北师大版年七年级数学期中试卷(详细答案)
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题2022年一、单选题1.12-的相反数是( ) A .2- B .12 C .0 D .2 2.在227,3π,1.62,0四个数中,有理数的个数为( ) A .4 B .3 C .2 D .13.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( ) A .点动成线 B .线动成面 C .面动成体 D .以上都不对 4.下列图形经过折叠不能围成棱柱的是( )A .B .C .D . 5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 6.下列说法错误的是( )A .15ab -的系数是15-B .235x y 的系数是15 C .224a b 的次数是4 D .42242a a b b -+的次数是47.用一个平面截六棱柱,截面的形状不可能是( )A .等腰三角形B .梯形C .五边形D .九边形 8.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab >9.若m 、n 满足21(2)0m n ++-=,则n m 的值等于( )A .-1B .1C .-2D .1410.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .361521=+D .491831=+二、填空题11.月球表面白天的温度是零上126℃,记作126+℃,夜间平均温度是零下150℃,则记作______.12.比较大小:7-_____3-(填“>”,“<”或“=”).13.新冠肺炎疫情期间,某单位买单价为20元的温度计a 个,单价为3元的口罩b 个,共花钱__元.14.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a b c ++的值为______.15.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)16.若20m =,按下列程序计算,最后得出的结果是________.17.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.三、解答题18.计算.(1)()121821---;(2)42112(3)6⎡⎤--⨯--⎣⎦.19.用简便方法计算:(1)4571961236⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (2)356(6)36⨯-.20.在数轴上表示下列各数:2153,|3|,2,0,,222⎛⎫----+ ⎪⎝⎭,并用“<”将它们连接起来.21.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.22.如图,是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置上的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.23.已知a 、b 均为有理数,现定义一种新的运算,规定:25a b a ab ⊗=+-,例如2111115⊗=+⨯-,求:(1)()-36⊗的值;(2)()32---592⎡⎤⎛⎫⎡⎤⊗⊗ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-180,+200,-110,-60,+160,-68(1)若每千米耗油0.3升,问小明家的汽车这一天共耗油多少升?(2)B 地在A 地的哪个方向?它们相距多少千米?(3)汽车从A 出发后,在整个行驶过程中,有多少次再次经过出发地A ?请计算说明理由.25.先阅读并填空,再解答问题. 我们知道111122=-⨯,1112323=-⨯,1113434=-⨯, 那么145=⨯ ______,120182019=⨯ ______. 利用上述式子中的规律计算: (1)1111111126122030425672+++++++; (2)111124466820162018++++⨯⨯⨯⨯.26.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分②面积的一半,部分②是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++的值吗?参考答案1.B【解析】【分析】根据相反数的定义直接进行求解即可.【详解】由12-的相反数是12;故选:B.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.B【解析】【分析】根据有理数的定义,即可解答.【详解】在227,3π,1.62,0四个数中,有理数为227,1.62,0,共3个,故选:B.【点睛】整数和分数统称为有理数,无限不循环小数由于不能化成分数,因而不属于有理数.3.B【解析】【分析】根据“线动成面”的意义得出答案.【详解】解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.【点睛】本题考查点、线、面、体之间的关系,理解“点动成线、线动成面,面动成体”是解决问题的关键.4.D【解析】【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A 可以围成四棱柱,B 可以围成三棱柱,C 可以围成五棱柱,D 选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D .【点睛】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B【解析】【分析】根据单项式与多项式的定义、次数与系数的概念解答即可.【详解】A 、15ab -的系数是15-,正确;B、235x y的系数是35,故B错误;C、224a b的次数是4,正确;D、42242a ab b-+的次数是4,正确,故答案为B.【点睛】本题考查了单项式和多项式的次数,系数的识别,掌握单项式与多项式的判断方法是解题的关键.7.D【解析】【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形、七边形、八边形.【详解】解:用平面去截一个六棱柱,得的截面可能为三角形、四边形、五边形、六边形、七边形、八边形,不可能为九边形.故选:D.【点睛】本题考查六棱柱的截面.