高分子材料基础复习总结

合集下载

第3章1高分子材料的基础知识

第3章1高分子材料的基础知识

应力松弛——是指在恒定的变形情况下,高
聚物内部应力随时间延长而逐渐衰减的现象。
•高聚物的强度:
——理论强度高,而实际强度低。 原因: •高聚物中大分子链排列不规则,不紧密; •各分子链受力不均匀; •实际结构存在各种缺陷和组成不均。
•高聚物不同的断裂形式:
•开裂现象
在一些高聚物制品中,会看到其表面和内部 一些闪闪发光的细丝般的裂纹,又称银纹。 开裂原因:
影响高聚物结晶的因素:
大分子链的结构 分子间作用力 温度 应力 溶剂、杂质、填料等
线型非晶态高聚物的温度-变形曲线
第三节 高聚物的物理状态及性能
一、高聚物的三态 1·玻璃态
当温度比较低时,分子热运动的能量很小,链段和 大分子链的运动都被冻结,这种状态称为玻璃态。 处于玻璃态的高聚物受到外力作用时,其形变量很 小,而弹性模量较大。同时形变是可逆的,外力去 除后能立即恢复原状,这种形变属普弹形变。
•影响Tg的主要因素:
•分子链的柔顺性 •分子间作用力
•影响Tf的主要因素:
•分子链的柔顺性 •分子间作用力 •分子质量
不同高聚物的三态变化不同:
对于线型非晶态高聚物,三态变化明显。
对于体型非晶态高聚物,链间运动受约束,粘流 态消失。 对于完全结晶高聚物,在熔点Tm以前不出现高弹 态,而是保持结晶态,当温度升高到熔点以上时, 可能出现高弹态,也可能直接进入粘流态,这主 要取决于分子质量的大小。 对于部分结晶的高聚物(常见),其三态变化在 晶区和非晶区的表现不一样。
(一)结构单元的化学组成
并不是任何元素都能够结合成链状大分子的,只有 以下非金属元素才能组成大分子链: ⅢA ⅣA VA ⅥA B C N O Si P S As Se

高分子材料基础复习资料

高分子材料基础复习资料

单体:单体是能与同种或他种分子聚合的小分子的统称。

是能起聚合反应或缩聚反应等而成高分子化合物的简单化合物重复单元又叫链节。

是高分子中重复出现的那部分,高分子结构式常以表示。

一般是由相应的小分子(事实上或假想的)衍生而来的。

结构单元构成高分子主链结构组成的单个原子或原子团。

【例】聚丙烯:其中—CH2—是一个链单元,也是一个结构单元;—CH(CH3)—是一个链单元,也是一个结构单元。

两者结成一个更大的结构单元—CH2—CH(CH3)—。

重复单元可以是—CH2—CH(CH3)—,也可以是—CH2—CH(CH3)—CH2—CH(CH3)—。

最小重复单元是—CH2—CH(CH3)—。

【注意】区分单体单元和重复单元如果高分子是由1种单体聚合而成的,其重复单元就是单体单元。

例如:聚氯乙烯,重复单元和结构单元都是—CH2—CHCl—,聚合度DP=n。

如果高分子是由2种或者2种以上的单体缩聚而成的,其重复单元由不同的单体单元组成,那么重复单元就不是单体单元了。

例如:尼龙,重复单元是—NH(CH2)6NHCO(CH2)4CO—,而单体单元是—NH(CH2)6NH—和—CO(CH2)4CO—两种,聚合度DP=2n。

齐聚物:由少数链节组成的聚合物。

如二聚体、三聚体、四聚体……无论是线形的还是环形的统称齐聚物。

齐聚物与通常所说的聚合物是很不同的,增减几个结构单元能使其物理性质有很大的变化。

聚合物定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。

一般把相对分子质量高于10000的分子称为高分子。

高分子通常由103~105个原子以共价键连接而成。

由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物。

平均分子量(1)数均分子量设聚合物试样中,共有N个大分子,总质量为W。

若其中分子量为Mi的大分子有Ni个,其质量为Wi=NiMi,则有下列关系式:(2)质均分子量 对聚合物的稀溶液用光散射方法测定的是质均分子量,等于分子量乘上相应质量分数的加合。

高分子材料复习重点

高分子材料复习重点
引发剂按分解方式分为热分解型和氧化还原分解型。热分解型引发剂分为偶氮类引发剂和过氧类引发剂(过氧化二酰 分解反应的化学式…)
引发剂分解速率方程:Rd=-d[I]/dt=kd[I] ln[i]/[i]0=-kt
一定温度下引发剂分解至起始浓度的一半时间称为引发剂分解半衰期,用t1/2表示。
引发效率 造成引发效率低的原因是诱导分解和笼蔽反应。
静态柔顺性又称平衡态柔顺性,是指大分子链在热力学平衡条件下的柔顺性。
高分子链的平衡态柔顺性,通常用链段长度和均方末端距来表征。链段是指从分子链划分出来可以任意取向的最小运动单元。
动态柔顺性是指高分子链在一定外界条件下,从一种平衡态构象转变到另一种平衡态构象的速度。
如果把若干个单键取作一个链段,把链段与链段之间的连接看作是自由的,那么高分子链可视为以链段为运动单元的自由连接链。
高弹性变的特点1小应力作用下的弹性形变很大2升温时,高弹性变的弹性模量与温度成正比3绝热拉伸时,材料会放热而使自身温度升高4高弹性变有力学松弛现象。
弹性应力σ=ρRT/Mc(λ-1/λ的平方)
应力松弛:恒温下将试样迅速拉伸到一定长度,保持该应变ε不变,发现试样内应力随时间逐渐衰减,这种现象称为应力松弛。
高分子材料应力应变曲线5种 硬而脆 硬而强 硬而韧 软而韧 软而弱
影响拉伸行为的外部因素1温度的影响2拉伸速率的影响3环境压力的影响
强迫高弹形变:当环境温度Tb<T<Tg时,虽然材料出于玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大型变,这种形变称为强迫高弹性变。
强迫高弹性变能够产生,说明提高应力可以促进分子链段在外力方向上运动。
(一)引发剂引发(二)热引发(三)光引发与辐射引发

