有重复元素的排列问题

合集下载

有重复元素的排列组合计算

有重复元素的排列组合计算

有重复元素的排列组合计算
为了解决有重复元素的排列组合计算问题,我们需要明确一些基本概念和原则。

1. 重复元素:在排列组合中,如果存在相同的元素,则称这些元素为重复元素。

2. 排列:排列是指从给定的一组元素中取出若干个元素进行有序排列的方式。

对于有重复元素的排列,我们需要考虑重复元素的不同排列情况。

3. 组合:组合是指从给定的一组元素中取出若干个元素进行无序组合的方式。

对于有重复元素的组合,我们需要去除重复元素所导致的重复情况。

为了计算有重复元素的排列组合,可以按照以下步骤进行:
1. 确定元素集合:首先,我们需要确定参与排列组合计算的元素集合,并将其列出。

2. 计算元素频次:对于有重复元素的集合,我们需要计算每个元素的频次,即该元素在集合中出现的次数。

3. 计算排列数量:对于有重复元素的排列,我们可以使用重复排列公式进行计算。

假设元素集合中存在n个不同的元素,其中第i个元素的频次为m[i],则有重复元素的排列数量为
4. 计算组合数量:对于有重复元素的组合,我们可以使用组合公式进行计算。

假设元素集合中存在n个不同的元素,其中第i个元素的频次为m[i],则有重复元素的组合数量为
这些方法可以帮助我们计算有重复元素的排列组合。

需要注意的是,对于较大的元素集合或频次较大的情况,计算量可能较大,可以考虑使用计算工具或编程语言进行辅助计算。

重复元素的排列组合问题

重复元素的排列组合问题

重复元素的排列组合问题简介在排列组合问题中,有时会涉及到重复的元素。

这篇文档将介绍如何解决重复元素的排列组合问题。

问题描述重复元素的排列组合问题指的是在一个集合中存在多个相同的元素,在进行排列组合时需要考虑这些重复元素的情况。

简单来说,就是要找出所有可能的排列组合,而不考虑元素的顺序。

解决方法解决重复元素的排列组合问题有几种常用的方法:1. 使用集合可以使用集合来存储元素,从而去除重复的元素。

然后,对于每个集合中的元素,分别计算其排列组合。

最后将所有的排列组合合并起来,得到最终的结果。

2. 使用递归可以使用递归的方式来解决重复元素的排列组合问题。

首先选择一个元素,然后对剩余的元素进行递归计算其排列组合。

最后将选择的元素插入到每个递归计算的结果中,得到最终的排列组合。

示例下面通过一个示例来说明如何解决重复元素的排列组合问题:假设有一组数字 {1, 2, 2},要求找出所有可能的排列组合。

使用集合首先去除重复的元素,得到集合 {1, 2}。

然后计算集合 {1, 2}的排列组合,得到结果 {1, 2} 和 {2, 1}。

接下来考虑重复的元素2,将其插入到排列组合的每个位置中,得到结果 {1, 2, 2}、{2, 1, 2} 和 {2, 2, 1}。

最终得到所有可能的排列组合为 {1, 2}、{2, 1}、{1, 2, 2}、{2, 1, 2} 和 {2, 2, 1}。

使用递归首先选择元素 1,然后递归计算剩余元素 {2, 2} 的排列组合。

得到结果 {2, 2} 和 {2, 2}。

然后将选择的元素 1 插入到递归计算的结果中,得到结果 {1, 2, 2} 和 {1, 2, 2}。

最后将元素 2 插入到递归计算的结果中,分别得到结果 {2, 1, 2} 和 {2, 2, 1}。

最终得到所有可能的排列组合为 {1, 2, 2}、{1, 2, 2}、{2, 1, 2} 和 {2, 2, 1}。

结论重复元素的排列组合问题可以通过使用集合或者递归的方法来解决。

排列组合问题的求解技巧

排列组合问题的求解技巧

排列组合问题的求解技巧在数学中,排列组合是一个重要的概念,广泛应用于各个领域。

无论是在数学竞赛中还是实际生活中,我们都会遇到各种各样的排列组合问题。

本文将介绍一些求解排列组合问题的技巧,帮助读者更好地应对这类问题。

一、排列问题的求解技巧排列是指从一组元素中选取若干个元素按照一定的顺序排列的方式。

在解决排列问题时,我们需要考虑以下几个方面的技巧:1. 确定元素的个数:首先要明确待排列的元素个数,这有助于我们确定问题的规模和难度。

2. 确定元素的范围:排列问题通常涉及到一组元素,我们需要明确这组元素的范围,以便进行后续的计算。

3. 考虑重复元素:有时候,待排列的元素中可能存在重复的元素。

在计算排列的个数时,我们需要考虑这些重复元素,避免重复计算。

4. 使用排列公式:排列问题可以通过排列公式来求解。

当元素个数确定,且不存在重复元素时,排列的个数可以通过公式P(n, m) = n! / (n-m)!来计算,其中n表示元素的总个数,m表示待排列的元素个数。

