高光谱数据处理的相关方法
ENVI高光谱数据处理流程

3、物质制图与识别、探测
• 波谱库 • 波谱分析 • 端元波谱收集 • 高光谱制图与识别
波谱库
• ENVI波谱库 (安装目录下spec_lib)
– Jet Propulsion Laboratory 0.4~2.5um 160种纯矿物波谱
– 美国地质调查局(USGS)
0.4~2.5um 500种质优矿物波谱
27 °C or 80 °
March
May
SAW SAW MLW MLW SAS MLS
T T T T T MLS SAS SAS MLW MLW MLW
SAW MLW MLW SAS SAS MLS
T T T T T MLS SAS SAS MLW MLW MLW
July
MLW MLW SAS SAS MLS
3636
2.92
21 °C or 70 °
5119
Latitude (°N) 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80
4.11
Jan.
SAW SAW MLW MLW SAS MLS
T T T T T MLS SAS SAS MLW MLW MLW
Scaled DISORT和streams为8,这种模型对于小于1000nm具有较 高的精度; • 天顶角\方位角(针对非星下点传感器)。 • 输出反射率缩放系数(Output Reflectance Scale Factor):为了 降低结果储存空间,默认反射率乘于10000。
输出结果
• 表面反射率影像 • 水气含量数据 • 云图 • 日志文件 • FLAASH大气校正模板文件
从光谱影像上获得光谱曲线
第五讲高光谱数据分析

第五讲高光谱数据分析高光谱技术可提供空间域信息和光谱域信息,即“谱图合一”,且由图像数据反演出的像元光谱曲线可以与实验室所测的同类地物光谱曲线相类比,因此可以用于鉴别物质,比如鉴别矿物、岩石的类型,区分环境中各种污染物的成分以及农作物、森林的种类等。
一、提取波谱剖面廓线打开文件cup95eff.int,并RGB彩色显示band 183,band 193,band 207。
在主影像菜单栏中选择Tools/Profiles/Z profiles(Spectrum),打开并显示波谱曲线。
二、采集波谱曲线在Spectral Profile窗口中,选择Options->Collect Spectra,采集绘图窗口中的波谱曲线。
相应的,要将波谱曲线采集到另一个绘图窗口中,先打开一个新的绘图窗口,然后将Spectral Profile窗口中的波谱曲线保存到新的绘图窗口中。
具体步骤如下:1.从绘图窗口的菜单栏中选择Options->New Window:blank,打开一个新的绘图窗口。
2.在先前的绘制窗口中,点击鼠标右键,选择Plot Key,将波谱曲线的名字显示在绘图窗口的右边。
3.在第一条波谱曲线的名字上,点击并按住鼠标左键不放,将波谱曲线的名字拖到新的绘图窗口中,然后松开鼠标左键。
4.在主影像窗口或缩放窗口中移动当前光标像素定位器,从影像中选择一条新的波谱曲线。
重复上面点击拖拽的过程,在新绘图窗口中建立一系列的波谱曲线。
要改变不同波谱曲线的颜色和线形,选择新绘图窗口中的Edit-Data Parameters.每一条波谱曲线的名字/位置都将在Data Parameters对话框中列出。
三、动画显示数据在先前的灰阶影像显示的主影像窗口中,选择Tools-Animation生成动画显示。
弹出的Animation Input Parameters对话框中列出了可用波段列表中的所有波段。
从所有波段中选择一个子集来生成动画。
高光谱数据预处理

高光谱数据预处理是指对从高光谱传感器获取的原始数据进行处理和优化,以提高数据质量、减少噪声和冗余信息,并为后续的数据分析和应用提供更好的基础。
以下是高光谱数据预处理的一些常见步骤:
1.数据校正:高光谱数据通常包含传感器的特定响应曲线、大气影响、太阳高度角等因素,需要进行各种校正,如大气校正、几何校正、太阳高度角校正等,以消除这些影响因素,提高数据质量。
2.数据滤波:高光谱数据可能存在噪声和冗余信息,需要进行滤波处理。
常见的滤波方法包括中值滤波、高斯滤波、小波变换等,可以根据数据的特点和应用需求选择合适的滤波方法。
3.数据增强:高光谱数据可能存在光谱分辨率不足的问题,需要进行数据增强。
常见的数据增强方法包括插值、降采样、多通道分解等,可以提高数据的空间和光谱分辨率。
4.特征提取:高光谱数据中包含丰富的光谱信息,需要进行特征提取,以便进行后续的分类、聚类、识别等分析。
常见的特征提取方法包括光谱特征提取、空间特征提取等。
5.数据归一化:高光谱数据的不同波段之间可能存在差异,需要进行数据归一化处理,以消除波段之间的差异,提高数据的可比性和稳定性。
常见的归一化方法包括最小-最大归一化、z-score标准化等。
6.数据降维:高光谱数据通常包含大量的冗余信息,可以通过数据降维方法减少数据维度,提高数据处理效率和准确性。
常见的降维方法包括主成分分析、线性判别分析等。
高光谱数据预处理是高光谱图像分析的重要步骤,可以提高数据质量、减少噪声和冗余信息,并为后续的数据分析和应用提供更好的基础。
红外高光谱成像原理及数据处理