六棱柱的截面的几种情况应熟记.8.B【解析】【分析】根据数轴可以判断a、b的正负,从而可以解答本题.【详解】解:由数轴可得,a<0<b且|a|>|b|,则a+b<0,a<b,ab<0,只有选项B正确.故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:②正数都大于0;②负数都小于0;②正数大于一切负数;②两个负数,绝对值大的其值反而小.同时考查了数轴的特征,以及在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.9.B【解析】【分析】先根据绝对值和偶次幂的非负性求得m 、n 的值,然后再代入解答即可.【详解】解:②()2120m n ++-=,1m +≥0,()22n -≥0, ② 1m +=0,()22n -=0,即m=-1,n=2,②()211 n m =-=.故答案为B .【点睛】本题主要考查了绝对值和偶次幂的非负性以及乘方运算,运用绝对值和偶次幂的非负性确定m 、n 的值是解答本题的关键.10.C【解析】【分析】根据给定的部分“三角形数”和“正方形数”找出“三角形数”可看成从1开始几个连续自然数的和以及“正方形数”可看成某个自然数的平方,依此规律逐一分析四个选项中的三个数是否符合该规律,由此即可得出结论.【详解】解:A 、13不是正方形数,不合题意;B 、9和16不是三角形数,不合题意;C 、36=62=(5+1)2,n=5;两个三角形的数分别是:1+2+3+4+5=15;1+2+3+4+5+6=21;故C 符合题意;D 、18和31不是三角形数,不合题意;故选:C .【点睛】本题考查了规律型中数字的变化类,根据给定的部分“三角形数”和“正方形数”找出“三角形数”和“正方形数”的特点是解题的关键.11.-150②【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记为正,则零下温度就记为负,直接得出结论即可.【详解】解:零下150②,记作-150②.故答案为:-150②.【点睛】本题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.<【解析】【分析】两个负数比较,绝对值大的反而小,依此即可求解.【详解】解:②|-7|=7,|-3|=3,7>3,②-7<-3.故答案为:<.【点睛】本题考查了负数大小比较,任意两个数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数比较,绝对值大的反而小.13.(20a+3b)【解析】【分析】先表示出温度计的钱数,再表示出口罩的钱数,相加即可得出答案.【详解】解:单价为20元的温度计a 个,单价为3元的口罩b 个,∴温度计的钱数为20a 元,口罩的钱数为3b 元∴共花钱()203a b +元.故答案为:()203a b +.【点睛】本题主要考查列代数式的知识点,解决问题的关键是读懂题意,找到所求的量的等量关系,注意:书写代数式的时候,数字应写在字母的前面.此题基础题,比较简单.14.12【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和相等,列出方程求出a 、b 、c 的值,从而得到a+b+c 的值.【详解】解:这是一个正方体的平面展开图,共有六个面,可知a 与b 相对,c 与一2相对,3与2相对,②相对面上两个数之和相等,②a+b=c -2=3+2,②a+b=5,c=7,②a+b+c=12.故答案为:12.【点睛】本题考查了正方体相对两个面.注意正方体的空间图形,从相对面入手,分析及解答问题.15.6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:②圆柱的底面直径为2,高为3,②侧面积= 2•π×3=6π..故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.16.21【解析】【分析】根据程序写出代数式,再将20m =代入代数式计算即可.【详解】由题意知:代数式为()2-2m m m ÷+=1m +,当20m =时,原式=21,故填:21 .【点睛】本题考查程序运算题,根据程序写出代数式并化简是关键.17.3或4-【解析】【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;②满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.18.(1)9;(2)16.【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)12(18)21---3021=-9=.(2)原式11(29)6=--⨯-11(7)6=--⨯-761=-+16=.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.19.(1)35;(2)5416-.【解析】【分析】(1)根据乘法分配律即可求解;(2)根据351673636=-,再利用乘法分配律即可求解.【详解】解:(1)原式457(36)9612⎛⎫=--⨯- ⎪⎝⎭457(36)(36)(36)9612=⨯--⨯--⨯-163021=-++35=(2)356(6)36⨯- 17(6)36⎛⎫=-⨯- ⎪⎝⎭ 1426=-+ 5416=- 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.20.在数轴上表示如图所示,见解析;2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭. 【解析】【分析】根据数轴的三要素:原点、正方向、单位长度画出数轴,分别根据绝对值、有理数的乘方、相反数的定义等化简各数,然后在数轴上把点表示出来,再根据数轴上的数,越往右,数越大解题即可.【详解】21533,|3|=3,2,0,,=22242=⎛⎫-----+- ⎪⎝⎭ 在数轴上表示2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭【点睛】本题考查数轴、利用数轴表示数、利用数轴比较大小,涉及绝对值、有理数的乘方、相反数等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.3或7【解析】【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:②a,b互为相反数,②a+b=0,②c,d互为倒数,②cd=1,②|m|=2,②m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m2-(-1)+|a+b|-cdm的值为3或7.22.