统计学各章复习要点(1)

合集下载

统计学各章节期末复习知识点归纳(原创整理精华,考试复习必备!)

统计学各章节期末复习知识点归纳(原创整理精华,考试复习必备!)

统计学原理与实务各章节复习知识点归纳(考试复习资料精华版-根据历年考试重点以及老师画的重点原创整理)第一章总论重点在“第三节:统计学中的基本概念”考点一:掌握以下四组概念(含义及举例)——肯定考一个名词解释!①总体、总体单位(统计)总体:是由客观存在的,具有某种共同性质的许多个别事物构成的整体。

总体单位:构成总体的个别事物。

②标志、标志值及分类标志:说明总体单位特征的名称。

分类:Ⅰ按性质不同a.品质标志:说明总体单位的品质特征,一般用文字表现。

(有些品质标志虽然以数量表现,但实质表现产品质量差异。

例如产品质量的具体表现未“一等、二等、三等”。

)b.数量标志:说明总体单位的数量特征。

只能用数值来表现。

Ⅱ按变异情况可变标志:当一个标志在各个总体单位表现不尽相同时称为可变标志不变标志:……都相同……不变标志。

标志值:标志的具体表现。

③变量、变量值变量:指数量标志。

变量值:指数量标志值,具有客观存在性。

④指标的含义及分类(统计)指标:是综合反映统计总体某一数量特征的概念和数值,简称指标。

a.按其反映总体现象内容不同:数量指标(绝对数,绝对指标,总量指标),质量指标(相对数或平均数,相对指标和平均指标)。

b.按其作用不同:总量指标,相对指标和平均指标。

c.按反映的时间特点不同:试点指标和时期指标d.计量单位的特点:实物指标、价值指标和劳动指标。

★指标和标志的区别与联系:区别:①标志是说明总体单位特征的名称;指标是说明总体的数量特征;②标志既有反映总体单位数量特征的,也有反映总体单位品质特征;而指标只反映总体的数量特征;③凡是统计指标都具有综合的性质,而标志一般不具有。

联系:①许多指标由数量标志值汇总而得;②指标与数量标志可随统计研究目的而改变;课后习题:社会经济统计学研究对象的特点是:数量性、总体性、变异性。

统计研究运用的方法主要包括:大量观察法、统计分组法、综合指标法、统计模型法标志值就是标志表现。

第二章统计调查考点一:统计报表的分类①填报内容和实施范围:国家、部门和地方统计报表②调查范围:全面、非全面③报送周期长短:日报、旬报、月报、季报、半年报和年报④填报单位:基层、综合报表考点二:“普查”的含义普查:是普遍调查的简称。

统计学总复习

统计学总复习
2、抽样调查具有的优越性:经济性;时 效性;准确性;灵活性。
3、抽样调查的应用范围
抽样调查的应用范围
1、抽样方法能够解决全面调查无法或难以解 决的问题。
2、抽样方法可以补充和订正全面调查的结果。
3、抽样方法可以应用于生产过程中产品质量 的检查和控制。
4、抽样方法可以用于对总体的某种假设进行 检验。
社会经济统计学所研究的数量方面具有 以下的特点:社会性;总体性;变异性。
二、统计的职能
1、信息职能 2、咨询职能 3、监督职能
三、统计总体和总体单位
1、统计总体就是根据一定的目的和要求所确定的 研究事物的全体。
2、总体单位是指构成总体的个体单位,它是总体 的基本单位。
3、总体和单位的关系
没有总体单位,总体也就不存在;没有总体,也 就无法确定总体单位。
统计总体和总体单位不是固定不变的,随着研究 目的的转变,它们是可以转换的。
四、单位标志和标志表现
1、单位标志是总体各单位所共同具有的属性和特征。
品质标志表明单位属性方面的特征。例如:姓名、性 别等都是品质标志。
数量标志表明单位数量方面的特征。例如:工龄、工 资水平等都是数量标志。
2、标志表现是标志特征在各单位上的具体表现。
5
25
8
40
3
15
20
100
第四章 综合指标
一、总量指标的分类 二、相对指标的分类 三、平均指标的分类 四、变异指标的涵义及其作用 五、平均指标和变异指标的计算
一、总量指标的分类(1)
1、总量指标按其反映的内容不同,分为 总体单位总量和总体标志总量。
总体单位总量:指总体内所有单位的总数, 又称单位总量。