红外高光谱成像原理及数据处理
红外高光谱成像是一种结合了光谱技术和成像技术的
高级遥感方法,其原理主要基于不同物质在特定波长范围内的红外辐射特性。
具体过程如下:
1. 红外辐射与物质相互作用:
物质吸收、发射和散射红外光时,会根据其分子结构和化学成分呈现出特征性的光谱响应。
这种光谱响应可以在红外波段内形成独特的“指纹”信息,从而反映物质的类型和状态。
2. 高光谱成像采集:
红外高光谱成像系统通过分光元件将接收到的红外辐
射分解为多个窄波段,并在每个波段上获取一幅图像。
由此获得的数据集包含了目标区域每个像素点的光谱
数据,形成了所谓的高光谱立方体(Hyperspectral Cube),即三维数据集(两个空间维度加一个光谱维度)。
3. 数据处理与分析:
原始数据通常需要经过一系列预处理步骤,如噪声去除、
大气校正、几何校正等,以提高数据质量和适用性。
利用各种光谱分析技术(如连续窗函数分析、主成分分析、匹配滤波器、混合像元分解等)提取和识别出图像中各部分的光谱特征,进而对地物进行分类和识别。
在环境监测、地质矿物勘探、农业资源调查等领域,可通过高光谱数据解析植被生长状况、土壤成分、环境污染程度等信息。
总之,红外高光谱成像通过记录并分析地物在众多连续且精细的红外波段上的反射或发射特性,实现对地表物质的精确探测和定量分析。
ENVI高光谱数据处理流程

ENVI高光谱数据处理流程1.数据预处理数据预处理是高光谱数据处理流程中的第一步,其主要目的是去除数据中的噪声并增加图像质量。
常用的预处理方法包括:大气校正、大气校正之后的辐射校正、大气校正之后的大气校正等。
-大气校正:高光谱数据中的大气散射会引入许多噪声。
大气校正的目的是根据大气散射的物理原理,通过对高光谱数据进行光谱校正和辐射校正,去除大气散射带来的干扰。
-辐射校正:高光谱数据中的辐射能量受到地面温度、雨水和云等因素的影响,导致数据中存在辐射偏差。
辐射校正的目的是根据卫星的辐射源数据和大地辐射能量的关系,对高光谱数据进行校正,消除辐射偏差。
-大气校正之后的大气校正:在进行大气校正之后,仍然可能存在一些小范围的大气散射。
大气校正之后的大气校正的目的是再次进行大气散射校正,进一步提高图像质量。
2.特征提取特征提取是高光谱数据处理流程中的核心步骤,其主要目的是从高光谱数据中提取出对地物分类和解译有用的特征信息。
-光谱特征提取:光谱特征提取是指根据高光谱数据中不同波段的辐射能量变化,提取出反映地物光谱特性的特征参数。
常用的光谱特征包括:光谱曲线的均值、方差、斜率等。
-空间特征提取:空间特征提取是指从高光谱数据的空间分布中提取出反映地物空间特性的特征参数。
常用的空间特征包括:纹理特征、形状特征、边缘特征等。
3.分类与监督解译分类与监督解译是高光谱数据处理流程中的关键步骤,其主要目的是将预处理和特征提取之后得到的数据进行分类和解译。
-监督分类:监督分类是指通过已知的训练样本数据,建立分类模型,并将该模型应用于未知的高光谱数据,将数据分成不同的类别。
常用的监督分类方法有:最大似然分类、支持向量机分类、随机森林分类等。
-非监督分类:非监督分类是指利用高光谱数据本身的统计特性,将数据按照统计特性对其进行分类。
常用的非监督分类方法有:K-均值聚类、多元高斯聚类等。
4.地物解译与验证地物解译与验证是高光谱数据处理流程中的最后一步,其主要目的是对分类结果进行解译和验证,以评估分类的准确性。
envi高光谱数据处理流程