5. 考虑特殊情况:有时候,我们需要考虑一些特殊情况,比如某些元素必须排在一起或者不能排在一起等。

在解决这类问题时,我们需要根据具体情况进行分析,采取相应的策略。

二、组合问题的求解技巧组合是指从一组元素中选取若干个元素,不考虑元素的顺序。

在解决组合问题时,我们需要考虑以下几个方面的技巧:1. 确定元素的个数:同样,我们需要明确待组合的元素个数,这有助于我们确定问题的规模和难度。

2. 确定元素的范围:组合问题通常涉及到一组元素,我们需要明确这组元素的范围,以便进行后续的计算。

3. 考虑重复元素:与排列问题类似,组合问题中也可能存在重复的元素。

在计算组合的个数时,我们需要考虑这些重复元素,避免重复计算。

4. 使用组合公式:组合问题可以通过组合公式来求解。

当元素个数确定,且不存在重复元素时,组合的个数可以通过公式C(n, m) = n! / (m! * (n-m)!)来计算,其中n表示元素的总个数,m表示待组合的元素个数。

可重复的排列求幂法

可重复的排列求幂法

可重复的排列求幂法:
一. 重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能
重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺
利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数
【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?
(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?
(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?
【解析】:(1)43(2)34 (3)34
【例2】 把6名实习生分配到7个车间实习共有多少种不同方法?
【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,
第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.
【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38 B 、83 C 、38A D 、38C
【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家
“店”,3项冠
军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因
此共有38种
不同的结果。

所以选A
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种。

有重复元素的排列问题

有重复元素的排列问题

有重复元素,i=0 链表used=∧ a[i]=a,不在表used中,将该元素添加到used中,并调用调用 a[k+1:m]的全排列 k=0,i=1 链表used=a∧ a[i]=a, 在表used中找到,说明以a[i]为前缀的排列已经输出。
有重复元素的排列问题
k=0,i=2 链表used=a∧ a[i]=b,不在表used中,将该元素添加到used中,并调用调用 a[k+1:m]的全排列 k=0,i=3 链表used=ab∧ a[i]=c, 不在表used中,将该元素添加到used中,并调用调用 a[k+1:m]的全排列 k=0,i=4 链表used=abc∧ a[i]=c, 在表used中找到,说明以a[i]为前缀的排列已经输出。
算法实现
#include <list> void perm(char list[],int k,int m) { if(k==m) //当只剩下一个元素时则输出 { count++; for(int i=0;i<=m;i++) printf("%c",list[i]); putchar('\n'); } for(int i=k;i<=m;i++) //还有多个元素待排列,递归产生排列 { if(finish(list,k,i)) { swap(list[k],list[i]); perm(list,k+1,m); swap(list[k],list[i]); }}}
R全排列递归算法:
定义过程:void perm(char a[],int k,int m)。在过程中将 a[k:m]中的每个元素分别与a[k]中的元素交换,然后递归调 用a[k+1:m]的全排列,并将计算结果做a[0:k]为的后缀。