高分子材料复习要点2

高分子材料复习要点2

⾼分⼦材料复习要点2UP定义不饱和聚酯是由⼆元酸(饱和⼆元酸和不饱和⼆元酸)同⼆元醇,经过缩聚反应⽽成的⼀种线型聚合物,通常以该化合物在烯烃类活性单体(如苯⼄烯)中的溶液形式出现。

1.⼒学性能:分⼦量--分⼦量增⼤,树脂强度硬度、抗弯强度增⼤。

不饱和键的数⽬--越多,交联密度越⼤、刚度增⼤、耐磨性提⾼。

聚酯分⼦链结构规整性—越规整,树脂分⼦排布越有序,有利于提⾼拉伸强度。

2.耐化学药品性:增加不饱和⼆元酸的量;提⾼分⼦的有序性3.电性能:脂肪烃的⽐例增多——电性能提⾼。

提⾼缩聚反应程度——减少未反应的羧基含量可提⾼电性能。

4.UP的⼴泛应⽤领域:(1)⽤量最⼤的热固性树脂(2)玻纤增强UP(聚酯玻璃钢)⽐强度⾼于铝合⾦①通过⼿糊成型或喷涂成型制造各类型的船体.②通过袋压成型法制造船体、安全帽、机器外罩等. ③采⽤真空袋压法⽣产飞机部件、雷达罩.④采⽤整体模压成型法⽣产卫⽣洁具.(2)⾮玻纤增强UP:浇注UP:可制成⼈造玛瑙、等装饰性材料;⼈造⼤理⽯;墙⾯和地⾯装饰砖。

柔性UP,常⽤滑⽯粉、⽊粉等做填料,制造仿⽊家具。

作为涂层材料PA1.聚酰胺(俗称尼龙)是指分⼦主链上含有酰胺基团(-NHCO-)的⾼分⼦化合物。

2.聚酰胺的前30年是作为合成纤维材料,尼龙(Nylon)的俗称就是来⾃与此。

尼龙的最早发明商——美国杜邦公司曾宣传:尼龙⽐蜘蛛丝还细、⽐钢铁还强。

3.脂肪族聚酰胺是线形⾼分⼦材料,由亚甲基链段和极性基团(酰胺基)有规律交替链接⽽成。

4.聚酰胺中的氢键结构对其聚集态结构和最终的性能起到了决定性的作⽤5.脂肪族PA微观结构与性能的关系——氢键的重要作⽤、酰胺基团的密度、亚甲基的奇偶性?PA中的酰胺和亚甲基链段有规律交替排布——链较规整、酰胺基团间的氢键强作⽤——PA分⼦间作⽤⼒较强、PA分⼦上交替出现的亚甲基链段提供了较⼤的分⼦活动能⼒,从⽽导致PA容易结晶;结晶的熔点基本随酰胺基团的密度提⾼⽽增⼤;但也受亚甲基链段中亚甲基数是奇数还是偶数影响(亚甲基是偶数时结晶性更好)6. PA的吸⽔率很⼤:基本随酰胺基团的密度增⼤⽽增⼤。