envi高光谱数据处理流程
envi高光谱数据处理流程是一种非常常用的数据处理方法,主要应用于高光谱遥感数据处理。
其主要流程包括:数据预处理、光谱反射率计算、特征提取与分类等几个步骤。
1、数据预处理:数据预处理包括数据校正、波长校准及大气校正等过程。
其中,数据校正主要是将数据进行去背景、去噪、去影响等处理。
波长校准是将采集到的数据进行波长校准,保证数据的准确性。
大气校正是将采集的数据进行大气校正,降低大气对数据的影响。
2、光谱反射率计算:光谱反射率计算是将采集到的数据进行转换,得到地表反射率信息。
这个过程主要通过将采集到的数据进行比对处理,计算出地表反射率。
3、特征提取:特征提取是将采集到的数据进行特征分析,得到地物分类信息。
这个过程主要通过对采集到的数据进行分析,计算出每个波段的特征,然后根据这些特征进行分类。
4、分类:分类是将采集到的数据进行分类,识别出地表不同的类别。
这个过程主要通过将采集到的数据进行分析,然后根据不同的特征进行分类,最终得到地表不同的类别。
总之,envi高光谱数据处理流程是一个比较全面、细致的数据处理方法,可以有效地对高光谱遥感数据进行处理,得到准确的地表信息。
- 1 -。
ENVI高光谱数据处理流程

ENVI高光谱数据处理流程一、显示图像波谱1.打开文件:主菜单中,File→Open Image File→文件名.raw或者Window→Available Bands List→File →Open Image File→文件。
2.显示真彩色图像:波段列表(Available Bands Lis)中,右键→Load TrueColor。
3.*设置像素大小:主窗口(Display)中,右键→Pixel Locator。
4.绘制波谱:主窗口中,右键→Z Profile(Spectrum)。
5.收集任意点波谱:Spectral Profile中,Options→Collect Spectra,点击图像任6.光谱平滑:Spectral Profile中,Options→Set Z Profile Avg Window,将window7.部分光谱:主菜单→Basic Tools→Resize Data(Spatial/Spectral)→Spectral Subset,选择需要的光谱波段。
生成新的文件,右键→Load True Color to<new>。
显示新图像。
8.关闭所有文件:File→Close All Files。
二、标准波谱库主菜单→Spectral→Spectral Libraries→Spectral Library Viewer→安装文件夹下,ITT\IDL\IDL80\products\envi48\spec_lib。
共有usgs_min、veg _lib、jpl_lib、jhu_lib四个标准波谱库。
在Spectral Library Viewer中,单击波谱名称,自动显示波谱。
三、自定义波谱库1.输入波长范围:在菜单中,Spectral Spectral Library→Spectral Library Builder2.波谱收集:以从影像数据中收集波谱为例:a)打开高光谱图像,收集任意点波谱。
高光谱数据预处理流程

高光谱数据预处理流程
高光谱数据预处理流程主要包括以下步骤:
噪声去除:由于高光谱图像数据常常受到多种噪声的干扰,如设备噪声、环境噪声等,这些噪声会影响图像的质量,因此需要采取有效的方法去除。
常用的噪声去除方法包括平滑滤波、中值滤波和小波变换等。
图像校正:由于高光谱成像仪的工作原理和环境因素的影响,常常会导致图像出现几何畸变和辐射失真等问题。
因此,需要进行图像校正,以恢复图像的几何形状和辐射特性。
常用的图像校正方法包括多项式回归、仿射变换和径向畸变校正等。
图像融合:高光谱图像数据通常由多个波段组成,这些波段之间存在一定的相关性。
为了提高图像的分辨率和信息量,可以将多个波段进行融合,从而得到一个更加丰富的图像。
常用的图像融合方法包括基于像素的融合、基于区域的融合和基于小波变换的融合等。
归一化:高光谱图像数据的量级通常很大,不同波段之间的数值范围也存在较大的差异。
为了使不同波段之间的数值具有可比性,需要进行归一化处理。
常用的归一化方法包括最大最小归一化、对数归一化和标准化等。
请注意,具体流程可能因数据类型和研究需求而有所差异。
在实际操作中,建议咨询具有相关经验和专业知识的工程师或研究人员。
另外,高光谱数据处理流程除了以上预处理步骤外,还包括显示图像波谱、选择需要的光谱波段进行输出等步骤。
具体流程可能因实际情况而有所不同,建议根据实际情况调整和优化处理流程。
高光谱遥感资料处理方法与数据融合