CSP(NOIP)复习资料——数学知识

CSP(NOIP)复习资料——数学知识
1.乘法原理
设完成一件事有m个步骤,第一个步骤有 种方法,第二个步骤有 种方法,…,第m个步骤有 种方法。必须通过每一步骤,才算完成这件事,则完成这件事共有 种不同的方法。
例1:若一个男人有三顶帽子和两件背心,问他可以有多少种打扮?可以有 种打扮。
例2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?
例2:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?
解:因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法。
结论2捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
3&50 0 0 0 0 0Байду номын сангаас0 1
使用按位与运算可将一个数中的某些指定位清零如:
a: 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0
b: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 (377)8
a &b 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0
A. (¬ A∧B)∨(C∧D∨A) B. ¬ (((A∧B)∨C)∧D)
C. A∧(B∨C∨D)∨D D. (A∧(D∨C))∧B
4. C++中的位运算
位运算就是指对数据进行二进制位的运算。位运算的操作数,只能是整型或字符型数据,不能为实型数据。
C++提供的位运算有:
名称
运算符

排列组合经典解法

排列组合经典解法

排列组合问题的经典解法一、重复排列“住店法”重复排列问题要区分两类元素:一类可以重复,另一类不能重复。

把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。

【例1】8名同学争夺3项冠军,获得冠军的可能性有 ( )A.38B.83C.38AD.38C【解析】冠军不能重复,但同一个学生可获得多项冠军。

把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有38种不同的结果。

选(A )。

评述:类似问题较多。

如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有83种结果。

要注意这两个问题的区别。

二、特色元素“优先法”某个(或几个)元素要排在指定位置,可优先将它(们)安排好,后再安排其它元素。

【例2】乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。

【解析】3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;然后从其余7名队员选2名安排在第二、四位置,有27A 种排法。

因此结果为2733A A =252种。

三、相邻问题“捆绑法”把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。

不过要注意“大元素”内部还需要进行排列。

【例3】有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。

【解析】将数学书与外文书分别捆在一起与其它3本书一起排,有55A 种排法,再将3本数学书之间交换有33A 种,2本外文书之间交换有22A 种,故共有223355A A A =1440种排法。

【评述】这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。

排列组合典型题大全含答案.

排列组合典型题大全含答案.

>排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果)(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种-不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果(2)每项竞赛只许一名同学参加,有多少种不同的结果4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少5、甲乙丙分10瓶汽水的方法有多少种。

6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.]【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

(整理版)有关重复的排列组合问题

(整理版)有关重复的排列组合问题

有关重复的排列组合问题我们常见的排列、组合问题,其中的元素通常是不可重复的,下面我们看几类可重复的排列、组合问题。

一. 有重复排列–––分步计数原理例1. 4个同学争夺3项竞赛冠军,冠军获得者共有几种可能情况?解:完成这件事情可分三步:〔1〕第一项冠军有4种可能;〔2〕第二项冠军有4种可能;〔3〕第三项冠军有4种可能。

所以可能情况有:4×4×4=64〔种〕。

一般地,从n 个不同元素里取出允许重复的m 个元素,按一定顺序排成一列,那么,第1、第2、…、第m 个位置上选取元素的方法都有n 种。

由分步计数原理得每次从n 个不同元素里取出允许重复的m 个元素的排列数为:N n n n n m n m n N m n m =⋅⋅⋅⋅=∈≤ (,,)*相关练习:用0,1,2,…,9这10个数字可组成多少个8位数字的 号码?〔108〕二. 不尽相异元素的排列–––组合法例2. 小麦、大麦品种各1种,种在5种不同土质的试验田里,3块种小麦,2块种大麦,有多少种种法?解:这5个不尽相异的元素有3个相同,另2个相同,所以共有:C C 535210==〔种〕种法。

一般地,在n 个不尽相异的元素里,如果有m 1个元素相同,又有m 2个元素相同,并且m 1+m 2=n ,那么这n 个元素的不同排列种数N C C n m n m==12。

三. 相同元素分组––––隔板法例3. 5个相同小球放到4个不同盒子里,每盒至少有1个,共有多少种放法? 解法1:每盒先放入1球,剩下1球任选1盒,共有:C 414=〔种〕放法。

