切⊙O 于D,与BA 延长线交于P 点,已知∠BCD=130º,则∠ADP= .14. 如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 ㎝。

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。

省重点高中自主招生数学试卷及答案

省重点高中自主招生数学试卷及答案

省重点高中自主招生考试数学试卷 2018.3本次考试不能使用计算器,没有近似计算要求的保留准确值.一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选,多选,错选,均不给分) 1.下列计算正确的是( ▲ )A .4212-=⎪⎭⎫ ⎝⎛-- B .()532)()(a a a -=-+-C .336)()(a a a -=-÷- D .()623a a -=-2.如图是某一几何体的三视图,其表面积为( ▲ )A .π24B .π21C .π15D .π123.自然数7、8、8、a 、b ,这组数据的中位数为7,且唯一..的众数是8,那么,所有满足条件的a 、b 中,b a +的最大值是( ▲ )A .9B .10C .11D .124.在抛物线2x y =上任取一点A (非坐标原点O ),连结OA ,在OA 上取点B ,使OB=31OA , 则顶点在原点且过点B 的抛物线的解析式为( ▲ ) A .231x y =B .29x y =C .291x y = D .23x y = 5.函数12+=x y 与反比例函数x k y =的图象有一个交点为M (m ,3),则不等式12-<xkx 的解为( ▲ ) A .3<x B .23-<x 或10<<x C . 1>x 或023<<-x D .1>x 或23-<x 6.一个三角形中一边上的高大于这条边,称这条边为“优边”.那么,一个三角形中“优边”的条数最多为( ▲ )A .0B .1C .2D .3主视图 俯视图(第2题)7.水果店进1吨水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损 坏而不能出售.售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.为使 总利润不低于3300元,在余下的水果的销售中,营业员最多能打几折优惠顾客?答:( ▲ ) A .6 B .7 C .8 D .9 8.设a 、b 、c 都是实数,有如下三个命题:①若0<b<2,且a 2+ab+c>0,则c>1;②若c>1,且0<b<2,则a 2+ab+c>O ;③若a 2+ab+c>0,且c>1,则O<b<2. 其中真命题( ▲ )A .只有①B .只有②C .①和②D .②和③ 9.如图,Rt △ABC 中,∠=∠Rt C ,BC =26,⊙O 与AB 相切于D ,与AC 相交于E ,ED ∥BC ,且22tan =∠ADE ,BD =23,则⊙O 的半径是( ▲ )A .23B .32C .24D .6210.对于任意实数x ,y ,z ,定义运算“※”,满足x ※y =57)1()1(249462222-+++-++y x y xy x ,且 x ※y ※z =(x ※y )※z .在下列各结论中:①2※1=5;②x ※3=6;③这一运算满足交换律,即x ※y =y ※x ;④2014※2013※2012※……※4※3※2=19.其中正确的个 数是( ▲ )A .1B .2C .3D . 4 二、填空题(本题有6小题,每小题5分,共30分)11.等式()1112=--x x 成立的条件是 ▲ .ABCDEO. (第9题)13.国际上通常用恩格尔系数(记作n )来衡量一个国家和地区人民的生活水平的状况,它 的计算公式:xn y=(x :家庭食品支出总额;y :家庭消费支出总额).各种家庭类型的 n 如下表:和2010年完全相同的情况下多支出2000元,并且y=2x+3600(单位:元),则该家庭2013 年属于 ▲ (填家庭类型).14.已知不等式63<x 的解都能使不等式7)2(->-a x a 成立,则a 的取值范围为 ▲ . 15.如图,等腰△ABC 的底边在y 轴正半轴上,顶点C 在第一象限,延长AC 交双曲线xky = 于D ,且CD=AC ,延长CB 交x 轴于E .若△ABE 的面积为5,则k = ▲ .16.已知,点I 是△ABC 的内心, E 、F 分别在AB 、AC 上,且EF 过点I ,AE=AF ,BE=4,CF=3,则EF 的长为▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,满分80分)17.你先化简224(2)24a aa a a -+÷+-,再从-2 , 2中选择一个合适的数代入求值.18.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如5323+=,.I AC B FE (第16题)119733++=, ,1917151343+++=,(1)求37分裂的结果;(2)若3m 分裂后,其中有一个奇数为2015,求m 的值.19.如图,□ABCD 的对角线AC 和BD 相交于点O ,AE 垂直平分BC ,分别交BD 、BC 于点F 、E ,已知3sin 5BAE ∠=,AB =10. 求AO 和AF 的长.20.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A ,B 两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机. (1)利用树状图或列表法写出所有的选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少? (3)各种型号的打印机的价格如下表:朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E 型号,共用去资金 5万元,问E 型号打印机共购买了多少台?21.如果一个矩形纸片用平行于边的线段分成n 个小矩形纸片(这些小矩形可以互相全等,也可以不全等),若所有分成的小矩形纸片与原矩形相似,则称这样的矩形为n 阶自相似矩形.如一组邻边长分别为1,2的矩形Q 分割成两个全等的矩形,与原矩形是相似的,因此矩形Q 是2阶自相似矩形.请找出所有较短边长为1的3阶自相似矩形,画出分割示意图,写出较长边的长(结 果保留根号).22.若三角形的一边和该边上的高相等的三角形称为“优美三角形”.(1)如图①,在3×3的网格中找一个格点C ,使得△ABC 是优美三角形.符合条件的C 点共几个? (2)已知抛物线2yax 经过A (1-,1),P 是y 轴正半轴上一动点(除原点),射线AP与抛物线交另一点B .问△AOP 和△POB 是否一定是“优美三角形”,若是,说明理由;若不是,求出当P 点在什么位置时,能使其成为“优美三角形”.23.我们把自变量为x 的函数记作)(x f ,)(m f 表示自变量m x =时,函数)(x f 的值. 已知22463)(22+++-=a a ax x x f ,其中a 为实数.(1)若在50≤≤m 的范围内,存在m ,使)3()54(2m f m f -=-,求a 的取值范围; (2)当12≤≤-x 时,)(x f 的最小值为4,求所有满足条件的a 的值.BAAOPxyB图①图②(第22题)24.如图①,在平面直角坐标系中,点M 在x 轴正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴 于C ,D 两点,且C 为 的中点,连结CE 、CB ,已知A (2 ,0),AE =8. (1)求点C 的坐标和⊙M 的半径;(2)过点D 作⊙M 的切线,交x 轴于点P ,动点F 在⊙M 上运动,设OF =y ,PF =x 求y 与x 的函数解析式;(3)如图②过E 作弦EF ,交CB 于H ,若CE =CH ,求EF 的长.AE(图①)(第24题)(图②)数学试题参考答案及评分一、选择题(本题有10小题,每小题4分,共40分。