高光谱遥感资料处理方法与数据融合高光谱遥感技术是一种获取地球表面物质光谱信息的重要手段,其应用广泛,如农业、环境监测、地质勘探等领域。
然而,高光谱数据量大、维度高、处理复杂,因此需要有效的处理方法与数据融合技术来提取有价值的信息。
高光谱遥感资料处理方法主要包括预处理、特征提取、分类与解译等几个步骤。
首先,预处理是为了去除噪声、校正辐射、减少大气效应等,以确保数据的准确性。
在预处理过程中,常用的方法有大气校正、波段选择、空间和时间滤波等。
特征提取是高光谱资料处理的核心环节,目的是从大量的光谱数据中提取出目标物体的特征,以便进行分类与解译。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、小波变换等。
PCA通过线性组合将高维的原始光谱数据转换为低维的主成分变量,以达到减少数据维度、保留重要信息的目的。
LDA是一种监督方法,它可以通过最大化类别内的散度和最小化类别间的散度来提取判别信息。
小波变换则可以将光谱信号分解为不同尺度的频域成分,从而更好地表达光谱特征。
分类与解译是高光谱遥感图像处理中的重要环节,它可以通过将像素分为不同的类别或解释对象,以获得对地物的识别与定量分析。
在分类过程中,常用的方法有最大似然法、支持向量机、人工神经网络等。
最大似然法基于统计模型,通过计算概率分布最大的类别来进行分类。
支持向量机是一种基于统计学习的分类方法,它通过寻找一个最优的超平面将数据集分割为不同的类别。
人工神经网络则模拟人脑神经元的运作规律,通过多层神经元的连接来进行模式识别和分类。
除了高光谱遥感资料的处理方法,数据融合也是高光谱遥感技术中的关键环节之一。
数据融合是将来自不同传感器的遥感数据进行整合,以获得更全面、准确的信息。
常用的数据融合方法有基于物理模型的融合和基于统计方法的融合。
基于物理模型的融合是通过数学模型和物理原理将不同传感器的观测分量融合,以得到具有更高空间分辨率和光谱分辨率的数据。
高光谱遥感影像数据处理与分析技术研究

高光谱遥感影像数据处理与分析技术研究遥感技术是指利用航空、航天等手段对地球表面进行观测和记录,以获取地表信息的一种手段。
其中,高光谱遥感影像数据处理与分析技术是遥感技术中的一个重要分支。
高光谱遥感影像数据具有丰富的光谱信息,能够提供更多细节和特征,因此在农业、地质、环境等领域有着广泛的应用。
本文将从数据处理和数据分析两个方面对高光谱遥感影像数据进行研究,探讨其应用前景和方法。
一、高光谱遥感影像数据处理技术1. 数据获取和预处理高光谱遥感影像数据的获取主要通过卫星、飞机等平台进行,包括可见光和红外光谱。
首先,需要对获取的原始数据进行预处理,如图像去噪、辐射校正、几何校正等。
这些步骤能够提高数据质量,为后续分析提供可靠的基础。
2. 光谱信息提取和分析高光谱遥感影像数据的独特之处在于其具有连续的光谱信息。
在光谱信息的提取和分析过程中,可以采用一些常用的算法和方法。
例如,主成分分析(PCA)能够提取影像中的主要特征,并减少数据维度,帮助人们理解数据的空间分布;线性混合模型(LMM)可用于定量分析影像中的不同物质的含量。
此外,还可以结合光谱库和分类器进行分析,以提高分类和识别的准确性。
3. 特征提取和目标检测高光谱遥感影像数据中的每个像元都包含大量的光谱信息,因此可用于进行特征提取和目标检测。
人们可以基于已知目标的光谱特征,利用聚类、分类、分割等方法,对影像中的目标进行准确识别和提取。
这些特征可以用于农作物生长监测、病害检测、水质评估等领域。
二、高光谱遥感影像数据分析技术1. 植被指数分析植被指数可以通过高光谱遥感影像数据的光谱信息计算得出,例如归一化植被指数(NVI)、修正的归一化植被指数(MNVI)等。
植被指数可以用来评估植被的生长状况、叶绿素含量、土壤水分等因素。
通过对高光谱遥感影像数据进行植被指数分析,可以提供农作物的生产效率评估、植被变化监测等重要信息。
2. 土地覆盖分类高光谱遥感影像数据能够提供更多的光谱细节,因此在土地覆盖分类中有着广泛的应用。
ENVI高光谱数据处理流程