E、 某人职业是“教师”,这里的“教师”是标志

统计学复习重点

统计学复习重点

统计学复习重点统计学是一门与数据处理和分析相关的学科,是现代社会经济、科技以及各种社会活动中不可缺少的一部分。

在科学研究过程中,统计学被广泛应用,可以从大量数据中提取有用的信息,通过数据分析和建模为决策提供有力支持。

本文就统计学的复习重点进行详细说明。

第一、统计数据的概念和分类在统计学中,数据是指反映某种现象、特性或变量的数值、文本、声音、图像等信息,可以分为定量数据和定性数据。

定量数据是指可用数字来量化、度量的数据,如年龄、体重、身高等;而定性数据则是多数情况下不可用数字来量化、度量的数据,如性别、颜色、身份等。

同时,数据在统计分类上还分为连续型数据和离散型数据。

连续型数据指的是可以取任意实数的数据,如身高、体重等;离散型数据则是取一定范围内的整数值,如班级人数、出生人数等。

第二、数据的集中趋势和离散程度数据的集中趋势是指一组数据中心位置的特征,包括均值、中位数和众数等。

其中均值是指各数据值之和除以总的数据数量的统计量,常用于评估数据的平均水平。

中数是指将一组数据按照大小排列后位于中间的数,常用于评估数据的中间水平。

而众数是指在一组数据中出现次数最多的数,常用于评估数据中出现频率高的数值。

数据的离散程度是指一组数据分散程度的特征,包括方差、标准差、极差等。

其中方差是指各数据与均值之差平方和的平均值,反映了一组数据的分散程度。

标准差是指方差的平方根,是描述数据变异程度的一种标准。

极差是指一组数据中最大数和最小数之差。

第三、随机变量及其分布随机变量是指试验结果对应的一种数字特征,分为离散型随机变量和连续性随机变量。

随机变量的概率分布是指随机变量所有可能取到的值与其概率的对应关系。

常见的概率分布有伯努利分布、二项分布、泊松分布和正态分布等。

第四、假设检验假设检验是一种常见的统计方法,主要用于检测统计量的显著性。

假设检验分为参数检验和非参数检验,参数检验需要对总体分布的假定,而非参数检验则不需要对总体分布的假定。

(完整版)统计学期末复习重点

(完整版)统计学期末复习重点

统计总体:统计总体是根据一定目的确定的所要研究事物的全体,它是客观存在,并在某一相同性质基础上结合起来的由许多个别事物组成的整体,简称总体。

样本:是指在全及总体中按随机原则抽取的那部分单位所构成的集合体。

算术平均数:算术平均数是统计中最基本、最常用的一种平均数,它的基本计算形式是用总体的单位总数去除总体的标志总量。

调和平均数:是根据变量值的倒数计算的,是变量值倒数的算术平均数的倒数,也叫倒数平均数。

简单分组:是指对所研究的总体按一个标志进行分组。

复合分组:复合分组是指对所研究的总体按两个或两个以上的标志进行的多层次分组。

结构相对指标:结构相对指标是表明总体内部的各个组成部分在总体中所占比重的相对指标,也叫比重指标。

强度相对指标:是指两个性质不同,但有一定联系的总量指标数值之比。

类型抽样:又称分类抽样或分层抽样,它是先将总体按某个主要标志进行分组(或分类),再按随机原则从各组(类)中抽取样本单位的一种抽样方式。

机械抽样:它是将总体各单位按某一标志顺序排列,然后按固定顺序和相等距离或间隔抽取样本单位的抽样组织方式。

综合指数:凡是一个总量指标可以分解为两个或两个以上的因素指标时,为观察某个因素指标的变动情况,将其他因素指标固定下来计算出的指数称为综合指数。

平均指数:平均指数法是以个体指数为基础来计算总指数,根据选用的权数不同,平均指数法可以进一步分为加权算术平均法,加权调和平均法,固定权数加权平均法。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

回归分析:现象之间的相关关系,虽然不是严格的函数关系,但现象之间的一般关系值,可以通过函数关系的近似表达式来反映,这种表达式根据相关现象的实际对应资料,运用数学的方法来建立,这类数学方法称为回归分析。

统计调查:就是根据统计研究的目的、要求和任务,运用各种科学的调查方法,有计划、有组织的搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的调查资料的活动过程。

统计学重点部分归纳

统计学重点部分归纳

统计学重点部分归纳 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第三章全距也称极差,是一组数据的最大值与最小值之差。

R=最大值-最小值组距分组数据可根据最高组上限 -最低组下限计算。

四分位数:数据按大小顺序排序后把分割成四等分的三个分割点上的数值。

SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。

Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。

如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。

四分位距等于上四分位数与下四分位数之差IQR=Q3-Q1反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。

不受极端值的影响。

可以用于衡量中位数的代表性。

方差是一组数据中各数值与其算术平均数离差平方的平均数,标准差是方差正的平方根。

是反映定量数据离散程度的最常用的指标。

离散系数:标准差与其相应的均值之比,表示为百分数。

特点:(1)反映了相对于均值的相对离散程度;(2)可用于比较计量单位不同的数据的离散程度;(3)计量单位相同时,如果两组数据的均值相差悬殊,离散系数可能比标准差等绝对指标更有意义数据分布的不对称性称作偏态。

偏态系数就是对数据分布的不对称性(即偏斜程度)的测度。

峰度:数据分布的扁平或尖峰程度。

峰度系数:数据分布峰度的度量值,对数据分布尖峰或扁平程度的测度,一般用K表示。

箱线图用于描述数据分布特征的一种图形。

最简单的箱线图可以根据数据的最大值、最小值和三个四分位数绘制的:先根据三个四分位数Q1、Q2、Q3画出中间的盒子,然后由盒子两端分别向最大、最小值连线。

在SPSS中标准的箱线图一般是这样绘制的:先根据三个四分位数Q1、Q2、Q3画出中间的盒子;由Q3至Q3+*IQR区间内的最大值向盒子的顶端连线,由Q1至*IQR区间内的最小值向盒子的底部连线;处于Q3+*IQR至Q3+3*IQR或者 *IQR至Q1-3*IQR范围内的数据用圆圈标出;大于Q3+3*IQR或者小于Q1-3*IQR的用星号标出。

统计总复习(1-4章)

统计总复习(1-4章)

二、统 计




统计调查方案是指导统计调查工作的纲领性文件。 调查方案设计的好坏直接影响到调查数据的质量。 不同调查任务的调查方案在具体内容和形式上会 有一定的差别,但包括的主要内容大体是一致的。 调查目的 调查对象
调查项目
统计调查方案的 内 容
调查表
调查时间和期限
调查的组织工作
调查目的是调查所要达到的具体目标 调查目的的写作应简明扼要
例如:人口普查的调查对象是具有中华人民共和国国籍并在中华
人民共和国境内常住的人。人口普查的调查单位是每一个人。
注意:调查单位与填报(报告)单位的区别。 如: ①对工业企业设备调查,
调查单位
填报单位 ②对工业企业产品、产量调查,
每台设备
工业企业
调查单位
工业企业
填报单位 工业企业
调查项目是调查的具体内容
单位标志 标志表现
性别 工种 年龄 工资
简称标志,说明总体单位的属性 或特征的名称。 标志的具体表现形式。
工人作为总体单位 例如:
标志
男 车工 38 1500元
标志表现

标志

品质标志:表明单位属性方面的特征。其表现只能是文 字。如:性别、工种等。 数量标志:表明单位数量方面的特征,其表现是数值。 如:年龄、工资等。
统计调查的 基本要求
准确性 及时性 全面性 系统性
统计调查的种类
按被研究总体 的范围划分 全 面 调 查 非 全 面 调 查 按调查登记的时 间是否连续划分 经 常 性 调 查 一 次 性 调 查 按统计调查的 组织形式划分 统 计 报 表 制 度 专 门 调 查 统计调查的主 要技术方法 观 察 记 录 法 报 告 法 询 问 调 查 法