解法2:〔第一隔板法〕5个小球可形成6个空隙,由于每盒至少放1个小球,所以除去两边空隙还剩4个空,只要在这4个位置上隔进3个板,即可满足要求。

所以有:C 434=〔种〕放法。

例4. 将5个相同小球放到4个不同盒子里〔盒子可空〕,共有多少种放法? 解法1:〔分类法〕第一类:全部放入1个盒子里,有:C 414=〔种〕放法;第二类:放入2个盒子里,有:C 42424⨯=〔种〕放法;第三类:放入3个盒子里,有:C 43624⨯=〔种〕放法;第四类:放入4个盒子里,有4种放法。

重复元素的排列组合问题

重复元素的排列组合问题

重复元素的排列组合问题
1. 问题描述
在数学中,我们经常遇到需要对一组元素进行排列组合的问题。

通常情况下,我们要求的是不含重复元素的排列组合。

然而,在实
际应用中,我们也会遇到包含重复元素的排列组合问题。

本文将讨
论如何解决这类问题。

2. 使用集合方法求解
一种解决重复元素的排列组合问题的方法是使用集合。

对于一
个包含 n 个元素的集合,如果其中有重复元素,我们可以先计算出
每个元素的出现次数,然后根据这些次数求解排列组合。

具体步骤如下:
1. 统计每个元素的出现次数;
2. 根据出现次数计算排列数和组合数。

例如,假设我们有一个包含 10 个元素的集合 {A, A, B, C, C, C, D, D, E, F},我们可以统计每个元素的出现次数如下:
然后,我们可以根据这些出现次数计算排列数和组合数。

3. 结论
通过使用集合方法,我们可以解决包含重复元素的排列组合问题。

首先,我们需要统计每个元素的出现次数,然后使用这些次数计算排列数和组合数。

这种方法可以帮助我们更好地处理实际应用中的排列组合问题,提高问题求解的效率。

以上是关于重复元素的排列组合问题的简要介绍。

参考文献:。

排列组合典型题大全附答案解析

排列组合典型题大全附答案解析

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少? 5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

浅析排列组合中的重复计算问题

浅析排列组合中的重复计算问题

例析排列组合中的重复计算的产生及对策无锡市洛社高级中学 戎钢学生在解排列组合的题目时,往往容易出现考虑不周全,漏解的情况。

另外有些类型的排列组合题目较容易出现重复计算的问题,而且此类问题较隐蔽,学生不容易发现。

在解题时,应做到既不重复遗漏,又能判断解题的正误,并能加以剖析。

这样对于学生解题能力的提高大有好处。

一、分步引起的重复计算例1:从4台甲型机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型机各1台,则不同的取法有多少种?【错解】先保证各1台,在从剩下的机子中任取一台。

即分三步:第一步从甲型机中取一台,有14C 种取法;第二步从乙型机中取一台,有15C 种取法;第三步从剩下的七台机子中取一台,有17C 种取法,根据乘法原理,共有111457140C C C ⋅⋅=种取法。

【分析】设甲型机种有a 、b 两台机子 ,乙型机中有A 、B 两台机子,根据上述选法,其中有一种取法可以是“先选a ,再选A ,再选b ”,另外一种取法是“先选b ,再选A ,再选a ”。

而很明显,上述两种取法是同一种结果,出现重复。

究其原因是本题使用的是分类计数原理(分步原理)。

而分步必然有先有后,也就有顺序,跟排列有关。

本题中无论是取两台甲型机还是两台乙型机,对于这两台机而言,只是一个组合,没有先后,因此重复了两遍。

【正解】根据结果分类,第一类:两台甲型机,有2145C C ⋅种取法;第二类:两台乙型机,有1245C C ⋅种取法,根据分类计数原理,共有2112454570C C C C ⋅+⋅=种取法。

二、涉及到平均分组中的重复计算例2:袋中有红、白、黄球各一个,每次任取一球,记下颜色后放回,当各种颜色均被取到时结束,则取球结束时,一共取了五次的不同取法有多少种?【错解】由题意,第五次一定是第三种颜色的球。