见解析.【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为4,1,3;左视图有3列,每列小正方形数目分别为2,4,3,据此画出图形解题.【详解】从正面看:从左面看:【点睛】本题考查几何体的三视图画法,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)-14;(2)21.【解析】【分析】(1)根据⊗的含义,以及有理数的混合运算的运算方法,求出(-3)⊗6的值是多少即可.(2)根据⊗的含义,以及有理数的混合运算的运算方法,求出[2⊗(-32)]-[(-5)⊗9]的值是多少即可.【详解】(1)(-3)⊗6,=(-3)2+(-3)×6-5,=9-18-5,=-14;(2)[2⊗(-32)]-[(-5)⊗9],=[22+2×(-32)-5]-[(-5)2+(-5)×9-5],=[4-3-5]-[25-45-5],=-4+25,=21.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(1)233.4升;(2)B地在A地的正南方,它们相距58千米;(3)4次【解析】【分析】(1)由行驶记录取绝对值相加,算出汽车行驶的总路程,再乘以每千米的耗油量即可得出结果;(2)要求出B地在A地的哪个方向,相距多少千米,只要将汽车行驶的记录相加,如果是正数,就是B在A地的正北方向;如果是负数,就是B在A的正南方向;行驶记录相加的绝对值就是A、B的距离;(3)将行驶记录逐一相加,当每次运算结果与前一次运算结果的符号相反时,汽车会再次经过出发地A.【详解】解:(1)依题意得:行驶的总路程=180+200+110+60+160+68=778(千米),778×0.3=233.4(升),所以小明家的汽车这一天共耗油233.4升;(2)因为(−180)+(+200)+(−110)+(−60)+(+160)+(−68)=−58,所以B地在A地的正南方,它们相距58千米;(3)因为0+(−180)=−180,−180+200=20,20−110=−90,−90−60=−150,−150+160=10,10−68=−58,有4次运算结果与前一次运算结果的符号相反,所以汽车有4次再次经过出发地A.【点睛】本题考查了正负数在实际生活中的应用,特别需要注意绝对值的计算.25.观察:1145-,1120182019-;(1)89;(2)2521009.【解析】【分析】观察阅读材料中的式子得出拆项法,原式利用拆项法变形,计算即可求出值.【详解】观察:1114545=-⨯,1112018201920182019=-⨯;(1)11111111 26122030425672 +++++++=1111111 ++++++ 12233456677889⨯⨯⨯⨯⨯⨯⨯=1-12+12-13+13-14+②②+1189-=1-1 9=89;(2)1111 24466820162018 ++++⨯⨯⨯⨯=1111111 () 2244620162018⨯-+-++-=111() 222018⨯-=252 1009.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分②的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分②面积是12,部分②面积是(12)2,部分②面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是164;(2)原式=12+23456611111163122222264 ++++=-=.【点睛】本题考查了有理数的乘方,解题的关键是仔细观察图形并发现图形变化的规律.。
北师大版七年级上册数学期中考试试题及答案
北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。
北师大版初一数学上册期中考试试卷及答案
北师大版初一数学上册期中考试试卷及答案七年级数学期中试卷班级:________姓名:________分数:________一、选一选,比比谁细心(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.| - | 的绝对值是()。
2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长m,用科学记数法表示这个数为()。
3.如果收入15元记作+15元,那么支出20元记作()元。
4.有理数 (-1)2,(-1)3,-1/2,-1,-(-1),-1 中,其中等于1的个数是()。
5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()。
6.在代数式 ab221.-abc。
0.-5.x-y。
33xπ 中,单项式有()。
7.下列变形中,不正确的是()。
8.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是()。
9.下列说法正确的是()。
10.一个多项式加上5x2-4x-3得-x2-3x,则这个多项式为()。
11.化简x-y-(x+y)的最后结果是()。
12.已知a、b互为相反数,c、d互为倒数,x等于-4的2次方,则式子(cd-a-b)x-x的2次方的值为()。
1.第一题:求 |-| 的绝对值。
2.第二题:武汉长江二桥全长m,用科学记数法表示这个数为()。
3.第三题:如果收入15元记作+15元,那么支出20元记作()元。
4.第四题:有理数 (-1)2,(-1)3,-1/2,-1,-(-1),-1 中,其中等于1的个数是()。
5.第五题:已知p与q互为相反数,且p≠0,那么下列关系式正确的是()。
6.第六题:在代数式 ab221.-abc。
0.-5.x-y。
33xπ 中,单项式有()。
7.第七题:下列变形中,不正确的是()。
8.第八题:如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是()。
9.第九题:下列说法正确的是()。
10.第十题:一个多项式加上5x2-4x-3得-x2-3x,则这个多项式为()。
北师大版七年级下册数学《期中考试试题》及答案
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。
北师大版七年级上册数学期中考试试卷带答案