ENVI高光谱数据处理流程ENVI(Environment for Visualizing Images)是一款功能强大的遥感数据处理软件,用于高光谱数据的处理和分析。
它提供了许多功能模块,可以进行数据导入、预处理、特征提取、分类和可视化等操作。
下面是ENVI高光谱数据处理流程的详细介绍。
1.数据导入首先,我们需要将高光谱数据导入ENVI软件。
ENVI支持导入多种高光谱数据格式,如Hyperion、AVIRIS等。
可以通过ENVI的文件菜单选择导入数据或者使用ENVI API导入数据。
2.数据预处理在数据导入之后,我们需要对高光谱数据进行预处理,以减少噪声和增强图像的质量。
ENVI提供了多种数据预处理方法,包括大气校正、大气校正和去除噪声。
可以根据数据的需求选择适当的预处理方法。
3.特征提取特征提取是高光谱数据分析的关键步骤。
在这一步骤中,我们可以利用ENVI提供的各种特征提取算法来提取数据中的有用信息。
ENVI提供了许多特征提取算法,包括主成分分析(PCA)、线性判别分析(LDA)、最大似然分类(MLC)等。
4.分类分类是高光谱数据处理的一个重要环节。
ENVI提供了多种分类算法,用于将数据分成不同的类别。
可以使用ENVI的分类工具对特征提取后的数据进行分类,根据分类结果进行应用。
5.可视化可视化是高光谱数据处理的最后一步。
ENVI提供了丰富的可视化工具,可以对数据进行可视化和可视化分析。
可以通过ENVI的图像菜单选择适当的可视化工具,并根据需要生成图像。
以上是ENVI高光谱数据处理的基本流程。
当然,根据具体的应用和需求,还可以根据需要选择其他的处理方法和工具。
此外,ENVI还支持自定义算法和脚本编程,以满足更高级的数据处理需求。
总结起来,ENVI高光谱数据处理流程包括数据导入、数据预处理、特征提取、分类和可视化等步骤。
通过这些步骤,我们可以对高光谱数据进行全面的处理和分析,从而获取有用的信息并进行进一步的应用。
ENVI高光谱分析

ENVI高光谱分析ENVI高光谱分析是一种用于图像处理和数据分析的软件平台,主要用于处理和分析在大气、地球表面和水体等领域获取的高光谱数据。
高光谱数据是指在较窄波段范围内获取的光谱信息,通常包含数百个波段。
ENVI高光谱分析利用这些波段信息,可以提供更详细、更精确的数据结果,有助于理解地球表面的复杂变化和环境过程。
1.数据预处理:ENVI高光谱分析可以对高光谱数据进行预处理,包括大气校正、辐射校正、几何纠正等。
这些预处理步骤可以消除由于大气、仪器和环境等因素引起的杂乱噪声,并提高数据的质量和可靠性。
2.特征提取:ENVI高光谱分析可以通过使用不同的数学和统计算法,从高光谱数据中提取目标的特征信息。
这些特征可以用于分类、目标检测、遥感变化检测等应用。
3.数据可视化:ENVI高光谱分析可将高光谱数据以多种方式进行可视化,包括光谱曲线、散点图、等高线、伪彩色图等。
这些可视化方法有助于用户直观地理解数据的内在规律和潜在关系。
4.数学建模和分析:ENVI高光谱分析提供了多种数学建模和分析工具,包括主成分分析、线性回归、非线性回归、聚类分析等。
这些工具可以帮助用户识别数据中的模式和趋势,从而进行进一步的数据分析和解释。
5.地物分类:ENVI高光谱分析可进行高光谱图像的地物分类,包括监督分类和非监督分类。
监督分类需要用户提供一些参考样本,用于训练分类器;非监督分类则通过统计分析和像元聚类等方法,自动划分不同地物类型。
6.数据挖掘:ENVI高光谱分析可以挖掘高光谱数据中的隐藏信息和趋势,帮助用户发现新的知识和洞见。
数据挖掘算法包括关联规则挖掘、聚类分析、分类分析等。
ENVI高光谱分析在许多领域具有广泛的应用,包括地球科学、环境监测、农业、气象、地质勘探等。
例如,在农业领域,ENVI高光谱分析可以帮助农民分析土壤和植被的光谱特征,以优化施肥、灌溉和作物管理等决策。
在环境监测领域,ENVI高光谱分析可以检测和监测大气污染、水体污染、土壤侵蚀等环境问题。
8专题高光谱数据的处理与分析