统计学知识点梳理

统计学知识点梳理

统计学知识点梳理统计学第一章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

数据分析所用的方法分为描述统计方法和推断统计方法。

1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。

分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。

例如:支付方式、性别、企业类型等。

顺序数据:只能归于某一有序类别的非数字型数据。

例如:员工对改革措施的态度、产品等级、受教育程度等。

数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。

例如:年龄、工资、产量等。

统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。

1.2.2 观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。

观测数据:通过调查或观测而收集的数据。

例如:降雨量、GDP、家庭收入等。

实验数据:在实验中控制实验对象而收集到的数据。

例如:医药实验数据、化学实验数据等。

1.2.3 截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。

截面数据:在相同或近似相同的时间点上收集的数据。

例如:2012年我国各省市的GDP。

时间序列数据:同一现象在不同的时间收集的数据。

例如:2000-2012年湖北省的GDP。

1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。

样本:从总体中抽取的一部分元素的集合。

1.3.2 参数和统计量参数:用来描述总体特征的概括性数字度量。

统计量:用类描述样本特征的概括性数字度量。

例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。

这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。

统计学复习提纲

统计学复习提纲

统计学复习提纲一、名词解释1.统计学:收集、处理、分析、解释数据并从数据中得出结论的原则和方法。

2.描述统计:研究数据收集、处理和描述的统计学方法。

3.推断统计:研究如何利用样本信息推断总体特征的统计学方法。

4.变量:描述观察对象某种特征的概念。

5.总体和样本:总体:包含所有研究的全部个体(数据)的集合。

样本:从总体中抽取的一部分元素的集合。

6.样本量:构成样本的元素的数目。

7.参数和统计量:参数:对总体特征的某个概括性度量,包括总体均值、总体比例、总体方差。

统计量:对样本特征的某个概括性度量,包括样本均值、样本比例、样本方差。

8.系统抽样:也称等距抽样,先将总体各元素按某种顺序排列,并按某种规则确定一个随机起点,然后每隔一定的间隔抽取一个元素,直至抽取n个元素组成一个样本为止。

9.频数:落在某一特定类别的数据个数。

10.比例:一个样本(或总体)中各类别的频数占全部频数的比值。

11.比率:一个样本(或总体)中各不同类别频数之间的比值。

12.随机变量:事先不能确定其取值的变量。

13.期望值:随机变量的平均取值。

14.抽样分布:样本统计量的概率分布,是由样本统计量所有可能取值形成的相对频数分布。

15.标准误差:也称标准误,样本统计量分布的标准差,用于衡量样本统计量的离散程度。

16.中心极限定理:随着样本量n的增大(通常要求n>=30),不论原来的总体是否服从正态分布,样本均值的概率分布都将趋于正态分布,其分布的期望值为总体均值μ,方差为总体方差的1/n。

17.置信区间:由样本统计量构造出的总体参数在一定置信水平下的估计区间。

18.置信系数:也称置信水平,在重复构造的总体参数的多个置信区间中包含总体参数真值的区间所占的比例。

19.假设:对总体的某种看法,在参数检验中,假设是对总体参数的具体数值所作的陈述。

20.假设检验:利用样本提供的信息判断假设是否成立的统计方法。

21.原假设和备择假设:原假设:研究者想收集证据予以推翻的假设。

第一章 统计学基础知识-1

第一章 统计学基础知识-1

直 图 方
30 25 20 15 10 5 0 120% 100% 80% 60% 40% 20% 0%
频 率 累 % 积
频率
5.55 7.05 8.55 10.05 11.55 13.05 14.55 16.05 17.55 其 他
蔗 含 % 糖 量
第三节 统计特征数
反映数据资料的集中性趋势或分散程度的一些特 征数字,统称为统计特征数。 平均数,方差。 征数字,统称为统计特征数。如,平均数,方差 。 平均数: 一、集中性趋势的度量--平均数: 集中性趋势的度量 平均数 描述数据资料的集中性趋势, 描述数据资料的集中性趋势 , 反映资料的一般水 平及中心位置, 平及中心位置,并可作为资料的代表跟其它资料 比较。 比较。
(2)随机误差(偶然误差): )随机误差(偶然误差) 由很多不可避免且无法控制的偶然因素引起的误差。 由很多不可避免且无法控制的偶然因素引起的误差 。 分析测试中: 分析测试中: 分析方法本身的不完善性、仪器、环境、 分析方法本身的不完善性 、仪器、 环境、操作等各个 方面的偶然变化。 方面的偶然变化。 生物试验中: 生物试验中:产生随机误差的原因 供试材料的不均一性如种子质量、 供试材料的不均一性如种子质量、秧苗素质不可能完 全一致; 全一致; 光照、温度、湿度等影响生长的环境因子也可能随时 光照、温度、 随地发生的变化; 随地发生的变化; 农时操作的不一致性; 农时操作的不一致性; 其它不可预测的自然或人为因素的干扰。 其它不可预测的自然或人为因素的干扰。
编号 0 1 2 3 4 5 6 7 8 9 0 11.8 14.1 12.8 14.6 14.9 10.1 11.6 11.0 15.1 13.4 1 13.1 11.9 15.3 10.4 15.0 12.4 12.2 13.0 14.9 10.6 2 9.2 16.7 12.6 13.4 12.1 10.8 7.5 9.2 12.6 6.5 3 8.7 7.4 16.1 14.6 12.6 11.3 13.4 7.0 14.1 11.0 4 12.9 10.0 17.2 10.5 13.0 6.3 14.7 13.2 11.4 11.9 5 13.7 4.4 13.5 8.6 14.1 15.7 14.2 9.0 9.4 11.8 6 9.6 13.2 11.9 15.2 14.4 14.3 14.0 14.0 12.4 12.6 7 13.7 13.8 16.7 11.1 13.1 15.0 15.1 13.2 15.0 9.5 8 8.5 9.1 9.6 14.5 13.3 12.5 6.5 15.0 9.4 12.2 9 15.7 11.9 15.1 12.1 15.0 11.8 8.7 13.8 12.9 8.2

统计学各章节期末复习知识点

统计学各章节期末复习知识点

统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。

作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。

以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。

每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。

统计学重点知识归纳总结

统计学重点知识归纳总结

统计学重点知识归纳总结统计学是一门研究数据收集、分析、解释和呈现的学科。

它在各个领域都有广泛的应用,包括经济学、医学、社会科学等。

本文将对统计学的重点知识进行归纳总结,帮助读者更好地理解和应用统计学。

一、概率论基础概率论是统计学的基础,它研究的是随机现象发生的概率。

在概率论中,我们常用到以下几个重要的概念和定理:1. 事件与概率:事件是指试验的某种结果,概率是该事件发生的可能性大小。

概率的基本性质包括非负性、规范性和可列可加性。

2. 条件概率与独立性:条件概率是指事件A在另一事件B已经发生的条件下发生的概率。

两个事件A和B是独立的,当且仅当它们的联合概率等于各自的概率的乘积。

3. 随机变量与概率分布:随机变量是指随机试验结果的数值表示。

离散随机变量的概率分布通过概率质量函数来描述,连续随机变量的概率分布则通过概率密度函数来描述。

4. 期望和方差:随机变量的期望是其取值与其概率的乘积的总和。

方差衡量了随机变量离其期望值的偏离程度。

二、抽样与估计抽样是指从总体中选择一部分个体进行观察和测量的过程。

统计学中,我们常使用的抽样方法包括简单随机抽样、系统抽样和分层抽样等。

1. 抽样分布和抽样误差:当样本容量足够大时,样本的统计量(如均值和比例)的分布接近正态分布。

抽样误差是样本统计量与总体参数之间的差异。

2. 置信区间:置信区间是对总体参数的一个范围估计。

一般情况下,置信区间使用样本统计量和抽样分布来计算。

3. 抽样分布的中心极限定理:中心极限定理指出,当样本容量足够大时,样本均值的分布接近正态分布,且均值的期望等于总体均值。

4. 参数估计:利用样本数据来估计总体参数的值。

常用的参数估计方法包括最大似然估计和最小二乘估计。

三、假设检验与推断假设检验是统计学中的一种方法,用于判断总体参数是否符合某个特定的假设。

推断统计学是基于样本数据对总体特征进行推断的过程。

1. 假设检验的步骤:假设检验的步骤包括建立原假设和备择假设、选择显著性水平、计算检验统计量和进行决策。

统计学知识点总结[汇编]