高分子总复习各章重点

高分子总复习各章重点

复习第一章绪论1.聚合物的命名(习惯)习惯命名法a.以单体名称来命名。

一种单体:“聚”+单体名。

如聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯。

两种不同单体合成的共物:共聚单体中各取一个字后缀“树脂”“橡胶”。

苯酚-甲醛的聚合物称为酚醛树脂,丁二烯-苯乙烯共聚物称为丁苯橡胶。

两种不同单体合成的缩聚物:在其结构单元前加一个“聚”字。

如由己二胺、己二酸缩聚的产物称为聚己二酰己二胺。

b. 以聚合物的结构特征命名以聚合物的特征结构命名。

如聚酯、聚酰胺、聚氨酯、聚脲、聚砜等。

c. 以商品名称命名如涤纶(聚对苯二甲酸乙二醇酯),锦纶(尼龙6),维纶(聚乙烯醇缩甲醛),腈纶(聚丙烯腈),丙纶(聚丙烯)等。

尼龙后面的数字代表其单体来源,第一个数字代表二元胺中碳的数目,第二个数字代表二元酸中碳的数字。

例如尼龙-6,10即是用己二胺、癸二酸为单体合成的。

d.用英文缩写命名在文章和文献中经常采用英文缩写符号表示。

如聚苯乙烯(polystyrene)简称为PS,聚醋酸乙烯酯(polyvinylacetate)简称为PVAc等。

见附表1。

2.结构单元、重复单元、聚合度、单体单元的概念结构单元:由一种单体分子通过聚合进入重复单元的部分。

重复单元:大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。

聚合度:高分子链中重复单元的数目称为聚合度。

单体单元:除电子结构改变外,原子种类及个数完全相同的结构单元。

3.判断聚合类型逐步聚合:通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。

连锁聚合:在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH 2)5CO -]n - 知识点:H 2CCH COOCH3n CH 2CH COOCH3n丙烯酸甲酯 聚丙烯酸甲酯加聚反应、连锁聚合(1)(2)(3)(4)(5)CH 2CH OCOCH3n CH 2CH OCOCH3n醋酸乙烯 聚醋酸乙烯加聚反应、连锁聚合CH 2CCH 3H CCH 2n CH 2CCH 3CHCH 2n异戊二烯 聚异戊二烯加聚、连锁聚合NH 2(CH 2)6NH 2n +COOH(CH 2)4COOHn 己二胺 己二酸 尼龙-66(聚己二酰己二胺)逐步、聚合缩聚NH(CH2)5COn H+OH-NH(CH2)5CO n NH(CH2)5COn逐步聚合 开环聚合连锁聚合 开环聚合己内酰胺 尼龙-6NH(CH2)6NHOC(CH2)4COn课后作业P15—3写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。

《高分子复习总结》课件

《高分子复习总结》课件

高分子的物理性质
1
高分子分子量
分子量影响高分子的物理特性,如熔点、黏度和机械强度。
2
玻璃化转变温度
高分子会在一定温度下从玻璃态转变为橡胶态,影响高分子材料的应用。
3
热膨胀系数
高分子材料对温度变化的膨胀程度。
高分子的化学性质
聚合反应
高分子可以通过聚合反应与其 他化合物发生化学反应。
降解反应
改性反应
高分子材料在一些条件下会发 生降解反应,影响其使用寿命。
通过对高分子结构进行改变, 改善其性能和功能。
高分子的应用领域
塑料和橡胶
高分子的最常见应用之一,广泛用于包装、 建筑、汽车等领域。
电子器件
高分子用于制备电池、显示屏和电路板等电 子器件。
纤维和纺织品
通过纺织工艺将高分子纤维制成衣物、织物 等。
《高分子复习总结》PPT 课件
复习高分子化学的基础知识,包括高分子的基本概念、化合物的分类与特点、 合成方法以及物理和化学性质,还有高分子在不同应用领域的重要性。
高分子的基本概念
1 巨大分子结构
高分子是由一个或多个 重复单元组成的巨大分 子链,使其具备 特殊的物理和化学性质。
生物医学
高分子在药物传递、组织工程和医疗设备方 面具有重要应用。
多种功能
高分子化合物可以根据 需要设计为具有不同的 特性和功能性。
高分子化合物的分类与特点
分类: 特点:
线性、支化、交联
高分子具有高分子量、静电斥力和长链性等特 点。
高分子的合成方法
聚合反应
通过单体分子之间的化学反 应,形成高分子链。
缩聚反应
通过合并小分子或单体,形 成高分子链。
电化学合成
利用电化学方法合成高分子 链结构。

高分子材料基础复习总结

高分子材料基础复习总结

高分子材料(聚合物材料)以高分子化合物(树脂)为基体,再配有其它添加剂(助剂)。

高分子化合物(高分子)往往由许多相同的、简单的结构单元通过共价键(有些是离子键)有规律的重复连接而成。

蠕变现象受到一个恒定应力σ0时,形变随时间无限发展。

应力松弛在恒定形态下,物理的应力随时间而逐渐衰减。

滞后现象高聚物在交变应力(周期性应力)作用下,形变落后于应力的现象。

力学内耗出现滞后现象时,则由于形变功与恢复功并不相等而产生功的损耗。

屈服是指在较大外力作用下材料发生塑性变形的行为。

塑料以合成或天然高聚物为基本成分,并配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料。

热塑性弹性体是指在高温下能塑化成型而在常温下能显示橡胶弹性的一类材料,因此其既显示橡胶的物理性能,又具有热塑性塑料加工特性的材料。

回弹率将纤维拉伸后除去负荷,可回复的弹性伸长与总伸长之比。

弹性模量每单位截面积的纤维延伸原来1%所需的负荷(单位:N/tex互穿网络弹性体由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联现代分析测试方法一、高分子材料的化学分析1,简单定性分析受热行为,包括燃烧试验(火焰试验)、干馏试验。

根据燃烧性、分解出气体的气味、火焰、外形变化等分析。

2,高分子材料的溶解性3,高分子材料的分离和纯化溶解-沉淀萃取二、高分子材料的波谱分析1,红外光谱(IR)1)分析与鉴别高聚物2)高聚物反应的研究3)共聚物的研究4)结晶度的研究5)高聚物的表面研究6)高聚物的取向研究2核磁共掁(NMR)1)高分子的鉴别2)共聚物组成的测定3)立构规整性的测定4)共聚物序列结构的研究5)高聚物分子运动的研究6)支化度和键接方式的研究三、高分子材料的色谱分析1,气相色谱1)利用纯物质对照的定性分析,如:利用保留值包括t R、V R定性。