北师大版七年级上册数学期中考试试题一、单选题1.4-的倒数是( )A .14B .4C .14-D .4- 2.把890000这个数据用科学记数法表示为( )A .58.910⨯B .68.910⨯C .78.910⨯D .88.910⨯ 3.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D . 4.下列各组单项式中,不是同类项的是( )A .3与2-B .313x y 与313x y - C .22ab c 与2acb D .2a -与25- 5.如果一个直棱柱有七个面,那么它一定是( )A .三棱柱B .四棱柱C .五棱柱D .六棱柱 6.绝对值大于2且小于5的所有整数的和是( )A .7B .-7C .0D .5 7.44-=表示的意义是( )A .4-的相反数是4B .表示4的点到原点的距离是4C .4的相反数是4-D .表示4-的点到原点的距离是48.下列计算正确的是( )A .2(1)1-=-B .3(1)1-=-C .211-= D .311-=9.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是( )A .B .C .D .10.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )A .b <0B .a+b <0C .a <0D .b ﹣a <0二、填空题11.十一月某天,某地最高气温5℃,最低气温-2℃.这一天温差是________℃.12.已知单项式223x y -的系数为a ,次数为b ,则ab 的值为________.13.在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有________个.14.用“>”“<”“=”填空:(1)若0a <,则2a ________a ;(2)若0a c b <<<,则abc ________015.在数轴上,与表示3-的点距离2个单位长度的点表示的数是________.16.已知﹣17x 4my 2+23x 7yn =6x 7y 2,则m ﹣n 的值是 ___.17.用火柴棒按如图在方式搭图形,搭第n 个图形需 ___根火紫棒.三、解答题18.把下列个数填到相应的集合内.1、13、0.5、7+、0、 6.4-、9-、613、0.3、5%、26-、1.010010001…… 整数集合:{_______________…}分数集合:{_______________…}19.计算.(1)(8)4718(27)--+--(2)510.474( 1.53)166----(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭20.化简:(1)()()2237427a ab a ab -+--++(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x21.化简求值22352(23)4m m m m ⎡⎤---+⎣⎦,其中4m =-.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是cm3.23.为筹备某项工作,甲、乙、丙三个志愿者团队走上街头做宣传工作,在筹备期间,甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间时乙队的三分之一还少10个小时,若设乙队宣传工作用了x个时,回答下列问题.(1)用含x的代数式表示甲队的工作时间为________小时,丙队的工作时间为________小时;(2)甲队比丙队多宣传的时间为多少?(3)若乙队宣传了330个小时,求甲队比丙队多宣传的时间.24.某厂的某生产合作小组每天平均组装n个某型号电子产品(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周的五个工作日每天实际产量情况(超过计划产量记为正,少于计划产量记为负).(1)用含n的代数式表示合作小组本周五天生产电子产品的总量为________个;(2)该厂实行每日计件工资制,每组装生产一个电子产品可得200元,若超额完成任务,n=时,请求出该小组这一周的工资则超过部分每个另奖55元,少生产一个扣60元,当7总额;(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不n=时,在此方式下这一周此小组的工资总额与按日计件的工资哪个多?请说明理变,当7由.25.在一条不完整的数轴上从左到右有A 、B 、C 三点,其中5cm AC =,2cm BC =,设点A 、B 、C 所对应数的和是p .(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为________,点C 所对应的数为________,p 的值为________;(2)若原点O 在数轴上,且15cm =OB ,以1cm 长为一个单位长度,求p 的值.26.老师写出一个整式(ax 2+bx ﹣3)﹣(2x 2﹣3x )(其中a 、b 为常数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为﹣x 2+4x ﹣3,则甲同学给出a 、b 的值分别是a = ,b = ;(2)乙同学给出一组数,计算的最后结果与x 的取值无关,求出ba+ab 的值.参考答案1.C2.A3.A4.D5.C6.C7.D8.B9.B10.D11.7【分析】利用最高气温减去最低气温计算即可.【详解】解:5-(-2)=7(℃),即这一天温差是7℃,故答案为:7.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.12.2-【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】 解:单项式223x y -的系数为:23-,次数为:3, 则23a =-,3b =. 所以2332ab =-⨯=-.故答案为:2-.【点睛】本题考查了单项式,解题的关键是正确把握单项式的次数与系数确定方法.13.1【解析】【分析】根据正数大于零进行分析即可.【详解】解:224-=-,3(1)1-=-,(5)5-+=-,21319⎛⎫-⎪⎭= ⎝,故在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有213⎛⎫-⎪⎝⎭,共1个,故答案为:1.14.<>【解析】【分析】(1)根据一个小于零的数乘以大于1的数会越乘越小即可得出结论;(2)根据两个小于零的数相乘结果大于零,再乘一个大于零的数结果仍然大于零即可得出结论.