前四次取到其他两种颜色的球。

先分步,第五次有13C 种颜色的可能,再分类讨论前四次的情况,第一类:剩下的两种颜色的球,一种颜色的取到三次,另外一种取到一次。

排列组合常见题型及解题策略难

排列组合常见题型及解题策略难

小学排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作"客〞,能重复的元素看作"店〞,则通过"住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? 〔2〕有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?〔3〕将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:〔1〕43〔2〕34 〔3〕34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有〔 〕A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家"店〞,3项冠 军看作3个"客〞,他们都可能住进任意一家"店〞,每个"客〞有8种可能,因此共有38种 不同的结果。

所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则此题相当于4人的全排列,4424A 种【例2】3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A.360B.188C.216D.96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离〔即不相邻〕问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,则不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】书架上*层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法〔具体数字作答〕【解析】:111789A A A =504【例3】 高三〔一〕班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的 演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 *工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进展,工 程丙必须在工程乙完成后才能进展,有工程丁必须在工程丙完成后立即进展。

排列组合二项定理知识点总结

排列组合二项定理知识点总结

排列组合二项定理知识点总结一、两个原理. 1. 乘法原理、加法原理. 2. 可以有重复元素的排列.从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = mn.. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出m(m≤n)个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==nn n C C 2. 含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a1,a2,…...an 其中限重复数为n1、n2……nk ,且n = n1+n2+……nk , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmm nm n -=+--== ⑶两个公式:①;mn nm n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m nC C C--=⋅一类是不含红球的选法有m nC ) ②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式 nn nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用mn m n m nC C C11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n nx x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nnC2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m mm n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m mA 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mmn n A A /. ⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有kknnn n k n kn AC C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?(!2/102022818CC C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n mn AAA/1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11 (21321),进而转化为求a 的正整数解的个数为1-+n nA C. ⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有r k rn r r A A --. 1x 2x 3x 4例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法.排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标:1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。

3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一。

特殊元素和特殊位置优先策略:例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3^1种方法,然后排首位共有C4^1种方法,最后排其它位置共有A4^3种方法,根据分步计数原理得到答案为C4^1 × C3^1 × A4^3 = 288.入问题或空位法来解决。