1.2 大气校正(一、起源)
• 太阳辐射通过大气以某种方式入射到物体表面然后再反射回传感 器
• 原始影像包含物体表面,大气,以及太阳的信息 • 如果想了解某一物体表面的光谱属性,就必须将它的反射信息从
大气和太阳的信息中分离出来。
示意图
大气散射
邻接反射
直接反射
1.2 大气校正(二、校正方法)
• 遥感图像的大气校正方法很多。这些校正方法按照校正后的结果 可以分为2种: - 绝对大气校正方法:将遥感图像的DN(Digital Number)值转 换为地表反射率、地表辐射率、地表温度等的方法。 - 相对大气校正方法:校正后得到的图像,相同的DN值表示相 同的地物反射率,其结果不考虑地物的实际反射率。
称SMACC)的端元自动提取。
4、高光谱图像物质识别
4 物质识别
• ENVI提供许多波谱分析方法,包括:二进制编码、波谱角分类、 线性波段预测(LS-Fit)、线性波谱分离、光谱信息散度、匹配 滤波、混合调谐匹配滤波(MTMF)、包络线去除、光谱特征拟合 、多范围光谱特征拟合等
4 物质识别
• 专题内容: - 用波谱角分析方法从高光谱图像中识别物质
• ENVI下FLAASH大气校正工具 - 基于MODTRAN4+辐射传输模型 - 支持高光谱和多光谱数据
1.2 大气校正(三、练习)
• 专题内容: - 用FLAASH对AVIRIS航空高光谱数据进行大气校正
• 数据: - “18-高光谱数据的处理与分析\1-大气校正”
2、波谱库
2.1 标准波谱库(一)
• 步骤 - 输入波长范围 - 波谱收集 - 保存波谱库
2.3 波谱库交互
•波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样 式、添加注记、优化显示曲线等
高光谱数据处理

高光谱数据处理
高光谱数据处理是一种将高光谱图像转换为有用信息的过程。
高光谱图像是由许多波段组成的图像,每个波段都对应着一个特定的光谱范围。
高光谱数据处理的目标是从这些波段中提取出有用的信息,以便更好地理解图像中的内容。
高光谱数据处理可以应用于许多领域,包括地球科学、生物医学、环境监测以及食品安全等。
对高光谱图像进行处理可以帮助我们了解不同物质的光谱特征,从而识别和分析它们。
例如,在地球科学中,处理高光谱图像可以帮助我们识别不同的地表材料,如岩石、植被和水体。
高光谱数据处理包括许多技术和方法,如预处理、降维、分类和聚类等。
预处理是指在进行其他处理之前对高光谱图像进行的一系列操作,如去噪、光谱校正和几何校正等。
降维是指将高光谱图像中的波段数目减少到一个更小的数量,以便更容易处理和分析。
分类是指将高光谱图像中的像素分成不同的类别,以便进一步分析和识别。
聚类是指将高光谱图像中的像素分成不同的群组,以便更好地理解和分析数据。
总之,高光谱数据处理是一种非常有用的技术,可以帮助我们更好地理解和分析高光谱图像中的数据。
通过使用各种处理技术和方法,我们可以从高光谱图像中提取出有用的信息,并用于各种应用领域。
高光谱数据预处理流程

高光谱数据预处理流程高光谱数据预处理流程是高光谱数据处理的第一步,它的主要目标是对原始高光谱数据进行去噪、去偏差、交叉校准等操作,从而提高数据的质量和准确性。
本文将介绍高光谱数据预处理的基本流程,包括数据的获取与清洗、去除异常值、光谱归一化、数据插值和交叉校准等。
第一步:数据获取与清洗高光谱数据的获取可以通过遥感技术获取,并且数据包含了大量的光谱波段信息。
在进行数据处理之前,首先需要对数据进行筛选和清洗。
对于可能存在的杂散数据和异常数据,可以通过专业的数据处理软件进行自动筛选或手动清洗,并将其剔除或进行修正。
第二步:去除异常值在进行高光谱数据处理之前,需要对数据进行异常值的检测与去除。
异常值通常是由于各种原因引起的数据异常,对后续的数据处理和分析会产生干扰和误导,并影响结果的准确性。
常见的异常值检测方法包括离群点检测和统计方法等,可以根据具体情况选择合适的方法进行异常值的检测和处理。
第三步:光谱归一化光谱归一化是将不同光谱波段的数据归一到相同的尺度上,以消除不同波段间的尺度差异,便于后续的数据处理和分析。
常见的光谱归一化方法包括最大值归一化、最小值归一化、标准化等。
其中最大值归一化是将原始光谱数据除以最大值,并将结果缩放到0-1之间,最小值归一化则是将原始数据减去最小值,并将结果缩放到0-1之间,标准化则是通过计算原始数据的均值和标准差,将数据转化为均值为0,标准差为1的分布。
第四步:数据插值数据插值是将高光谱图像上的离散采样点的数值按一定规律填充到整个光谱波段上,以弥补数据的不连续和缺失。
常见的数据插值方法包括线性插值、多项式插值和Kriging插值等。
其中线性插值是通过连接相邻的采样点,按比例确定插值点的数值;多项式插值则是利用多项式函数拟合已知的离散点数值,再求解插值点的数值;Kriging插值则通过空间自相关性进行插值,考虑了离散点之间的相关性。
第五步:交叉校准交叉校准是通过与已有参考数据进行比对,评估和校准高光谱数据的准确性和可靠性。
高光谱信息采集及应用说明