【详解】解:(1)℃a<0,2>1℃2a<a;(2)℃ab>0,c>0℃abc>0故答案为:<;>.【点睛】本题考查有理数相乘的符号问题,掌握符号的运算规律是本题关键.15.5-或1-##-1或-5【解析】【分析】与表示3-的点距离2个单位长度的点有两个,分别在-3的左侧和-3的右侧,利用数轴即可得到答案.【详解】解:据题意,作图如下如图,与表示3-的点距离2个单位长度的点有两个,分别是5-、1-故答案为:5-或1-【点睛】本题考查数轴上两点之间的距离,牢记相关知识点是解题的关键.16.14-##-0.25 【解析】【分析】由4277217236m n x y x y x y -+=得,4217m x y -、723n x y 、726x y 是同类项,从而得出m 、n 的值,代入即可求出答案.【详解】4277217236m n x y x y x y -+=,472m n =⎧∴⎨=⎩, 解得:742m n ⎧=⎪⎨⎪=⎩, 71244m n ∴-=-=-. 故答案为:14-. 【点睛】本题考查同类项的定义:所含字母相同且相同字母的指数也相同,掌握同类项的定义是解题的关键.17.6(1)n +【解析】【分析】根据三个图形的变化规律找到图形个数与火柴棒根数的关系,即可得出结论.【详解】根据图形可得:第一个图形需12根火紫棒,即126(11)=⨯+,第二个图形需18根火紫棒,即186(21)=⨯+,第三个图形需24根火紫棒,即246(31)=⨯+,,按照这种方法下去,第n 个图形需6(1)n +根火紫棒,故答案为:6(1)n +.【点睛】本题考查图形类的找规律问题,通过观察分析,用一般式子表示出变化规律是解题的关键.18.1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【解析】【分析】利用整数、分数概念判断即可,即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.【详解】解:整数集合:{1,7+,0,9-,26}-; 分数集合:1{3,0.5, 6.4-,613,0.3,5%}. 故答案为:1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【点睛】本题考查了有理数中整数及分数,解题的关键是熟练掌握各自的定义:即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.19.(1)10-;(2)4-;(3)12-;(4)212-【解析】【分析】(1)把减法转化成加法,利用加法的交换律、结合律,能使运算简便;(2)利用加法的交换律和结合律,把小数、同分母的分数分别相加;(3)根据有理数的乘除法则及减法进行计算;(4)利用乘法对加法的分配律,能使运算简便.【详解】解:(1)(8)4718(27)--+--, 8471827=--++,5545=-+,10=-;(2)510.474( 1.53)166----,510.47 1.53(41)66=+-+, 26=-,4=-;(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭, 110(4)2⎛⎫=---⨯- ⎪⎝⎭, 102=--,12=-;(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭, 99212=-+-+, 212=-. 【点睛】本题考查了有理数的加减、乘除法运算、有理数的乘方,解题的关键是掌握有理数的运算法则,注意:利用运算律可以使运算简便.20.(1)273a ab -;(2)2562x x -- 【解析】【分析】直接根据去括号,合并同类项法则计算即可.【详解】解:(1)()()2237427a ab a ab -+--++ =2237427a ab a ab -++--=273a ab -;(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x=221234422x x x x -+--+ =2562x x --. 【点睛】本题考查了整式的加减,熟知相关运算法则是解本题的关键.21.26m m ---,18- 【解析】【分析】去括号合并同类项后,再代入求值.【详解】解:22352(23)4mm m m ⎡⎤---+⎣⎦ =()2235464m m m m --++=2235464m m m m -+-- =26m m ---将4m =-代入,原式=()()2446-----=18-.【点睛】本题主要考查了整式的加减,掌握去括号法则和合并同类项法则是解决本题的关键. 22.(1)见解析;(2)45.【解析】【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、5厘米和3厘米,将数据代入长方体的体积公式即可求解.【详解】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的体积为:3×5×3=45(cm 3).23.(1)(25)x +,1(310)x -;(2)5153x +(小时);(3)565小时【解析】【分析】(1)根据甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间比乙队的三分之一少10个小时列代数式即可;(2)用甲队宣传的时间减去丙队宣传的时间,列出代数式,化简即可;(3)根据(2),将330x =代入5153x +求解即可. 【详解】解:(1)甲队的工作时间为:(25)x +小时, 丙队的工作时间为:1(310)x -小时,故答案是:(25)x +,1(310)x -; (2)15(25)(10)1533x x x +--=+; (3)由(2)知甲队比丙队多宣传的时间为5153x +, 当330x =时, 5153x +, 5330153=⨯+, 565=(小时), 答:甲队比丙队多宣传565小时.【点睛】本题考查了列代数式,整式的加减,解题的关键是注意把甲队宣传的时间和丙队宣传的时间看作整体,用小括号括起来.24.(1)59n +;(2)9250元;(3)每周计件工资制一周工人的工资总额更多,理由见解析【解析】【分析】(1)根据正负数的意义分别表示出5天的生产电子产品的数量,再求和即可;(2)5天的生产电子产品的总数200⨯元+超出部分的奖励-罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【详解】解:(1)51613259n n n n n n ++-+-+++-=+,故答案是:59n +;(2)当7n =时,5957944n +=⨯+=,2004455(513)60(162)9250⨯+++---=,所以该厂工人这一周的工资总额是9250元.