排列组合原理思维方法

排列组合原理思维方法

排列组合原理思维方法
排列组合是数学中一个重要的概念,用于解决计数问题。

在实际问题中,可以应用排列组合原理来辅助思考、分析和解决问题。

以下是一些常用的思维方法:
1. 确定问题类型:首先要明确问题属于排列还是组合类型。

如果要求确定一组物体的顺序,则是排列问题;而如果只需要选择一组物体,而不考虑顺序,则是组合问题。

2. 确定问题的约束条件:明确问题中给出的条件和限制,例如需要从几个元素中选择,是否可以重复选择等等。

3. 计算总数:根据问题的类型和约束条件,利用排列组合公式计算可能的总数。

排列公式为n!,组合公式为C(n,m)。

4. 考虑重复元素:如果问题中包含重复的元素,需要对重复元素进行处理。

可以使用组合公式减去重复的情况,或者使用排列公式除以重复元素的阶乘。

5. 考虑不可行情况:在计算总数时,要考虑是否存在一些不可行的情况,需要从总数中减去这些不可行的情况。

6. 使用计算工具:对于复杂的问题,可以使用计算工具(如计算器或电脑程序)来进行排列组合的计算,以避免计算错误。

7. 验证结果:在得到排列组合的结果之后,可以通过验证部分具体情况来确保结果的正确性。

总之,排列组合原理思维方法主要是通过确定问题类型、约束条件,计算总数并考虑重复元素和不可行情况来求解问题。

排列组合常见题型及解题策略难

排列组合常见题型及解题策略难

小学排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。

所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。

含有重复元素的全排列问题

含有重复元素的全排列问题

含有重复元素的全排列问题简介:本⽂主要介绍基于分治⽅式(递归)和枚举⽅式(循环)来构建指定字符串的全排列⽅法,两种⽅法都可以解决重复元素的全排列欢迎探讨,如有错误敬请指正如需转载,请注明出处1. 基于分治⽅式(递归实现)1)⼀个元素的全排列只有⼀种2)[A0, A1, A2]的全排列等于下⾯三个全排列的并集A0开头,拼接上[A1,A2]的所有全排列A1开头,拼接上[A0,A2]的所有全排列A2开头,拼接上[A0,A1]的所有全排列所以,对于[A0, A1, ……,An]的全排列,我们可以将问题转换成n个⼦问题:A0开头,拼接上[A1,A2 ……,An]的所有全排列A1开头,拼接上[A0,A2 ……,An]的所有全排列……An开头,拼接上[A0,A2 ……,A(n-1)]的所有全排列⽽每个⼦问题⼜可以继续向下转化成n-1个⼦问题,最终可以转化到只有⼀个元素的全排列问题。

对于数组中有重复元素的情况,我们只要保证,重复元素只能有⼀次作为⼦问题的开头元素,这样我们就可以避免重复计算。

2. 基于枚举⽅式(循环实现)如果我们将全排列按照⼤⼩顺序进⾏排序,假设我们知道了第i个排列是[A0, A1, A2, A3, ……],那么第i+1个排列就是⽐[A0, A1, A2, A3, ……]⼤,且最⼩的那个。

找到i+1个排列的步骤如下1)从后往前两两⽐较,找到第⼀个满⾜a[i]<a[i+1]的两个元素2)从a[i+1]开始往后找,找到⼀个⼤于a[i]中最⼩的⼀个元素,这个元素的下标记为j,交换a[i]和a[j]3)将[i+1, a.length-1]的元素全部逆序3. 代码实现下⾯是java代码的实现package interviewquestion;import java.util.HashSet;import java.util.LinkedList;import java.util.List;public class Permutation {//返回装有回字符串s的全排列的List对象public static List<String> byTraverse(String s){char[] chArr = s.toCharArray();List<String> list = new LinkedList<String>();byTraverse0(chArr, 0, list);return list;}private static void byTraverse0(char[] arr, int left, List<String> list){if(left >= arr.length-1){list.add(new String(arr));return;}//⽤于记录交换到left下标的每⼀个元素,防⽌计算重复的排列HashSet<Character> hs = new HashSet<Character>();for(int i = left; i < arr.length; i++){//arr[left]后⾯的每⼀个元素arr[i]都和arr[left]交换swap(arr, left, i);if(!hs.contains(arr[left])){hs.add(arr[left]);byTraverse0(arr, left+1, list);}//将left和i交换回来,防⽌遗漏,重复//已保证下⼀个交换到left下标的是未交换过的元素swap(arr, left, i);}}/*=================================================*///返回装有⼤于等于字符串s的全排列的List对象public static List<String> byNext(String s){char[] arr = s.toCharArray();List<String> list = new LinkedList<String>();list.add(s);while(next(arr)){list.add(new String(arr));}return list;}private static boolean next(char[] arr){boolean hasNext = false;int i;for(i = arr.length-2; i >= 0; i--){if(arr[i] < arr[i+1]){hasNext = true;break;}}//如果所有元素是从⼤到⼩排列,说明是最⼤的字符串if(!hasNext){return false;}//从i+1的下标往后找(必定是单调递减),找⼀个⽐arr[i]⼤的集合中最⼩的⼀个 int j;for(j = i+1; j < arr.length; j++){if(arr[j] <= arr[i]){break;}}j--;//交换这两个元素,然后逆序i+1以后的所有元素swap(arr, i, j);reverse(arr, i+1, arr.length-1);return true;}private static void reverse(char[] arr, int from, int to){for(int i = from, j = to; i < j; i++, j--){swap(arr, i, j);}}/*=================================================*/private static void swap(char[] chArr, int i, int j){char t = chArr[i];chArr[i] = chArr[j];chArr[j] = t;}public static void main(String[] args){List<String> list1 = Permutation.byNext("1233");System.out.println(list1);System.out.println(list1.size());System.out.println();List<String> list2 = Permutation.byTraverse("1233");System.out.println(list2);System.out.println(list2.size());}}运⾏结果[1233, 1323, 1332, 2133, 2313, 2331, 3123, 3132, 3213, 3231, 3312, 3321] 12[1233, 1323, 1332, 2133, 2313, 2331, 3213, 3231, 3123, 3132, 3312, 3321] 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有重复元素的排列问题
一问题描述:
设R={r1,r2,……r n}是要进行排列的n个元素,其中r1,r2……rn元素可能相同,请设计出一个算法,列出R中元素的所有不同排列。