高光谱信息采集及应用说明一、高光谱成像技术简介通俗地讲,高光谱成像技术就是将一个范围的光谱按照一定的间隔进行分光形成光谱间隔很小的一系列光谱集合,再分别用这些光谱进行成像,生成一系列图像集合。
由于高光谱将光谱分成了间隔很小的“纯净”光,因此形成的影像可以展示该波段所具有的特性。
一般情况下,400nm-1000nm的范围内,可分成200个以上的谱段,即可获取超过200幅图像,在文物图像上选取任一点,读取200幅图像上相同位置点的光谱反射率,形成一条光谱曲线,可以标识该点对光谱敏感性,形成“文物指纹”。
二、高光谱应用介绍及案例高光谱大量应用于全球的文物及艺术品发掘、颜料分析、收藏分析、签名真伪分析等领域,具体包括笔记分析、墨水分析、颜料分析和化学物质分析等。
文物分析的特点为非接触、无损、定性定量结合、可视化和实时。
(1)强化模糊或被遮蔽的痕迹图1. 发现隐藏字迹如上图1所示,BEVIN家族拥有一幅画作,通过高光谱成像分析,在短波红外段寻找出隐藏的作者独特签名“D”,通过于作者藏于其他馆的画作比对,确定该画作是西班牙画家Diego Velazquez的作品,该画作大幅增值。
图2. 发现《独立宣言》涂改字迹如上图2的美国《独立宣言》手稿,通过高光谱分析,发现了隐藏的字迹,揭示处托马斯-杰斐逊在起草时写上“我们的人民”(our fellow subjects)之后涂改为“我们的公民”(our fellow citizen),这对于研究美国历史具有重要意义。
图3. 发现烧焦纸片的字迹如上图3的烧焦纸片,进行高光谱成像后采用PCA方法进行图像分析,发现了纸片上的字迹。
(2)艺术品监控图4.可见光与紫外荧光下的艺术品如上图4所示的艺术品,进行紫外荧光假彩色成像后,可以发现艺术品外层掉漆现象,方便及时修补。
(3)探测退化标志和研究保存环境的影响图5. 梵高画作保存环境研究如上图5所示的梵高画作,可见光下笔触难以分辨,无法判断画作材质是否有变质现象,进行外红假彩色成像后,红色墨迹为正常鞣酸铁墨水,黑色墨迹为变质墨水,警示博物馆需要尽快采取行动。
高光谱数据处理基本流程

高光谱分辨率遥感用很窄(10-2l)而连续的光谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,每个像元均可提取一条连续的光谱曲线,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。
高光谱遥感具有不同于传统遥感的新特点:(1)波段多--可以为每个像元提供几十、数百甚至上千个波段;(2)光谱范围窄——波段范围一般小于10nm;(3)波段连续——有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱;(4)数据量大—-随着波段数的增加,数据量成指数增加;(5)信息冗余增加—-由于相邻波段高度相关,冗余信息也相对增加.优点:(1)有利于利用光谱特征分析来研究地物;(2)有利于采用各种光谱匹配模型;(3)有利于地物的精细分类与识别。
ENVI高光谱数据处理流程:一、图像预处理高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气纠正.辐射校正一般由数据提供商完成。
二、显示图像波谱打开高光谱数据,显示真彩色图像,绘制波谱曲线,选择需要的光谱波段进行输出。
三、波谱库1、标准波谱库软件自带多种标准波谱库,单击波谱名称可以显示波谱信息。
2、自定义波谱库ENVI提供自定义波谱库功能,允许基于不同的波谱来源创建波谱库,波谱来源包括收集任意点波谱、ASCII文件、由ASD波谱仪获取的波谱文件、感兴趣区均值、波谱破面和曲线等等。
3、波谱库交互浏览波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样式、添加注记、优化显示曲线等四、端元波谱提取端元的物理意义是指图像中具有相对固定光谱的特征地物类型,它实际上代表图像中没有发生混合的“纯点”。
端元波谱的确定有两种方式:(1)使用光谱仪在地面或实验室测量到的“参考端元”,一般从标准波谱库选择;(2)在遥感图像上得到的“图像端元”。
多元散射校正(msc)处理高光谱