(3)5(1)(6)13(2)9+-+-++-=,442009559295⨯+⨯=,92509295<,∴每周计件工资制一周工人的工资总额更多.【点睛】本题主要考查了由实际问题列代数式,解题的关键是正确理解题意,掌握每日计件工资制的计算方法.25.(1)32-;1;12-;(2)46-或44 【解析】【分析】(1)由A 、B 、C 点的位置关系,结合5cm AC =,2cm BC =即可求得点A 、点C 所对应的数,进一步求得p ;(2)原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,可以知道点B 所对应的数为15-或15,然后分情况讨论并计算即可.【详解】解:(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为32-,点C 所对应的数为1,则:310122p =-++=- 故答案为:32-;1;12- (2)℃原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,℃点B 所对应的数为15-或15当点B 所对应的数为15-时,点C 所对应的数为13-,点A 所对应的数为18-,则()()(18)151346p =-+-+-=-;当点B 所对应的数为15时,点C 所对应的数为17,点A 所对应的数为12,则12+15+17=44p =.综上所述,点p 的值为:46-或44【点睛】本题考查数轴上两点之间的距离,牢记数轴的相关知识点是解题关键.26.(1)1,1;(2)3【解析】【分析】(1)先计算出()()22323ax bx x x +---的结果为()()2233a x b x -++-,然后根据甲同学的计算结果为243x x -+-,则()()2223343a x b x x x -++-=-+-,由此求解即可; (2)根据()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, 则2030a b -=⎧⎨+=⎩,即可得到23a b =⎧⎨=-⎩然后代值计算即可. 【详解】解:(1)()()22323ax bx x x +---22323ax bx x x =+--+()()2233a x b x =-++-,又℃甲同学的计算结果为243x x -+-,℃()()2223343a x b x x x -++-=-+-,℃2134a b -=-⎧⎨+=⎩,℃11a b =⎧⎨=⎩,故答案为:1,1;(2)℃()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, ℃2030a b -=⎧⎨+=⎩,℃23a b =⎧⎨=-⎩,℃()()2323963a b ab +=-+⨯-=-=.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.在式子3n -,2a b ,2m s +≤,x ,ah-,s ab =中代数式的个数有()A .6个B .5个C .4个D .3个2.牛奶盒的包装上印有260±5ml ,下列四盒送去质检,不合格的是()A .265mlB .262mlC .258mlD .250ml3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.下列说法中正确的个数为()(1)4a 一定是偶数;(2)单项式237xy 的系数是37,次数是3;(3)小数都是有理数;(4)多项式325322x xy -+是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A .1个B .2个C .3个D .4个5.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A .①B .②C .③D .④6.已知x y y x -=-,2x =,3y =,则2x y -的值为()A .-1B .1C .-1或7D .1或-77.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是()A .0ab >B .b a >-C .0a b +<D .0b a ->8.已知221a a -=,则2364a a -+的值为()A .-1B .1C .-2D .59.如图所示的几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .10.若实数a 、b 、c 在数轴上对应点的位置如下图所示,则||||||c b a b c -++-等于()A .2a c --B .2a b -+C .a-D .2a b-二、填空题11.数9899万用科学记数法表示为____________.12.某棱柱共有8个面,则它的棱数是___________.13.若42n xy 与25m x y -是同类项,则n m =___________.14.若m ,n 为相反数,则m +(-2021)+n 为______.15.化简:3π4π---=____________.16.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数.则2x y -的值为___________.17.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.18.有一个数值转换器的原理如图所示,若开始输入x 的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.三、解答题19.计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭;(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭;(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)224323(2)2⎡⎤---+-÷⎣⎦;(5)()222233a b ab ab a b -++;(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 20.如图,是由8个大小相同的小立方体块搭建的几何体,请分别画出从这个几何体的三个不同方向看到的形状图.21.先化简,再求值:()()23233a ab b ab b ---+⎡⎤⎣⎦,其中()23310a b ++-=.22.