统计学知识点总结[汇编]

统计学知识点总结[汇编]
统计学是一门非常重要的学科,在社会、经济、科技等方面都有着广泛应用。

下面是统计学的一些知识点总结。

一、描述统计学
1.1 中心趋势:平均数、中位数、众数
1.2 离散程度:极差、方差、标准差
1.3 分布形态:偏态、峰态
1.4 相关系数:相关系数、散点图
二、概率论
2.1 基本概念:样本空间、事件、概率、公式
2.2 事件关系:互余事件、互不相容事件、事件列举
2.3 条件概率:条件概率公式、乘法公式、全概率公式、贝叶斯公式
2.4 随机变量:离散型、连续型、期望、方差、标准差
2.5 分布函数:分布函数、密度函数、低维分布的例子
三、统计推断
3.1 参数估计:点估计、区间估计
3.2 假设检验:基本概念、原假设、备择假设、拒绝域、P值和α值、两个总体的假设检验
3.3 方差分析:单因素方差分析、双因素方差分析
3.4 相关与回归:线性相关、线性回归模型、最小二乘法
四、贝叶斯统计学
4.1 Bayes定理:应用、公式解释
4.2 先验分布:应用、选取方式
4.4 MCMC(马科夫蒙特卡罗)算法:作用、Metropolis-Hastings算法、Gibbs采样
以上是统计学的一些重要的知识点,这些知识点可以帮助我们更好地理解数据和信息的含义、处理方法和应用。

在实际应用中,我们需要综合应用统计学的各种方法来进行数据分析和决策。

统计学各章复习要点(1)

统计学各章复习要点(1)

第二节.统计整理.
一.统计整理的步骤:
1.设计方案 2.资料审核.3 资料分组.4.统计汇总.5.编制统计表,绘制统计图 ★设计方案和资料审核是前提; 资料分组是关健; 统计汇总是中心; 统计表, 统计图是结果 二.汇总前审核的内容: 审核数据的完整性.时效性.和准确性. 统计分组:按选定的标志把总体分成若干总分的科学分类. 1.统计分组按分组标志的多少分为简单分组和复合分组。简单分组是将总体按一个标志进行分组, 复合分组是将总体按两个或两个以上的标志重叠起来进行分组。 2..统计分组的原则:相同者合并.不同者分开.(分组后则形成,组内同质,.内间差异) 3.统组分组的作用:划分现象的类型.表明现象的内部结构.分析现象间的依存关系. 4.统计分组的关健:正确选择分组标志.
统计学原理复习要点
程新杰 第一章概述
第一节统计的含义和特点 一.统计的三个基本含义:统计工作.统计资料.统计学 二.统计学的三个发展阶段:古典统计学.近代统计学.现代统计学 三..社会经济统计学的研究对象:大量社会经济现象的数量方面. 四.统计工作的几个阶段:统计设计.统计调查.统计整理.统计分析.统计数据的提拱和管理. 五..统计研究的基本方法: .
- 2 - (共 7 页)
2.统计表按作用分:调查表.汇总表(整理表).分析表. 按主词是否分组及分组的程度分为:简单表:不做分组的统计表;分组表:只按一个标志分组.
复合分组表:按两个或两个以上标志分组形成的统计表.
(2)各变量值与算术平均数离差的平方之和为最小值.
(2)数量标志:说明总体单位的数量特征,能够量化,(如职工的工龄、工资水平,企业 的职工数、总产值、总产量、劳动生产率等。) 2.标志表现:即标志特征在各单位的具体表现。如果说标志是统计所要调查的项目,那么标志表现

统计学重点整理

统计学重点整理

SSR SST
yˆ i
i 1 n
yi
y2 y2
1
yi
i 1 n
yˆ i
yˆ 2 y2
(5)判定系数
i 1
i 1
,SST= SSR+SSE。所以 R2=85.43%,表明在产量的变差中,有 85.43%是由于生产
费用的变动引起的。(注:判定系数等于相关系数的平方,即 R2=r2)
se 估计标准误差
2 4 7 10
10 分享
WORD 格式可编辑 (1)计算汽车销售量的众数、中位数和平均数。 (2)根据定义公式计算四分位数。 (3)计算销售量的标准差。 (4)说明汽车销售量分布的特征。
详细答案: 将汽车销售数量按升序排序: 2 4 7 10 10 10 12 12 14 15 (1)汽车销售数量出现频数最多的是 10,所以众数 Mo=10(辆)
1 case(s)
A、B 两个班学生的数学考试成绩分布的茎叶图
(2)A
班的考试成绩的离散系数 vs
S (标准差)
==1.97/7.2=0.2736
x
Frequency 2 4 12 9 8 6 6 3
S (标准差)
B 班的考试成绩的离散系数 vs
x
=0.74/6.93=0.1068
(3)选择第二种。因为第二种方式平均等待时间为 6.96,比第一种方式平均等待时间短,而且第二种排队方式的标准差离散系数 V2=0.1068,小于第一种排队方式的标准差离散系数 V1=0.2736,说明第二种方式的等待时间离散程度也小于第一种。 (4)比较可知:A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比 A 班分散,且平均成绩较 A 班低。