多元散射校正(msc)处理高光谱多元散射校正(MSC)是一种用于高光谱数据处理的方法,它能够有效地消除样品中由于光散射而引起的干扰,提高光谱数据的质量和可靠性。
在光谱分析领域,光散射是一个常见的问题,它会使得光谱数据产生偏移和变形,影响定量分析的准确性和可靠性。
因此,开发一种有效的光散射校正方法对于高光谱数据处理具有重要意义。
Msc处理方法基于多变量分析原理,它通过对样品的光谱数据进行预处理,将光散射引起的干扰消除,从而得到更准确和可靠的光谱信息。
Msc处理方法的基本原理是通过建立光谱数据的数学模型,利用散射效应的物理特性,对样品中的散射效应进行有效的校正。
这种方法可以减小数据中因散射干扰引起的信号变化,使得数据更加稳定和可靠。
因此,MSC处理在高光谱数据处理中具有重要的应用价值。
在实际应用中,MSC处理方法通常与其他光谱预处理方法相结合,如基线校正、标准正化等,以进一步提高数据的质量和可靠性。
通过将MSC处理与其他预处理方法相结合,可以有效地消除光谱数据中的干扰因素,提高定量分析的准确性和可靠性。
MSC处理方法在不同领域都有广泛的应用。
在农业领域,MSC处理方法可以用于农产品的质量检测和品质控制,通过对农产品光谱数据的处理,可以有效地分析其品质和成分。
在医学领域,MSC处理方法可以用于医学影像的分析和诊断,通过对医学光谱数据的处理,可以帮助医生进行癌症早期诊断和疾病监测。
在环境监测领域,MSC处理方法可以用于大气和水体中有害物质的监测和分析,通过处理大气和水体中的光谱数据,可以帮助环境保护部门进行大气和水体污染的监测和管理。
总之,MSC处理方法是一种在高光谱数据处理中具有重要意义的方法,它可以有效地消除样品中散射引起的干扰,提高数据的质量和可靠性。
在实际应用中,MSC处理方法已经得到了广泛的应用,并在不同领域发挥了重要的作用。
随着高光谱技术的不断发展,相信MSC处理方法在未来会得到更广泛的应用,并为高光谱数据处理提供更加有效和可靠的方法。
基于无监督聚类的高光谱数据标注方法

基于无监督聚类的高光谱数据标注方法
基于无监督聚类的高光谱数据标注方法主要通过对高光谱数据进行聚类分析,将数据点划分为不同的簇,从而实现数据的标注。
具体的步骤如下:
1. 数据预处理:对高光谱数据进行预处理,包括数据的去噪、归一化、降维等操作,以提高聚类效果和降低计算复杂度。
2. 聚类算法选择:选择合适的聚类算法对数据进行聚类,常用的聚类算法包括K-means、DBSCAN、层次聚类等。
根据高光谱数据的特点,选择适合的聚类算法。
3. 簇数确定:确定聚类的簇数或者密度阈值,通过试验和评价指标选择合适的参数值。
常用的方法包括肘部法、轮廓系数等。
4. 聚类结果分析:根据聚类结果,对每个簇进行分析和解释,识别出不同的地物类别。
可以使用聚类中心、密度连通图、热图等进行可视化分析。
5. 数据标注:根据聚类结果对高光谱数据进行标注。
可以根据地物类别的先验知识进行标注,也可以通过颜色、形状等特征进行标注。
6. 标注结果评估:对标注结果进行评估,可以使用准确率、召回率、F值等指标评估标注的准确程度。
总之,基于无监督聚类的高光谱数据标注方法可以帮助实现对高光谱数据的自动标注,减轻人工标注的负担,并提供给后续的地物分类、目标检测等任务使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高光谱数据的处理步骤
1.先将原始的光谱反射在软件Viewspec pro 中进行异常值的删除,然后将重复的测量进行平均。
具体步骤如下
双击图标打开软件,(图1)点击File open 打开文件,默认路径为ViewSpecPro文件夹。
为了使打开和存储路径是储存数据的文件夹,需要对打开路径进行修改
将导出的txt文本中的直接复制到execl中。
此时需要注意小数位数的选择。
4到5位较好。
在此软件中可以进行反射率的一阶导,二阶导等的基础变化。
2利用origin对数据进行平滑。
步骤如下
首先打开软件将波段和对应的反射率复制进去然后进行一介导和平滑。
界面如下
一介导
平滑
制图比较效果
原始的
一介导平滑前
一介导平滑后
在ENVI中统去除
首先建立光谱数据库步骤如下
文件的保存为sli格式
点击polt出现右面的图
连续统去除
统去除后的效果图
统去除数据的保存
同去除前后的效果比较数据的打开类似前面。