2)利用文献保留数据的定性分析3)与其它方法结合的定性法,如IR、化学反应4)利用峰面积或峰高定量分析2,裂解气相色谱1)热固性树脂的鉴定2)共聚物与共混物的区别3)高分子官能团的鉴定4)高分子同系物的测定四、x-射线衍射在高分子材料研究中的应用1)高聚物的物相分析(包括各种添加剂的物相分析)2)结晶度的测定3)取向度的测定4)微晶大小的测定5)高聚物晶体结构分析五、电子显微镜1,SEM1)研究纤维和织物的结构及其缺陷特征2)研究均相聚合物及其多相复合体系的结构2,TEM1)研究聚合物的结晶结构2)研究由表面起伏现象表现的微观结构问题,如PAN变成C纤维过程中微纤结构的变化。

高分子材料科学基础期末复习资料总结

高分子材料科学基础期末复习资料总结

第一章:绪论高分子材料:指由许许多多原子或原子团,主要以共价键结合而成的相对分子质4量很高(10~107)的化合物.均聚物:由一种单体聚合而成的聚合物称为均聚物。

共聚物:由两种或两种以上单体共聚而成的聚合物称为共聚物。

高分子材料分类:按用途分类---塑料、橡胶、纤维、粘合剂、涂料按主链的元素组成分类---碳链、杂链、元素有机和无机高分子按聚合物受热时的不同行为分类---热塑性和热固性聚合物英文缩写PE 聚乙烯 PP 聚丙烯PS 聚苯乙烯 PTFE 聚四氟乙烯PVC 聚氯乙烯 ABS 丙烯腈—丁二烯—苯乙烯共聚物 PA 聚酰胺 POM 聚甲醛PAN 聚丙烯腈 PC 聚碳酸酯PMMA 聚甲基丙烯酸甲酯 CPE 氯化聚乙烯PF 酚醛树脂 EP 环氧树脂BR 聚丁二烯橡胶 PU 聚氨酯SBR 丁苯橡胶 NBR 丁腈橡胶CR 氯丁橡胶 NR 天然橡胶PET 聚对苯二甲酸乙二醇酯 PBT 聚对苯二甲酸丁二醇酯第二章高分子材料的结构与性能聚合物分子量有两个基本特点:(1)分子量大:一般而言,聚合物的力学性能随分子量的增大而提高。

①如玻璃化温度,拉伸强度,密度,比热容等,刚开始时,随分子量增大而上升,最后达到一极限值。

②如粘度,弯度强度等,随分子量增大而不断提高,不存在极限值。

(2)分子量具有多分散性:①塑料:分子量分布窄时对加工和性能有利;②橡胶:分子量分布宽一些好,可以改善流动性而有利于加工;③薄膜及纤维:分子量分布窄时对加工和性能有利。

聚集态结构:是指在分子间力的作用下,大分子相互聚集在一起所形成的组织结构。

晶态结构:结构规则、简单的以及分子间作用力强的大分子易于形成晶态结构。

非晶态(无定形)结构:结构比较复杂、不规则的大分子则往往形成无定形即非晶态结构。

结晶对聚合物性能的影响:结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。

高分子材料化学重点知识点总结

高分子材料化学重点知识点总结

第一章水溶性高分子水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。

造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。

日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。

壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。

1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。

第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。

(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。

离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。

(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。

高分子科学基础总结-V1

高分子科学基础总结-V1

高分子科学基础总结-V1
高分子科学基础总结
高分子科学是研究高分子从合成、结构、性质到性能的学科,其研究
对象是大分子化合物,如塑料、橡胶、纤维等。

以下是高分子科学的
一些基础知识总结:
1. 高分子的分类
高分子大致可分为天然高分子和合成高分子两类。

其中天然高分子主
要指生物大分子,如蛋白质、核酸、糖类等,而合成高分子则是指人
工合成的大分子材料,如聚乙烯、聚苯乙烯等。

2. 高分子的结构
高分子一般是由重复单元(单体)构成的,重复单元之间通过共价键
连接。

高分子的结构包括线性高分子、支化高分子、交联高分子等。

线性高分子是由单体按照相同的方向依次连接而成的,支化高分子则
是在线性基础上引入侧链分支,交联高分子则是分子中不同链之间通
过交联点连接而成。

3. 高分子的性质
高分子的性质主要包括力学性能、热学性质、电学性质和光学性质等。

其中力学性能包括抗拉强度、弹性模量等,热学性质包括熔点、玻璃
转移温度等,电学性质包括电阻率、介电常数等,光学性质包括透明度、折射率等。

4. 高分子的应用
高分子广泛应用于塑料制品、橡胶制品、纤维制品、涂料、胶黏剂等众多领域。

其中塑料制品主要应用于包装、建筑、电子、汽车、医疗等行业;橡胶主要应用于轮胎、密封件、管道等领域;纤维则主要应用于服装、家居装饰等领域。

以上是关于高分子科学的基础知识总结。

掌握这些知识,有助于更好地理解高分子材料的特性和应用。

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识

名词解释:1. 通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。

2. 通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。

3. 聚乙烯相对分子量的大小常用熔体流动速率(MFR )来表示。

4. 共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。

5. 茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。

6. 通常把使用量大、长期使用温度在100~150℃、可作为结构材料7. 使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。

8. 聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。

聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。

聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。

9. 单体浇注聚酰胺(MC 聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6 单体直接浇注到模具内进行聚合并制成制品。