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,则y 关于x 的函数是( )CP10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

高三自主招生试卷数学答案

高三自主招生试卷数学答案

一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 1/3答案:D解析:有理数是可以表示为两个整数之比的数,即形如a/b(a和b为整数,b不为0)的数。

选项D可以表示为1/3,因此是有理数。

2. 已知函数f(x) = 2x - 3,若f(x) + f(-x) = 0,则x的值为()A. 1B. -1C. 0D. 2答案:B解析:根据题意,f(x) + f(-x) = 2x - 3 + 2(-x) - 3 = 0,化简得4x - 6 = 0,解得x = 1.5,即x = -1。

3. 若等差数列{an}的首项为a1,公差为d,且a1 + a2 + a3 = 12,a1 + a4 +a5 = 30,则该数列的通项公式为()A. an = 3n - 1B. an = 4n - 3C. an = 6n - 5D. an = 5n - 4答案:B解析:由等差数列的性质,a2 = a1 + d,a3 = a1 + 2d,代入a1 + a2 + a3 =12得3a1 + 3d = 12,化简得a1 + d = 4。

同理,a4 = a1 + 3d,a5 = a1 + 4d,代入a1 + a4 + a5 = 30得3a1 + 12d = 30,化简得a1 + 4d = 10。

解得d = 3,a1 = 1。

因此,通项公式为an = 4n - 3。

4. 已知复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹为()A. 直线B. 圆C. 双曲线D. 抛物线答案:A解析:由复数的模长性质,|z - 1| = |z + 1|表示复数z到点1和点-1的距离相等,即z位于直线y = 0上。

5. 下列各函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = |x|答案:B解析:奇函数满足f(-x) = -f(x)。

重点高中自主招生数学试题

重点高中自主招生数学试题

E A B F第3题图DA BCEGF第6题图数学测试试卷2017.2一、选择题(每小题6分,共60分)1、已知52015-=xx ,则=-+---21)1()2(23x x x ( )A 、2016B 、2017C 、2018D 、20192、已知关于x 的不等式组⎪⎩⎪⎨⎧>-+>-+xt x t x 235352恰有三个整数根。