统计学的重点知识点梳理

统计学的重点知识点梳理

统计学的重点知识点梳理统计学是一门研究数据收集、分析和解释的学科,它在各个领域都扮演着重要的角色。

无论是在科学研究、商业决策还是社会调查中,统计学都是必不可少的工具。

为了更好地理解和应用统计学,我们需要掌握一些重要的知识点。

本文将对统计学的重点知识点进行梳理和介绍。

一、概率与统计基础概率与统计是统计学的基础,它们是研究随机现象的理论基础。

概率是描述随机事件发生可能性的数学工具,统计则是通过收集和分析数据来进行推断和决策。

在学习统计学时,我们需要了解概率的基本概念,如样本空间、事件、概率公理等。

同时,还需要学习统计学的基本概念,如总体、样本、参数、统计量等。

二、数据收集与整理数据收集是统计学的第一步,它涉及到样本的选择、数据的采集和整理。

在进行数据收集时,我们需要注意样本的代表性和采样方法的选择。

数据整理包括数据的清洗、转换和归类等过程,以确保数据的准确性和可用性。

三、描述统计学描述统计学是统计学的重要分支,它通过图表和统计指标来描述和总结数据的特征。

常用的描述统计学方法包括频数分布表、直方图、饼图、散点图、均值、中位数、众数、标准差等。

通过描述统计学,我们可以对数据的分布、中心趋势和离散程度有一个直观的认识。

四、概率分布概率分布是描述随机变量取值概率的函数。

常见的概率分布包括二项分布、正态分布、泊松分布等。

了解不同概率分布的特点和应用场景,可以帮助我们更好地理解和分析数据。

五、参数估计与假设检验参数估计是根据样本数据对总体参数进行估计的过程。

常见的参数估计方法包括点估计和区间估计。

假设检验是根据样本数据对总体假设进行推断的过程。

在进行参数估计和假设检验时,我们需要选择适当的统计方法和显著性水平,并进行假设的建立和检验。

六、回归与相关分析回归分析是研究变量之间关系的统计方法,它可以用于预测和解释变量间的依赖关系。

相关分析是研究变量之间相关性的统计方法,它可以用于判断变量间的相关程度和方向。

通过回归与相关分析,我们可以建立数学模型来描述变量之间的关系,并进行预测和解释。

统计学第一章整理

统计学第一章整理

第一章、总论一、什么是统计学统计的含义与本质:用数字说明现象的本质1•统计活动2•统计数据3•统计学厂政府统计统计的含义及关系单位统计经营性统计匕其他原始数据:未加工价值更大-次级数据统计学的产生和发展1•古典统计学时期(萌芽——17世纪末到18世纪末)描述为主国势学派:德国的康令和阿亨瓦尔偏重事物性质的解释而不注重数量分析有名无实政治算数学派:英国的威廉配第和约翰格朗特主张以数字、重量和尺度来研究社会经济现象及其相互关系有实无名2•近代统计学时期(18世纪末到19世纪末)统计推断方法体系基本确立数理统计学派:比利时的凯特莱主张用研究自然科学的方法来研究社会现象,正式把概率论引入统计学,并最先用大数定律论证了社会生活中随机现象的规律性,还提出了“误差理论”和“平均人”思想奠定统计学理论基础社会统计学派:德国的克尼斯认为统计学是一门社会学科,是研究社会现象变动原因和规律性的实质性科学,其显著特点是强调对总体进行大量观察和分析,通过研究其内在联系来揭示社会现象的规律德国恩格尔提出的恩格尔系数美国经济学家库兹涅茨和英国经济学家斯通等人研究的国民收入和国内生产总值的核算方法3•现代统计学时期(19世纪末到现在)统计方法与应用全面发展显著特点:数理统计学由于同自然科学、工程技术科学紧密结合及被广泛应用于各个领域而获得迅速发展,各种新的统计理论与方法、尤其是推断统计理论与方法得以大量涌现。

统计学的学科性质1•研究对象:数量性(用数字说明现象本质,包括数量特征、数量关系、数量规律)、总体性(统计只研究总体不研究个体)、差异性(构成总体的个体必须存在差异) 2•学科范畴: 方法性、层次性、通用性 3•研究方式: 描述性、推断性统计学的作用――统计学的职能:信息职能(提供各种信息资料) 、咨询职能(提供信息整理)、监督职能(监督经济运行状况)、服务职能(服务社会) 1•统计学为我们认识自然和社会提供了必须的方法和途径 2•统计学在指导生产活动过程中发挥着重要作用 3•统计学在社会经济管理活动中的作用更为显著 4•统计学为科学研究提供了有力的手段1•计量尺度不同:定性数据和定量数据――定型数据:只能用文字或数字代码来表现事物的品质特征或属性特征的数据 —定类数据:对事物属性进行平行分类或分组 特点:只测度量事物类别差异,各类别地位相等。

《统计学》重点归纳

《统计学》重点归纳

《统计学》期末重点1.统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(1)(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(2)(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的.(3)(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值.统计数据;按统计数据都收集方法分;(4)观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

(5)实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;(6)截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

(7)时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据.2.变量的题型第10页,习题1。

1(1)年龄:数值型变量(2)性别:分类变量(3)汽车产量:离散型变量(4)员工对企业某项改革措施的态度(赞成、中立、反对):顺序变量(5)购买商品时的支付方式(现金、信用卡、支票):分类变量3.随机抽样(概率抽样)的抽样方式.(1)简单随机抽样(2)分层抽样:就是抽样单位按某种特征或者某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本。

将各层的样本结合起来,对总体目标量进行估计.(3)整群抽样:(4)系统抽样(5)多阶段抽样分层抽样与整群抽样的区别:分层抽样的层数就是样本容量;整群抽样的群中单位的个数就是样本容量4.非概率抽样的几种类型(1)方便抽样(2)判断抽样(3)自愿样本(4)滚雪球抽样滚雪球抽样往往用于对稀少群体的调查。

在滚雪球抽样中,首先选择一组调查单位,对其实施调查后,再请他们提供另外一些属于研究总特的调查对象,调查人员根据调查线索,进行此后的调查。

这个过程持续下去,就会形成滚雪球效应。

优点:容易找到那些属于特定群体的被调查者,调查成本也比较低.(5)配额抽样比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本。

(完整word版)统计学重点整理及复习资料

(完整word版)统计学重点整理及复习资料

统计学重点整理及复习资料第一章统计有三个含义,即:统计工作、统计资料、统计学。

统计学的研究对象:社会经济现象数量的总体数量特征及数量关系。

(学科性质:方法论)统计学的特点:数量性、总体性、具体性、社会性、广泛性。

统计工作的过程:设计、调查、整理、分析。

统计的研究方法:统计分组法、大量观察法、综合指标法、统计模型法、统计推断法。

统计总体:客观性、同质性、差异性。

组成统计总体的个别单位称为总体单位。

标志:统计学中总体单位所具有的属性或者特征;分为数量标志和品质标志(不可量性). 指标:反应总体某一综合数量特征的名称或范畴;可分数量指标和质量指标(率、平均)。

变异:指可变的品质标志;变量:指可变化的数量标志,变量的树枝也叫做变量值(标志值)。

第二章统计调查:指根据统计研究的目的和要求,运用科学的调查方法有计划的、有组织的向社会实际搜集各项统计资料的过程。

统计调查的意义:是人们认识社会的基本方式、是统计的重要环节、在统计学中占有重要地位。

统计调查的基本要求:准确、及时、系统、和完整性。

统计调查的种类:1、按组织方式可分为统计报表制和专门调查。

2、按调查对象可分为全面调查和非全面调查。

3、按登记事物的连续性可以分为经常性调查和一次性调查(时点状态)。

4、按搜集资料的不同可分为直接观察法、报告法、采访法、问卷调查法。

统计方案的设计:一、确认调查任务和目的,二、确定调查对象和单位,三、确定调查项目和设计调查表,四、确定调查时间地点,五、制定调查的组织实施计划。

专门调查可分为:普查、重点调查、典型调查和抽样调查。

普查:为了特定的研究目的而专门组织的一次性全面调查;特点:1、一次性调查2、主要调查一定时点的情况3、普查的数据一般比较准确,规范化程度较高;原则:1、必须统一规定普查的时点2、正确选择普查的时期3、在普查范围内各调查单位或调查点应尽可能的同时进行4、同类普查的内容在各次普查中应尽可能的保持一致。