制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。

②工艺设备及模具都很简单,容易掌握。

③MC 聚酰胺的各项物理机械性能,比一般聚酰胺优越。

④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。

10. RIM 聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。

11. 共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。

12. 均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。

高分子材料概论复习概括

高分子材料概论复习概括

《高分子材料概论》第1章绪论1.2.1 塑料塑料是在玻璃态下使用的、具有可塑性的高分子材料。

它是以树脂为主要组分,加入各种添加剂,能在一定温度和压力下加工成形的各种材料的总称。

塑料的组成:1)树脂: 塑料的主要组分。

2)填充剂(填料): 提高塑料的力学、电学性能或降低成本等。

3)增塑剂: 提高塑料的可塑性和柔软性4)稳定剂: 提高塑料对热、光、氧等的稳定性,延长使用寿命。

5)增色剂: 赋予塑料制品各种色彩。

6)润滑剂: 提高塑料在加工成形过程中的流动性和脱模能力,同时可使制品光亮美观。

7)固化剂: 与树脂发生交联反应,使受热可塑的线型结构变成热稳定好的体型结构。

8)其他: 还有发泡剂、催化剂、阻燃剂等。

塑料的分类(注意分类举例)1)按塑料热性质分类:热塑性塑料:受热时软化或熔融、冷却后硬化,韧性好,可反复成型加工。

聚乙烯、聚氯乙烯热固性塑料:在加热、加压并经过一定时间后即固化为不溶、不熔的坚硬制品,立体网状结构,不可再生。

具有更好耐热性和抗蠕变能力。

酚醛树脂、环氧树脂2)按塑料的功能和用途分类:通用塑料:产量大、用途广、价格低的塑料,但性能一般,主要用于非结构材料。

聚乙烯、聚氯乙烯、聚苯乙烯工程塑料:具有较高力学性能,能替代金属制造机械零件和工程构件的塑料。

具有较宽的温度适用范围,能在苛刻条件下长时间使用。

通用工程塑料:长期在100~150℃范围内应用的塑料聚酰胺、聚苯醚、聚甲醛、聚碳酸酯特种工程塑料:在150 ℃以上长期使用的塑料。

聚砜、聚四氟乙烯、聚酰亚胺、聚芳酯功能塑料:导电塑料、导磁塑料、感光塑料等1.2.2 橡胶橡胶是以高分子化合物为基础的、具有良好高弹性的材料。

线形柔性高分子聚合物,以生胶为原料,加入适量配合剂而形成。

橡胶的结构特征:(1)分子链具有足够的柔性;(2)玻璃化温度比室温低得多:(3)在使用条件下不结晶或结晶较小,理想情况是在拉伸时可结晶,除去外力后结晶又消失,网状结构橡胶的组成:橡胶是以生胶为主要成分,添加各种配合剂和增强材料制成的。

高分子材料复习整理DOC

高分子材料复习整理DOC

高分子材料复习整理1. 什么叫热塑性塑料?什么叫热固性塑料?试各举三例说明。

(P124)热塑性塑料:塑料加热后软化,冷却后变硬,这种软化、变硬可重复循环,因此可重复成型。

(聚乙烯、聚丙烯、聚氯乙烯)热固性塑料:有单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。

(制品不溶不熔)(酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯)2. 高分子构型与构象的区别(P79)高分子的几何异构和旋光异构称为构型,构型不同,分子形状也不同,但要改变构型非破坏化学键不可一般而言,大分子链是由众多的C-C单键(或C-N,C-O,Si-O等类单键)构成的。

这些单键是由σ电子组成的σ键,其电子云分布对键轴是对称的,所以以σ键连接的两个原子可以相对旋转,这称为分子的内旋转。

在分子内旋转的作用下,大分子链具有很大的柔曲性,可采取各种可能的形态,每种形态所对应原子及键的空间排列称为构象。

构象是由分子内部热运动而产生的,是一种物理结构。

3.ABS树脂的结构,每个组分的作用ABS树脂是由苯乙烯、丁二烯和丙烯腈三种成分构成的共混物。

最初以机械共混法制备,现在多采用接枝共聚-共混法。

苯乙烯:贡献是刚性、表面光洁性和易加工性丁二烯:贡献是柔顺性、高抗冲性和耐低温性丙烯腈:贡献是耐化学药品性、热稳定性和老化稳定性ABS塑料的具体性能决定于三种单体的比例和形态结构ABS塑料存在有两相,连续相成称为基体(由苯乙烯或其烷基衍生物和丙烯腈的共聚树脂所组成),以丁二烯为基础形成的弹性体为分散相4. 产量大、应用广的工程塑料主要有哪些?(P136~137)产量大、应用广的工程塑料有聚酰胺(PA):开发最早的工程塑料,产量首位;聚碳酸酯(PC),应用广泛;聚甲醛(POM):产量位居第三位。

5.高聚物高弹性的特点(P95)高弹性即橡胶弹性,同一般的固体物质所表现出的普弹性相比,有如下特点:(1)弹性模量小,形变大。

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识名词解释:1.通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。

2.通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。

3.聚乙烯相对分子量的大小常用熔体流动速率(MFR)来表示。

4.共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。

5.茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。

6.通常把使用量大、长期使用温度在100~150℃、可作为结构材料7.使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。