已知关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项.求232m m -+()51m -的值.23.已知:点C 、D 、E 在直线AB 上,且点D 是线段AC 的中点,点E 是线段DB 的中点,若点C 在线段EB 上,且DB =6,CE =1,求线段AB 的长.24.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.25.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.(1)将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?(2)如果每百公里耗油10升,那么小王下午耗油多少升?26.在数轴上,四个不同的点,,,A B C D 分别表示有理数a b c d ,,,,且,a b c d <<.(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为;②求点M 表示的有理数m 的值(用含,a b 的代数式表示);(2)已知ab c d+=+,①若三点,,A B C 的位置如图所示,请在图中标出点D 的位置;②a b c d ,,,的大小关系为(用“<”连接)参考答案1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.A 10.A 11.79.89910⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:9899万=98990000=9.899×107.故答案为:9.899×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.18【详解】某棱柱共有8个面,可知这个棱柱为6棱柱,6棱柱有18条棱.13.16【分析】根据同类项的定义示出m ,n 的值,再代入求解即可.【详解】解:∵42n xy 与25m x y -是同类项,∴m=4,n=2.∴nm =24=16.故答案为:16.14.-2021【分析】根据相反数的意义得出0m n +=,从而可计算m +(-2021)+n 的值.【详解】解:∵m ,n 为相反数,∴0m n +=,∴m +(-2021)+n=0-2021=-2021故答案为:-2021【点睛】本题主要考查互为相反数的概念和性质.只有符号不同的两个数互为相反数,互为相反数的两个数的和为0.15.2π7-【解析】【分析】根据绝对值的定义即可得.【详解】解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.16.12【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“-3”与“23x -”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴()2330x -+-=,0x y +=,解得3x =,3y =-,∴()22339312x y -=--=+=.故答案为:12.17.1cm 或9cm 【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB=10cm ,较短的木条为BC=8cm ,∵M 、N 分别为AB 、BC 的中点,∴BM=5cm ,BN=4cm ,①如图1,BC 不在AB 上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM−BN=5−4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.如图,18.-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.19.(1)1(2)1 5(3)-27(4)3(5)2 6a b(6)2562x x--【分析】(1)根据有理数加法运算法则进行计算;(2)根据乘法分配律进行运算即可;(3)根据有理数加减乘除四则混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可;(5)根据整式加减混合运算法则进行计算即可;(6)先去括号,然后合并同类项进行运算即可.(1)解:110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭110.573(2.75)24⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎝⎭⎝⎭76=-1=(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭112112112253545⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643555=-++15=(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369=-+27=-(4)22323(2)42⎡⎤---+-÷⎣⎦4(92)=---+47=-+3=(5)()222233a b ab ab a b -++222233a b ab ab a b=-++26a b=(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 221234422x x x x -+=-+-2562x x --=20.见解析【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,3,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方形数目分别为1,3,1;据此可画出图形.【详解】解:如图所示:21.233a ab -,30【分析】原式去括号,合并同类项进行化简,然后利用绝对值和偶次幂的非负性确定a 和b 的值,从而代入求值.【详解】解:()()23233a ab b ab b ---+⎡⎤⎣⎦236333a ab b ab b=--++233a ab =-;∵()23310a b ++-=∵30a +≥,()2310b -≥,∴30a +=,310b -=,∴3a =-,13b =,当3a =-,13b =时原式()()227330133333⨯--⨯-⨯==+=;22.3【分析】先根据关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项,求出m 的值,然后化简()23251m m m -+-,最后代入求值即可.