在给定的n以及待排列的n个元素,计算出这n个元素的所有不同排列。

二要求输入输出:
输入:第一行是元素个数n,1《=n《=15,接下来的1行是待排列的n个元素,元素中间不要加空格。

输出:程序运行结束时,将计算出n个元素的所有不用排列,最后1行中的数是排列总数。

例如:
Input
4
aacc
output
aacc
acac
acca
caac
caca
ccaa
6
三设计概要:
1)数据类型定义:
int j=0 定义j初始为0,用来计数总共排列数
int n 输入排列元素的个数
char list[] 定义数组list[] 存放排列元素
int k ;int m 数组中元素第k位到第m位的排列
int flag 标识符
2)程序流程图:
void Perm(int k,int m)
3)模块间的调用:
四详细算法设计:
if (是否一个元素)
{
for(寻找到该排列元素)
printf(输出该元素);
排列数加一
}
else //还有多个元素待排列,递归产生排列for(从第k个直到第m个元素)
{ flag=0;
for(p=k;p<i;p++)
{
if(list[p]==list[i])
flag=1;
}
if(flag==1) continue;
Swap(list[k],list[i]);
Perm(list,k+1,m);
Swap(list[k],list[i]);
}
}
void Swap(char &a,char &b)
{
交换元素
}
五调试分析:
1)在调试过程中主要遇到了一些简单的符号错误,其次就是在实现排列perm()时,对元素是否重复的判断出现了问题;对符号方面的错误就只能是细心的去发现然后再修改,在排列元素重复上初时是对算法的实现在这判断上考虑欠缺,导致再运行通过后进行测试时出现了和预期结果不同的情况,经思考后修改最终实现了该算法。

2)由于该程序的算法实现起来比较简单,对算法的时间和空间要求也比较低,所以也无需再想去改进算法的时空分析复杂度。

3)在选用测试用例时,运用白盒测试法的覆盖来测试,选用了从1个元素到多个元素,从全不相同元素到有重复元素等来进行测试,所以测试用例应该得当。

4)在进行调试时,遇到最多的首先就是小小的符号问题出错误,比如漏了分号,中英符号混了,从而出现了编译错误,这告诉我平时编写代码时要养成良好的习惯,例如在符号问题,大括号问题等;其次就是程序上出现了问题,包括了对算法考虑得不周全,例如边界问题等等;有时会出现修改了某处错误,但新的错误又出现了,所以在调试过程中,应首先避免了符号上的错,然后再从全局上先去考虑下出错原因,再根据出错点进行修改。

六测试结果:
七源程序:
#include"stdio.h"
int j=0;
void main() //main函数,调用swap和perm {
int n;
void Swap(char &a,char &b);
void Perm(char list[],int k,int m);
scanf("%d",&n);
char list[16];
scanf("%s",list);
Perm ( list, 0, n-1);
printf("%d\n",j);
}
void Swap(char &a,char &b) //交换元素{
char temp =a;a=b;b=temp;
}
void Perm(char list[],int k,int m) //产生list[k:m]的所有排列{ int i,p;
int flag;
void Swap(char &a,char &b);
if(k==m)
{ //只剩下一个元素
for( i = 0;i <= m;i++)
printf("%c",list[i]);
j++;
printf("\n");
}
else //还有多个元素待排列,递归产生排列
for(i=k;i<=m;i++)
{ flag=0;
for(p=k;p<i;p++)
{
if(list[p]==list[i])
flag=1;
}
if(flag==1) continue;
Swap(list[k],list[i]);
Perm(list,k+1,m);
Swap(list[k],list[i]);
}
}。

相关文档
最新文档