8.聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。

聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。

聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。

9.单体浇注聚酰胺(MC聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6单体直接浇注到模具内进行聚合并制成制品。

制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。

②工艺设备及模具都很简单,容易掌握。

③MC聚酰胺的各项物理机械性能,比一般聚酰胺优越。

④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。

10.RIM聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。

11.共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。

12.均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。

高分子复习整理

高分子复习整理

一、名词解释热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔融,并能溶于适当溶剂中。

热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。

热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分子可言。

这类聚合物受热不软化,也不易被溶剂所溶胀。

引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。

诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。

引发剂:在聚合体系中能够形成活性中心的物质,使单体在其上连接分为自由基引发剂,离子引发剂。

动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。

均聚合:由一种单体进行的聚合反应。

共聚合:由两种或两种以上单体共同参加的连锁聚合反应。

形成的聚合物中含有两种或多种单体单元。

均聚物:由均聚合所形成的聚合物。

共聚物:由共聚合形成的聚合物。

自由基活性:一般表示自由基之间的相对活性,可用不同自由基与同一单体反应的增长速率常数来衡量。

歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。

偶合终止:两链自由基的独电子相互结合成共价键的终止反应。

本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。

悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。

乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。

反应程度与转化率:参加反应的官能团数占起始官能团数的分率。

参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。

凝胶化现象凝胶点:体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。

高分子复习总结

高分子复习总结

⾼分⼦复习总结第⼀章绪论1.1 ⾼分⼦的基本概念、特点⾼分⼦化学:是研究聚合反应机理和动⼒学,聚合反应与聚合物的分⼦量和分⼦量分布,以及聚合物结构之间关系的⼀门学科。

单体:能通过相互反应⽣成⾼分⼦的化合物。

⾼分⼦或聚合物:由许多结构和组成相同的单元相互键连⽽成的相对分⼦质量在10000以上的化合物。

相对分⼦质量低于1000的称为低分⼦。

相对分⼦质量介于⾼分⼦和低分⼦之间的称为低聚物(⼜名齐聚物)。

相对分⼦质量⼤于1 000 000的称为超⾼相对分⼦质量聚合物。

主链:构成⾼分⼦⾻架结构,以化学键结合的原⼦集合。

侧链或侧基:连接在主链原⼦上的原⼦或原⼦集合,⼜称⽀链。

⽀链可以较⼩,称为侧基;也可以较⼤,称为侧链。

聚合反应:由低分⼦单体合成聚合物的反应称做~.重复单元:聚合物中组成和结构相同的最⼩单位称为~,⼜称为链节。

结构单元:构成⾼分⼦链并决定⾼分⼦性质的最⼩结构单位称为~单体单元:聚合物中具有与单体的化学组成相同⽽键合的电⼦状态不同的单元称为~。

连锁聚合(Chain Polymerization):活性中⼼引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应⼤部分属于连锁聚合。

连锁聚合需活性中⼼,根据活性中⼼的不同可分为⾃由基聚合、阳离⼦聚合和阴离⼦聚合。

逐步聚合(Step Polymerization):⽆活性中⼼,单体官能团之间相互反应⽽逐步增长。

绝⼤多数缩聚反应都属于逐步聚合。

加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成⽽聚合起来的反应。

加聚反应⽆副产物。

缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合⽽聚合成⼤分⼦的反应。

该反应常伴随着⼩分⼦的⽣成。

聚合反应(Polymerization):由低分⼦单体合成聚合物的反应。

线型聚合物:指许多重复单元在⼀个连续长度上连接⽽成的⾼分⼦.热塑性塑料(Thermoplastics Plastics):是线型可⽀链型聚合物,受热即软化或熔融,冷却即固化定型,这⼀过程可反复进⾏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料(聚合物材料)以高分子化合物(树脂)为基体,再配有其它添加剂(助剂)。

高分子化合物(高分子)往往由许多相同的、简单的结构单元通过共价键(有些是离子键)有规律的重复连接而成。

蠕变现象受到一个恒定应力σ0时,形变随时间无限发展。

应力松弛在恒定形态下,物理的应力随时间而逐渐衰减。

滞后现象高聚物在交变应力(周期性应力)作用下,形变落后于应力的现象。

力学内耗出现滞后现象时,则由于形变功与恢复功并不相等而产生功的损耗。

屈服是指在较大外力作用下材料发生塑性变形的行为。

塑料以合成或天然高聚物为基本成分,并配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料。

热塑性弹性体是指在高温下能塑化成型而在常温下能显示橡胶弹性的一类材料,因此其既显示橡胶的物理性能,又具有热塑性塑料加工特性的材料。

回弹率将纤维拉伸后除去负荷,可回复的弹性伸长与总伸长之比。

弹性模量每单位截面积的纤维延伸原来1%所需的负荷(单位:N/tex互穿网络弹性体由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联现代分析测试方法一、高分子材料的化学分析1,简单定性分析受热行为,包括燃烧试验(火焰试验)、干馏试验。