重点调查:在所要调查的总体中选择一部分重点单位进行非全面调查用以反应总体的基本情况。

统计学复习要点

统计学复习要点

统计学复习要点第一篇:统计学复习要点第1章统计和统计数据数据类别;总体、样本;几种概率抽样(简单随机抽样,分层抽样,系统抽样,整群抽样)第2章用图表展示数据定性数据表:频数分布表,列联表图:条形图(复式),帕累托图,饼图,环形图定量数据表:频数分布表(分组)图:直方图、茎叶图、箱线图;垂线图、误差图;散点图;雷达图,轮廓图第3章用统计量描述数据水平:均值,中位数,分位数,众数(选择原则)差异:极差,四分位差;方差,标准差,标准分数(经验法则);离散系数分布:偏态,峰态(解读)第4章概率分布重要分布:二项分布,泊松分布,超几何分布,正态分布(判断);t分布,卡方分布,F分布统计量分布:参数,统计量,抽样分布,中心极限定理,标准误第5章参数估计点估计:原理,缺陷区间估计:置信区间,置信度评价标准:无偏,有效,一致性单个总体参数估计待估参数均值比例方差大样本小样本大样本χ2分布σ2已知σ2已知Z分布Z分布Z分布σ2未知σ2未知Z分布t分布两个总体参数估计待估参数均值差独立大样本σ12、σ22已Z分布独立小样本正态总体σ12、σ22已知Z分布σ12=σ22t分布比例差独立大样本Z分布方差比匹配样本F分布t分布σ12、σ22未知σ12、σ22未Z分布σ12≠σ22t分布第6章假设检验原假设,备择假设;如何提假设显著性水平,P值,第一、二类错误结果表述(拒绝,不拒绝)参数检验(对照参数估计)第7章分类变量的推断卡方拟合优度检验,卡方独立性检验,相关性度量(3种系数)第8章方差分析与实验设计方差分析研究的问题,基本原理,基本假设方差分析表,参数估计表实验设计3种设计以及与方差分析的对应第9、10章回归分析回归的基本流程:判断有无关系、建模、检验、预测模型好坏的评判标准:判定系数,估计标准误差多元回归特有问题:调整判定系数,多重共线性(产生的问题,识别,处理),哑变量回归(系数解读)第11章时间序列时间序列的几种成分不同类型时间序列对应的预测方法:基本原理第二篇:应用统计学复习要点(09)应用统计学期末复习要点第一章绪论1、知道统计的三种含义及关系(P1)2、知道统计总体与总体单位的概念与特征(P5)3、知道标志与指标的含义与分类(P6)第二章统计数据的搜集1、知道统计调查的方式分类(P15)2、知道统计调查的方法分类(P17)3、知道调查方案的主要内容(P18)第三章统计数据的整理与显示1、知道统计分组的原则与分组整理的步骤(P31)2、知道统计表的构成及设计原则(P38)3、会编制频数分布表(例3.2、计算题1和2)第四章数据分布特征的统计测度1、知道集中趋势的含义及常用测度指标(P63)2、知道离散程度的含义及常用测度指标(P64)3、知道偏度系数和峰度系数与数据分布特征的关系(P70、P72)4、会计算平均数和离散系数(计算题1、2和4)第八章相关与回归分析1、知道相关关系的含义及分类(P130)2、知道相关系数的含义、性质与相关程度的划分(P135)3、知道相关分析和回归分析的含义(P131)4、知道回归参数的经济意义(P138)5、能完成方差分析表并由回归分析表回答相关问题(计算题3)第九章时间序列分析1、知道时间序列的概念、分类及编制原则(P156、P157)2、知道长期趋势、季节变动、循环变动及不规则变动的含义(P169)3、会计算水平分析指标和速度分析指标(计算题1和4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学原理复习要点程新杰第一章概述第一节统计的含义和特点一.统计的三个基本含义:统计工作.统计资料.统计学二.统计学的三个发展阶段:古典统计学.近代统计学.现代统计学三..社会经济统计学的研究对象:大量社会经济现象的数量方面.四.统计工作的几个阶段:统计设计.统计调查.统计整理.统计分析.统计数据的提拱和管理.五..统计研究的基本方法: .(1)大量观查法.(2)统计分组法..(3)综合指标法..(5)统计模型法. (5)统计推断法六.统计方法的特点:(1) .从定性认识到定性认识(2) .从个体认识到总体认识.(3)从已知量的认识到未知量的推断七.统计的职能:信息职能、咨询职能、监督职能。

第二节:统计的基本概念一.统计总体和总体单位1.统计总体:就是我们所要研究对象的全体.它是由许多个性质相同的总体单位所组成.如:(它可以是全部的职工.所有的学生.所有的设备.所有生产的产品.全市的企业.所有的交通事故等等)2.总体单位:构成总体的个体.(把所有的总体单位的组合在一些就行成了一个总体.)★应明确.总体和总体单位不是固定的.它是随着我们所研究的目的.范围不同.是可以转化的.(原来的总体单位可以变成总体.原来的总位单位可以变给总体)3.总体的特点:同质性.大量性.差异性.二.标志.变量和指标:1.标志:是说明总体单位的属性和特征的名称:(1)品质标志.品质标志说明总体单位的属性特征,无法量化(其标志表现只能用文说明,如职工的性别、文化程度,企业的经济成份,产品品牌等)。

(2)数量标志:说明总体单位的数量特征,能够量化,(如职工的工龄、工资水平,企业的职工数、总产值、总产量、劳动生产率等。

)2.标志表现:即标志特征在各单位的具体表现。

如果说标志是统计所要调查的项目,那么标志表现是调查所得结果,标志的实际体现。

☆标志表现有品质标志表现和数量标志表现之分。

品质标志表现只能用文字表述,因此不能转化为统计指标,但对其对应的单位进行总计时就形成统计指标。

数量标志表现是一具体数值,也称标志值(或变量值。

)☆就一个品质标志或数量标志而言,其具体表现可能多种多样,不能将标志与标志表现混为一谈。

如对三个工人的月工资计算平均数,只能说是对三个标志表现或三个标志值(变量值)计算平均数,不能说对三个数量标志计算平均数,因为数量标志只有一个,即工人“月工资”。

3.标志值:数量标志的表现就叫标志值.(如人的身高这个数量标志.每个人的身高是不同的.有 1.7米.1.62米.在这里身高是标志.,而1.7米.1.65米就叫标志值)★总体单位的关系: 总体单位是统计标志的直接承担者,是载体;统计标志依附于总体单位并说明总体单位的属性和特征。