则t 的取值范围是( ) A 、78712-<≤-t B 、23712-<≤-t C 、3423-<≤-t D 、7834-<≤-t3、如图,六边形ABCDEF 由五个单位正方形组成,称能平分此六边形的面积的直线为“好线”。

则共存在“好线”( )条。

A 、1B 、2C 、3D 、无数 4、如图,在平面直角坐标系中,R t△OAB 的顶点A 在x 轴的正半轴上,B )3 ,3(,C )0 ,21(,P 为斜边OB 上的一动点,则PA+PC的最小值为( )A 、313B 、 231C 、193+D 、725、已知z y x 、、均为非负数,且满足x 2z -y -41-z y ==+。

若z y +-=22x w 2,则w 的最小值为( ) A 、-1 B 、923 C 、21- D 、0 6、如图,正△ABC 的边长为6,D 、E 分别为边BC 、AC 上的一点,满足CD=AE 。

设BE 与AD 交于点F ,连结CF ,作EG ∥CF 与AD 交于点G 。

若EF=1,则AG 的长为( ) A 、61 B 、21C 、1D 、2 7.如图,△ABC 的外接圆⊙O 的半径长为5,BC=8,点P 为BC 的中点,以点P 为圆心 作⊙P ,若⊙P 与⊙O 相切,则⊙P 的半径长为( ) A .3 B . 3.5 C .2或8 D .2或4就读学校: 班级: 姓名: 试场号: 座位号:………………………………………………………装………………………………订………………………………线………………………………………8.如图,在菱形网格中,每个小菱形的边长都是1,点A ,B ,C 都在格点上,则在网格中与△ABC 面积相等且有一条边重合的格点三角形的个数是( )A .5B .6C . 7D .89.如图,直线l 1:1-=x y 与直线l 2:12-=x y 交于点P ,直线l 1与x 轴交于点A .一动点C 从点A 出发,沿平行于y 轴的方向向上运动,到达直线l 2上的点B 1,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 1;再沿平行于y 轴的方向向上运动,到达直线l 2上的点B 2,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 2,…依此规律,则动点C 到达点A 10所经过的路径总长为( )A .1210- B .2210- C .1211- D .2211-10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,点E ,F 分别在 边AC ,BC 上,ED ⊥DF 于点D ,延长FD 交CA 的延长线于点G ,且EG=EF .若AC=2,BC=4,则AE 的长是( )A .52B .54C .34D .65二、填空题(每小题6分,共36分) 11、已知为pn m 、、实数,若41+-x x 、均为多项式p nx mx x +++23的因式,则8622+--p n m = .12、如图,在平面直角坐标系中,O 为坐标原点,□ABOC 的对角线交于点M ,双曲线)0(<=x xky 经过点B 、M 。