根据燃烧性、分解出气体的气味、火焰、外形变化等分析。

2,高分子材料的溶解性3,高分子材料的分离和纯化溶解-沉淀萃取二、高分子材料的波谱分析1,红外光谱(IR)1)分析与鉴别高聚物2)高聚物反应的研究3)共聚物的研究4)结晶度的研究5)高聚物的表面研究6)高聚物的取向研究2核磁共掁(NMR)1)高分子的鉴别2)共聚物组成的测定3)立构规整性的测定4)共聚物序列结构的研究5)高聚物分子运动的研究6)支化度和键接方式的研究三、高分子材料的色谱分析1,气相色谱1)利用纯物质对照的定性分析,如:利用保留值包括t R、V R定性。

2)利用文献保留数据的定性分析3)与其它方法结合的定性法,如IR、化学反应4)利用峰面积或峰高定量分析2,裂解气相色谱1)热固性树脂的鉴定2)共聚物与共混物的区别3)高分子官能团的鉴定4)高分子同系物的测定四、x-射线衍射在高分子材料研究中的应用1)高聚物的物相分析(包括各种添加剂的物相分析)2)结晶度的测定3)取向度的测定4)微晶大小的测定5)高聚物晶体结构分析五、电子显微镜1,SEM1)研究纤维和织物的结构及其缺陷特征2)研究均相聚合物及其多相复合体系的结构2,TEM1)研究聚合物的结晶结构2)研究由表面起伏现象表现的微观结构问题,如PAN变成C纤维过程中微纤结构的变化。

3)研究多组份聚合物体系的微观织态结构,如嵌段共聚物、共混物、纳米复合材料4)分析固体颗粒的形状、大水、粒度分布。

5)研究增韧机理六、表面分析能谱许多主要物性与表面相关。

包括:光电子能谱、x射线紫外光电子能谱、俄歇电子能谱、扫描俄歇电子显微镜、低能电子衍射、高能电子衍射、电子探针表面质谱、二次离子质谱。

1,在聚合物表面结构研究上的应用1)均聚物2)共聚物的组成及结构3)交联聚合物2,在界面粘结研究上的应用1)界面粘结的相互作用2)粘结点破坏区域的确定3)粘结点湿热老化破坏机理4)表面改性与界面粘结3,特种表面研究中的应用1)聚合物添加剂向表面的扩散凝聚2)聚合物的大气老化七、热分析1,DTA/DSC聚合物的相转变、结晶T、结晶度、等温结晶动力学参数、熔点、Tg、研究固化、交联、氧化、分解等反应并测定反应温度等。

2,TGA/DTG热稳定性的评定、添加剂的分析、共聚物和共混物的分析、水分测定、氧化诱导期的测定、固化过程分析、预测使用寿命。

八、热-力学分析静态热机械分析,如热机械分析(TMA):在程序控制温度下测量物质在非振动负荷下的形变与温度的关系。

动态静态热机械分析,如热态力学分析(DMA):在程序控制温度下测量物质在振动负荷下的动态模量和力学损耗与温度的关系。

塑料助剂增塑剂作用:改善塑性便于成型加工,并提高柔性(二)稳定剂1,抗氧剂抗氧剂:抑制或延缓聚合物降解。

2,光稳定剂1)光屏蔽剂2)紫外线吸收剂3)光猝灭剂(能量转移剂)4)自由基捕获剂3热稳定剂1)吸收中和HCl,抑制它的自动催化作用;2)抑制自由基生成和脱HCl的过程。

辅助热稳定剂4阻燃剂1,阻燃机理1)燃烧时形成不透的耐火涂层;2)改变燃烧过程的热状态;3)冲淡氧的供给;4)阻燃剂分解产物切断自由基连锁反应。

5填料1,作用降低成本改善性能(五)其它助剂1,抗静电剂外部抗静电剂,配成溶液涂附于表面内部抗静电剂,合成或成型时加入2,润滑剂3,着色剂常用的包括颜料、染料、其它4,发泡剂物理发泡剂化学发泡剂5,交联剂和固化剂6,抗冲改性剂和加工改性剂7,成核剂聚合物英文缩写聚乙烯(PE)PB(聚1-丁烯)EVA(乙烯-乙酸乙烯共聚物)PVB 聚乙烯醇缩醛聚丙烯(PP)PS聚苯乙烯酚醛塑料(Phenol-Formaldehyde Resins ,PF)(热固性)氨基塑料(Amino Plastics)(热固性)聚酰胺类塑料(Polyamide ,PA)(以下讨论的为工程塑料)聚碳酸酯(Polycarbonate ,PC)PMMA俗称有机玻璃聚对苯二甲酸丁二醇酯(Polybutylene Terephthalate ,PBT)聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate ,PET)聚甲醛(Polyformaldehyde或Polyoxymethylene,POM)聚苯醚(Polyphenylene Oxide,PPO)聚苯硫醚(Polyphenylene Sulfide,PPS)聚醚醚酮(Polyetherether Ketone,PEEK)聚砜类塑料(Polysulfone ,PSF)聚酰亚胺(Polyimide ,PI)不饱和树脂(Unsaturated Polyester Resin,UPR)聚氨酯(Polyurethane ,PU)橡胶天然橡胶由异戊二烯链节组成的天然高分子,还含非橡胶成分。

合成橡胶二烯类橡胶,包括聚丁二烯橡胶(Butadiene Rubber ,BR)、聚异戊二烯橡胶(Isoprene Rubber ,IR)、丁苯橡胶(Styrene-Butaeliene Rubber ,SBR)、丁腈橡胶(Niteile-Butadiene Rubber ,NBR),氯丁橡胶(Chloroprene Rubber ,CR),丁基橡胶,乙丙橡胶(Ethylene-Propylene Rubber ,EPR)纤维聚酰胺纤维(绵纶、尼龙)最早工业化生产的合成纤维,主要是PA6、PA66聚酯纤维(涤纶、的确良)发展最快,产量居第一。