依附于某个总体单位的标志可以有多个。

4.变量和变量值:(1)变量:可变的数量标志和指标都叫变量.(2)变量值:数量标志的表现.及指标的具体数值都叫变量值..如某学生考的各科平均分65分.在这里平均分是数量标志,.而65分则是变量值.或标志值..又比如.把全市工业企业作为一个总体,全市平均每个工业企业的总产值350万元,在这里平均每个工业企业总产值是变量.而350万元则是变量值或指标值)(3)变量的分类:有连续变量和离散变量.能用小数计量的变量是连续变量,(如企业的产值,人的体重.土地面积等);只能用整数表现的是离散变量,如职工人数.电视机的产量.)5.统计指标:指标是说明总体的综合数量特征的.1.正确理解统计指标时应注意:①统计指标反映现象总体的数量特征;②一个完整的统计指标应该由总体范围、时间、地点、指标数值和数值单位等内容构成。

2. 统计指标和统计标志主要区别是:①指标是说明总体特征的,标志是说明总体单位特征的;②指标具有可量性,无论是数量指标还是质量指标,都能用数值表示,而标志不一定。

数量标志具有可量性,品质标志不具有可量性。

3.标志和指标的主要联系表现在:①指标值往往由数量标志值汇总而来;②在一定条件下,数量标志和指标存在着变换关系。

4.按指标的性质分:数量指标和质量指标.(1).数量指标.是最基本的指标,是计算质量指标的基础.指标数值的大小是随着总体的范围大小而变化.是表明总体的广度.是外延指标.均有计量单位.★数量指标可分:为标志值总量(变量值总量)和总体单位总量(总体单位数或频率总体)标志值总量是由各单位的标志标汇总而来的.总体单位总量就是一个总体内部个体的总数.★数量指标按时间状态可分:时期指标(流量)和时点指标(存量).(2) 质量指标:是反映现象总体相对水平或工作质量的统计指标,又分为:相对指标和平均指标,分别用相对数和平均数表示,它们通常是由两个总量指标对比派生出来的,反映现象之间内在联系和对比关指标.三.统计数据的理化尺度种类.1定量数据(数量数据):包括(1).测量值数据.用量具测出的数据. (又叫连续数据).可以有小数.如身高.体重.温度等(2).计数值数据.用清点的方法得出的数据.只能用整数表示.(如学生人数.产品台数.)2.定性数据(品质数据)包括(1).排序数据.只能用文字说明,不能用数字说明.但能排出现象的顺序.有优劣.好坏之分(如产品的等级。

)(2).分类数据.只是对现象的一种分类.不能排出现象的顺序.没有优劣.好坏之分.( 如民族.职业等)第二章.统计调查和统计整理第一节,统计调查一.统计调查的基本要求:准确性和及时性,是衡量统计工作质量的重要标志二.统计调查的分类.1.按调查的组织形式:统计报表和专门调查.(1) 统计报表由有关部门按照统一的要是要求.自上而下的布置.自下而上的逐级上报的一种调查方式(2).专门调查:是为某一要求而专门组织的调查.包括:普查.重点调查.典型调查.抽样调查2.按调查单位是否全面可分为:全面调查和非全面调查.(1)全面调查:所有单位都调查到了,如普查就是一种全面调查.在全面调查中,总体单位和调查单位是一致的.(2)非全面调查:在全部是总体中只选出一部分单位调查.如抽样调查.重点调查.典型调查,3.按调查是不连续分为:(1)经常性(连续性) 调查(2)一次性(非连续性)调查..对时期现象的调查一般是经常性调查;对时点现象的调查一般是一次性调查(如普查)二.几种专门调查方式.(1)普查.是一种专门的.全面的.反映一定时点状态的一次性的调查方式.★在普查中要特别统一规定调查的标准时点.(如在某次人口普查中规定2000年7月1日零点为标准时点)(2)重点调查:在全部的总体中只选择一部分重点单位进行调查.★重点单位;这些单位的标志值总量之和占总体标志总量的绝大比重.(点单位不是人为的,是客观存在的,只有这个单位的产量高才能成为重点单位.)(3)抽样调查.是一种专门组织的非全面调查.(对产品质量.居民家庭生活水平的调查一般用抽样调查)抽样调查的特点.:(1)随机原则(2)从数量上推断总体.(用样本数指标推断总体指标)其它的非全面调查一般是不能推算总体的.(4)典型调查:是一种专门的.非全面的调查.★判断的依据:是人们有意识的选择调单位.对事物进深入细致的调查.来发现事物的规律是为了总结经验:三.统计调查中数据采集的方法有:直接观查法.报告法.访问法.文献法.问卷法.四.统计调查方案有哪些内容:1.确定调查目的.2.确定调查对象和调查单位.☆调查对象. 调查对象即统计总体,是根据调查目的所确定的研究事物的全体。

统计总体这一概念在统计调查阶段称调查对象。

☆调查单位,构成调查对象的一个个具体单位.即总体单位.☆报告单位(填报单位) 它是提交调查资料的单位,一般是基层企事业组织。

报告单位也称填报单位. 调查单位是调查资料的直接承担者,报告单位是调查资料的提交者,二者有时一致,有时不一致。

如工业企业生产经营情况调查,每一工业企业既是调查单位,又是报告单位;工业企业职工收入状况调查,每一职工是调查单位,每一工业企业是报告单位☆调查项目:调查项目即依附于调查单位(总体单位)的统计标志.3.确定调查提纲和调查表.调查表分(1)单一表(卡片表) :在一张表上只有一个调查单位.其特点是:可以有较多的调查项目.便于整理分类.(2)一览表. 在一张表上可以容纳多个调查单位.其特点是,调查单位不多时用.较单一表节省人力,物力和时间.4.确定调查时间和调查期限☆调查时间:是调查资料所属的时间. 如果调查的是时期现象,调查时间是资料所反映的起讫时间如果调查的是时点现象,调查时间是统一规定的标准时点。

☆调查时限:是进行调查工作的期限,包括搜集资料和报送资料的整个工作所需要的时间。

例如:某管理局要求所属企业在1996年1月底上报95年工业总产值资料,则调查时间是一年,调查时限是一个月;又如.某管理局要求所属企业在96年1月10日上报95年产成品库存资料,则调查时间是标准时间1995年12月31日,调查期限是10天。

第二节.统计整理.一.统计整理的步骤:1.设计方案2.资料审核.3资料分组.4.统计汇总.5.编制统计表,绘制统计图★设计方案和资料审核是前提; 资料分组是关健; 统计汇总是中心; 统计表, 统计图是结果二.汇总前审核的内容: 审核数据的完整性.时效性.和准确性.统计分组:按选定的标志把总体分成若干总分的科学分类.1.统计分组按分组标志的多少分为简单分组和复合分组。

简单分组是将总体按一个标志进行分组,复合分组是将总体按两个或两个以上的标志重叠起来进行分组。

2..统计分组的原则:相同者合并.不同者分开.(分组后则形成,组内同质,.内间差异)3.统组分组的作用:划分现象的类型.表明现象的内部结构.分析现象间的依存关系.4.统计分组的关健:正确选择分组标志.5.统计分组的方法按品质标志分组:.形成品质数列(2)按数量标志分组: 按数量标志分组的目的并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质.☆在按数量标志分组时,要注意找到从量变到质变的数量界限.。