高中自招试题数学答案及解析

高中自招试题数学答案及解析

高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。

答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。

对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。

对于常数项1,其导数为0。

将各项的导数相加,得到最终的导数表达式。

试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。

答案:集合A和集合B的交集A∩B为{2, 3}。

解析:交集是指两个集合中共有的元素。

在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。

试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。

答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。

将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。

解析:这个问题的关键在于识别并应用二倍角公式。

通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。

试题四:解不等式\( |x - 3| < 2 \)。

答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高中部自主招生考试试题数学(试题卷)一.选择题(共6小题,每小题6分,共36分)1.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A.B.2C.﹣1 D.﹣22.已知,则的值为()A.B.C.D.或13.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F 关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CFC.∠AEB+22°=∠DEF D.4cos∠AGB=4.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.5.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(﹣4,0)B.(﹣2,0) C.(﹣4,0)或(﹣2,0)D.(﹣3,0)6.已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA()A.始终不相似B.始终相似C.只有AB=AD时相似D.无法确定二.填空题(共4小题,每小题6分,共24分)7.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.8.如图,已知直线交x轴、y轴于点A、B,⊙P的圆心从原点出发以每秒1个单位的速度向x轴正方向移动,移动时间为t(s),半径为,则t=s时⊙P与直线AB相切.9.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B=.10.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.三.解答题(共5题,每题12分,共60分)11.如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.试题图备用图12.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣B﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D ﹣B﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.13.在边长为1的正方形ABCD中,以点A为圆心,AB为半径作圆,E是BC边上的一个动点(不运动至B,C),过点E作弧BD的切线EF,交CD于F,H是切点,过点E作EG⊥EF,交AB于点G,连接AE.(1)求证:△AGE是等腰三角形;(2)设BE=x,△BGE与△CEF的面积比,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在BC边上(点B、C除外)是否存在一点E,使得GE=EF,若存在,求出此时BE的长,若不存在,请说明理由.14.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.15.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH 的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.2016年高中部自主招生考试数学参考答案选择题1-6.ABABDB填空题7.﹣6、﹣8.或249.{﹣3,﹣2,0,1,3,5,7}10.1解答题11.(1)y=﹣x2+2,x=0时,y=2,y=0时,x=±2,∴A(﹣2,0),B(2,0),C(0,2),设直线AC的解析式是y=kx+b,代入得:,解得:k=1,b=2,即直线AC的解析式是y=x+2;(2)当0<t<2时,OP=(2﹣t),QC=t,∴△PQC的面积为:S=(2﹣t)t=﹣t2+t,当2<t≤4时,OP=(t﹣2),QC=t,∴△PQC的面积为:S=(t﹣2)t=t2﹣t,∴;(3)当AC=CM=BC时,M的坐标是:(0,),(0,﹣2);当AM=BM=CM时,M的坐标是:(0,0),(0,);一共四个点,(0,),(0,0),(0,),(0,﹣2);(4)当0<t<2时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.∵GH∥OP∴即=,解得GH=,所以GC=GH=.于是,GE=AC﹣AE﹣GC==.即GE的长度不变.当2<t≤4时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.由即=,∴GH(2+t)=t(t﹣2)﹣(t﹣2)GH,∴GH(2+t)+(t﹣2)GH=t(t﹣2),∴2tGH=t(t﹣2),解得GH=,所以GC=GH=.于是,GE=AC﹣AE+GC=2﹣t+=,即GE的长度不变.综合得:当P点运动时,线段EG的长度不发生改变,为定值.12.(1)令x=0,y=4,令y=0,则﹣x+4=0,解得x=3,所以,A(0,4),B(3,0),由勾股定理得,AB==5,BD==10,过点D作DH⊥y轴于H,DH=11,AH=2,由勾股定理得,AD===,∵AB2=25,BD2=100,∴AB2+BD2=AD2,∴△ABD是直角三角形;(2)设OC长为x,由等腰三角形以及勾股定理得到x2+42=(11﹣x)2+62,解得x=,所以,C(,0);(3)设t秒时相遇,由题意得,t+t=5+10,解得t=7.5,点P在AB上时,0≤t≤5,PB=5﹣t,BQ=10﹣t,PQ===,点P、Q都在BD上重合前,5<t≤7.5,PQ=5+10﹣t﹣t=15﹣2t,重合后,7.5<t≤10,PQ=t+t﹣5﹣10=2t﹣15,点Q在AB上时,10<t≤15,PB=t﹣5,BQ=t﹣10,PQ===.13.(1)连AH,∵AH⊥EF,GE⊥EF,∴GE∥AH,∴∠GEA=∠EAH,∵AH=AB,AE=AE,∠ABE=∠AHB,∴△AHE≌△ABE,∴∠BAE=∠EAH,∴∠BAE=∠GEA,∴AG=EG,即△AGE是等腰三角形.(2)∵EH=EB=x,∴EC=1﹣x,CF=1﹣FD,∵FD=FH,∴EF=EH+HF=x+FD,在Rt△ECF中,EF2=EC2+CF2,∴(1﹣x)2+(1﹣FD)2=(x+FD)2,整理得,(1+x)FD=1﹣x,∴,∵∠B=∠C,又GE⊥EF,∴∠GEB=∠FEC,∴△GEB∽△EFC,∴,∴,∴(0<x<1).(3)假设BC上存在一点E,能使GE=EF,则,∴,解得x=0或x=1,经检验x=0或x=1是原方程的解但动点E不能与B,C点重合,故x≠0且x≠1,∴BC边上符合条件的E点不存在.14.(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.15.(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•CP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P1(0,3).b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,∴P2(7﹣4,4)c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P3(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又因为G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P4(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4,4)、(1+2,6﹣4).。

相关文档
最新文档