主要为PET聚丙烯腈纤维(腈纶)(合成羊毛)以丙烯腈为原料聚合成PAN,再纺织成合成纤维。

PP纤维(丙纶)聚乙烯醇纤维(维纶)(合成棉花)将制备的PVA纺丝后再缩醛化制得。

聚氯乙烯纤维(氯纶)2)耐腐蚀纤维(聚四氟乙烯纤维)3)吸湿性纤维(聚乙烯醇纤维和聚酰胺6)4)弹性纤维(聚氨酯弹性纤维和聚丙烯酸酯弹性纤维)5)阻燃纤维A、氯乙烯和丙烯腈共聚纤维(商品名腈氯纶)B、氯乙烯与聚乙烯醇接枝共聚纤维(商品名维氯纶)环氧树脂胶粘剂(环氧胶)酚醛树脂胶粘剂丙烯酸酯类胶粘剂聚氨酯胶粘剂橡胶胶粘剂聚醋酸乙烯胶粘剂高分子功能材料医用高分子材料导电高分子材料液晶高分子感光性高分子超强吸水剂(SAP)高分子负载催化剂高分子负载催化剂其他电致发光高分子材料非线性光学高分子材料环境敏感高分子材料(智能高分子材料)高分子电解质(聚电解质)离子交换树脂吸附树脂(高分子吸附剂)高分子分离膜高聚物的共混与复合材料制备物理共混(机械共混):将各高聚物组分在混合设备如高速混合机、双辊混合机、挤出机中均匀混合。

包括干粉共混,将不同的粉状聚合物在通用的塑料混合设备中进行混合。

熔融共混,将各组分在Tf以上进行分散、混合,常用方法,设备有单螺杆挤出机、双螺杆挤出机、混炼-挤出机组、静态混合器。

溶液共混,将各高聚物组分溶解于共同溶剂中,再除去溶剂。

乳液共混,将不同高聚物的乳液均匀混合再共沉析2,共聚-共混法这是制备高聚物共混物的一种化学方法,包括接枝共聚-共混、嵌段共聚-共混,前者更为重要。

制备聚合物1后将其溶于另一种单体2中,使单体2聚合并与聚合物发生接枝共聚。

聚合物共混物包括三种组分:聚合物1、聚合物2、接枝共聚物。

接枝共聚物改善了聚合物1和聚合物2的相容性,其性能优于机械共混。

3,互穿网络高聚物(IPN)用化学方法将两种或以上的聚合物相互贯穿成交织网络状。

制备方法上接近接枝共聚-共混法,相间化学结合接近机械共混法,可视为用化学方法实现机械共混。

(四)增容剂增容剂可以增加共混组元间的相容性,强化界面粘结1,种类增容剂可以专门制备,也可就地生成(原位反应共混)2,作用原理非反应型增容剂,其增容作用可概括为:降低相界之间的界面能、在共混过程中促进相的分散、阻止分散相的凝聚、强化相之间的粘结。

反应型增容剂增容包括外加反应型增容剂与共混高聚物组分反应;也包括使共混高聚物官能化,并借助相互反应而增容。

纳米高分子材料纳米材料的表面改性原因:表面能大,易团聚目的:降低表面能,消除表面电荷,减弱表面极性。

措施:1)表面覆盖改性(利用表面活性剂赋予粒子表面新的性质)2)机械化学改性(通过机械应力激活表面以改变表面的晶体结构和物理化学结构)3)外膜层改性(表面包覆一层其它物质的膜使表面性质变化)4)局部活性改性(利用化学反应在表面接枝带膛同功能基团的聚合物,使之具有新的功能)5)高能量表面改性(利用等离子射线、高能电晕放电等)6)利用沉淀反应表面改性(沉淀一层有机或无机膜)高分子-无机纳米复合材料的制备方法一、纳米微粒原位生成法(溶胶-凝胶)在聚合物存在的前提下,在共溶体系中使前驱物水解得溶胶,进而凝胶化,干燥制成纳米材料。

1,聚合物存在下形成无机相:前驱物溶于聚合物溶液中,再溶胶、凝胶,如果条件控制得好,在凝胶的形成与干燥过程中,不发生相分离,即制得有机-无机纳米复合材料。

在复合材料中,聚合物无机网络间既可以是简单的包埋与被包埋,也可以有化学键存在。

2,无机溶胶与有机聚合物共混:采用金属醇盐进行水解,再对水解产物进行胶溶而制成溶胶;或者通过对无机盐的溶液进行胶溶而得到溶胶,之后选择好共溶剂,使溶胶与聚合物在共溶剂中共混,最后再凝胶化制得复合物。

3,无机相存在下单体聚合:前驱物存在下先使单体聚合再凝胶化。

4,有机相与无机相同步形成互穿网络:前驱物和单体溶解于溶剂中让水解和聚合同时进行,它可使一些不溶的聚合物靠原位生成而嵌入无机网络中。

另外,也可在聚合物或单体中引入能与无机组分形成化学键的基团。

相关文档
最新文档