六.频数分布数列(分配数列):按分组标志确定的组别依次排列,同时更出各组的次数所形成的数列叫分配数列.★频数(次数):分布在各组中的总体单位数.★频率(比重):各组的频数占总频数的比重★常见的频数分布特征(1)钟形分布.其特点是”两头大.中间小”就是中间变量值出现的次数.两头的变量值出现的频数少.很多现象都是呈钟形分布.如人的身高.学习成绩等.★对称的钟形分布就是正态分布.(2)U形分布:两头大.中间小的特点.如人口死亡率的频数布呈U形分布.七.变量数列的构成及种类.1.变量数列的构成:一是变量.二是各组频数或频率2.分配数列的种类:分为.品质列数和变量数列变量列数又可分(1)单项式变量数列: 对离散变量,如果变量值的变动幅度小,就可以一个变量值对应(2)组距数列: 对于离散变量的变量值的个数很多时及连续变量则采用组距数列.组距数列可分为:等距数列和异距数列;开口数列和闭口数列;连续数列(同限分组)和不连续数列(不同限分组).(3)离散变量可以编连续数列.又可以编连续数列.连续变量只能编制连续数列3.在同限分组是,组限上的数据的处理原则是:上限不在组内处理.4.组距=全距/组数5.确定组限的原则;最小组的下限要小于最小变量值.最大组的上限要大于最大变量值.八.统计表的构成和种类.1.统计表从形式上看:由总标题,横行标题,纵栏标题和数字资料四部分./统计表从内容上分.由主词和宾词所组成.2.统计表按作用分:调查表.汇总表(整理表).分析表.按主词是否分组及分组的程度分为:简单表:不做分组的统计表;分组表:只按一个标志分组.复合分组表:按两个或两个以上标志分组形成的统计表.第三章总体变量分布特征的统计描述第一节.统计绝对数1.绝对数(也叫总量指标.数量指标).反映现象总体规模大小的数量.是表明现象大小多少的总量.特点:数值大小随研究的总体的范围大小呈同方向变化.2.种类.(1)按所描述的对象分:变量值总量(标志值总量)和频数总量.(总体单位总量) ★应注意的是:当一个总体一经确定,总体的频数总体就是唯一确定的.而变量值总体则不是唯一确定的,它可以有多少变量值总量.(如.在一个班组内职工的人数是频数总量.而工人的日产量,工人的工资总额等则是变量值总量)★总体单位总量是变量值总量的承担者. (2)按时状态分:时期总量和时点总量★时期总量;是反映现象一段时期内发展变化的过程的总量指标.其特点;(1)可加性.即不同时期内的总量是可以直接相加的.(2)有时间长度.时间的长短与指标数值的大小有直接关系.★时点总量:是反映现象在某一时点上上所处的状态的总量指标.其特点(1)不可相加性, 即不同时点上的数值是不能直接相加.(2)不具是时间长度.即时点总量数据的大小与时间间隔的长短没有直接关系.第二节.平均指标及离散程度指标 一.集中趋势的实质. 找出变量的中心值.即找出集中趋势的代表值.(1).常用的反映集中趋势的代表值有:算术平均数和几何平均数(称数值平均数 中位数和众数. (称位置平均数) 二. 平均指标的特点:(1)把总体各单位标志值的差异抽象化了;(2)平均指标是个代表值,代表总体各单位标志值的一般水平三.算术平均数(1)概念:指同质总体内所有变量值的平均值.它是统计中最常用的一种代表集中趋势的代表值.2.影响算术平均数的两个因素:一是各组变量值的大小,二是各组变量值出现的频数或频率的大小.3.基本公式=)(频数总量总体单位总量变量值总量 (1)加权算数平均数)(绝对权数--=----∑∑f fXf X(2)加权算数平均数∑∑*=--f f X X )(相对权数-∑ff★(3)频数和频率都称为权数.权数的实质在于频率(∑ff)的变化.★ 在一个变量数列中. 如果各组的频数都增减几倍.各组的频率仍不变,平均数也就不变.★ 各组的变量值增加或减少多少,则平均数将增长或减少多少.3.算术平均数的数学特征:(1)各变量值与算术平均数的离差之和等于零.0)(=-∑--X X(2)各变量值与算术平均数离差的平方之和为最小值.=---∑2)(X X 最小值★在组距数列中,分组后各组的组平均数被抽象化了.只能用组中值来代替组平均数.做这样的变通的假设条件是:各组变量值在组内呈的均匀分布.但在现实中能成完全均匀分布的现象是不可能的.所以说由组距数列算出的的平均数一般是个近似值.4. 调和平均数;)..(权数-==∑--m xf m Xm m X 5.几何平均数:是若干个变量值的连剩积开若干次项数的方根.一般用在动态数列中的计算,在静态数列中,如连续流水线上,各车间的平均合格率的计算则采用几何平均法计算.6.中位数(Me)和众数(Mo):都是以位置来代表集中趋势的代表值.中位数不受极端值大小的影响.7.当数列成正态分布时:平均数=中位数=众数.第三节.离散程度一.离散程度:是反映各变量值的分散程度.反映现象的离中趋势的指标. 1.常见的离散程度的统计指标是有:(1)全距(R) (极差) =最大变量值—最小变量值在组距数列中: 全距=最高组的上限值—最低组的下限值 (2)方差(σ2):是各变量值与平均数的离差平方的平均数.(3)标准差(σ):是方差的算术平方根.其计量单位与变量值的计量单位相同.它是离散程度最常用的指标★当两个的平均数水平和计量单位相同时.哪个单位的标准标或方差越小.则该单位的平均数的代表性就越强..(4)离散系数:是离散程度的一个相对指标.当总体的平均数不同或计量单位不同时,只能用离散系数来计算.常见的是标准差系数.%100⨯=-Xσνσ★标准差系数越小,表明平均数的代表性越强.生产的均衡性越好.第四章.抽样技术第一节.抽样枝术概念一.抽样技术的特点.(1)随机原则.(2)用样本数据估计总体数据.(3)是以概率估计的方法对总体进行估计.(4).理论上是以大数定律的中心极限定理为基础.(5)抽样误差是不可消除的.,但是可以事先计算并加以控制. 2.参数:总体的指标统称为参数.如:总体平均数(或成数).总体平均数(或成数)的标准差. ★参数的特点:总体参数就是一个客观存在的一个常数.总体参数是唯一确定的.是未知的3.统计量:样本指标统称为统计量.常见的样本平均数.样本成数.样本平均数的方差,标准差.样本成数的方差.标准差★统计量的特点:(1)统计量是样本变量的函数:可理解为.样本指标是样本的函数. (2):在抽样调查中.由于样本不是唯一确定的,所以统计量也不是唯一确定的,它是一个随机变量.(样本指标随着不同的样本而发生变化.所以样本指标是一个随机变量)4. 抽样平均误差。

相关文档
最新文档