【详解】解:222622452x mxy y xy x --+-+()224222x m xy y =+--+∵化简后的结果中不含xy 项,∴420m -=,∴2m =,()23251m m m -+-23255m m m=-+-2375m m =-+当2m =时,原式232725=⨯-⨯+12145=-+3=23.线段AB 的长为10【分析】由题意知AB AD DB =+,116322DE DB ==⨯=,314DC DE EC =+=+=,4AD DC ==,将各值代入AB AD DB =+计算即可.【详解】解:∵点E 是线段DB 的中点,且6DB =∴116322DE DB ==⨯=∵1EC =∴314DC DE EC =+=+=∵点D 是线段AC 的中点∴4AD DC ==∴4610AB AD DB =+=+=.24.见解析【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【详解】解:如图所示:25.(1)小王距出车地点的北边12千米处;(2)小王下午耗油7.4升.【分析】(1)根据题意可直接进行求解即可;(2)先求出每次出车的距离之和,然后再进行求解即可.【详解】解:(1)由题意得:()()()()15413101231712++-++-+-++-=-(千米);答:小王距出车地点的北边12千米处.(2)由题意得:15413101231774++++++=(千米),10747.4100⨯=(升);答:小王下午耗油7.4升.26.(1)①0a b +=,②2a b+;(2)①见解析,②a c d b <<<或者c a b d<<<【分析】(1)①根据相反数的性质即可得出答案②根据数轴上两点间的距离公式结合已知条件即可求得(2)①根据数轴上两点间的距离公式可得出AC=DB ,从而确定点D 的位置②根据数轴上的点所表示的数,右边的总比左边的大即可得出答案【详解】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合∴0a b +=M ②为AB 中点,AM BM ∴=.m a b m ∴-=-.2a bm +∴=(2)①∵a b c d +=+,,a b c d <<.∴c-b-a d =,∴AC=DB∴点D 的位置如图所示②∵a b c d +=+,∴c-b-a d =,∴AC=DB如图或∴a c d b <<<或c a b d<<<故答案为:a c d b <<<或c a b d<<<。
北师大版七年级数学上册期中试卷及答案
北师大版七年级数学上册期中试卷及答案得分一二123三456总分一。
填空题(每空1分,共30分)1.有理数-4,500,-2.67,5中,整数是-4,负整数是-4,正分数是500.2.-1的相反数是1,倒数是-1,绝对值是1.3.观察右图,用“>”或“<”填空。
1) a。
3c (4) a+c < 04.平方为0.81的数是0.9,立方得-64的数是-4.5.在(-6)2x2y中,底数是-6,指数是2x2y,-的系数是1.6.长方体是由6个面围成,圆柱是由3个面围成,圆锥是由2个面围成。
7.八棱柱有8个顶点,18条棱,12个面。
8.表面能展成如图所示的平面图形的几何体是长方体和正方体。
9.一辆货车从XXX出发,向东走了4千米到达XXX家,继续走了2.5千米到达XXX家,又向西走了12.5千米到达XXX家,最后回到XXX。
1) XXX家距小彬家16.5千米;(2) 货车一共行驶了35千米。
10.电表的计数器上先后两次读数之差,就是这段时间内的用电量,某家庭6月1日时电表显示的读数是121度,6月7日24时电表显示的读数是163度。
从电表显示的读数中,估计这个家庭六月份的总用电量是804度。
11.如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数ab,请用一个等式表示,a、b、c、d之间的关系是a+b=c+d。
12.一辆公共汽车有56个座位,空车出发,第一站上2位乘客,第二站上4位乘客,第三站上6位乘客,依次下去,第n站上2n位乘客,第19站以后车上坐满乘客。
二。
选择题:(每小题2分,共20分.每小题只有一个正确的选项符合题意)1.B2.C3.A4.C5.B6.D7.B8.C9.A 10.C1.长方体的截面中,边数最多的多边形是( ) A。
四边形B。
五边形 C。
六边形 D。
七边形。
2.下面平面图形经过折叠不能围成正方体的是( ) A。
B。
C。
D.3.下面各正多面体的每个面是同一种图形的是( ) ①正四面体②正六面体③正八面体④正十二面体⑤正二十面体 A。
北师大版七年级上册数学期中试卷含答案
北师大版七年级上册数学期中试卷含答案1.冥王星地表背阴面的温度比向阳面低476℃。
2.不是互为相反数的是:C。
-100与(-10)²。
3.下列计算正确的是:A。
3x2-x2=3.4.该几何体是B。
正方体。
5.最大的是C。
a+b。
6.正确的是A。
球的截面可能是椭圆。
7.6万亿元用科学记数法可表示为D。
6×1013元。
8.若-3x2my3与2x4yn是同类项,那么m-n= B。
1.9.长方形长是2a+3b,宽为a+b,则其周长是D。
6a+4b。
10.代数式2a2+4a-4的值为B。
4a-2.11.立体图形的名称分别是:正方体、正四面体、正八面体、正十二面体。
12.代数式-ab-7ab-6ab+1是三次多项式,二次项是-6ab,常数项是1.13.点B表示数是4.14.x+y+z=5.15.(a+b)2000=2000.16.摆第n个图形时,需要4n-1根火柴棒。
根据题意可知,要求的是“1+2+3+。
+100”的值,可以使用等差数列求和公式,即:S = (a1 + an) * n / 2其中,a1为首项,an为末项,n为项数。
将题目中的数列代入公式,得:S = (1 + 100) * 100 / 2 = 5050因此,选项B为正确答案。
温差是指最高气温与最低气温之间的差值,可以通过将向阳面的温度减去冥王星的背阴面温度来计算。
因此,本题的答案为B,即温差为30.本题考察了相反数的定义、绝对值的性质和有理数的乘方,需要逐一分析各选项。
选项A中的两个数互为相反数,但是它们的绝对值不同,因此选项A错误。
选项B中的两个数的绝对值相同,但是它们并不互为相反数,因此选项B错误。
选项C中的两个数互为相反数,但是它们的绝对值不同,因此选项C错误。
选项D中的两个数互为相反数,且它们的绝对值相同,因此选项D正确。
本题要求合并同类项,根据合并同类项法则进行计算即可。
选项A和B中的计算结果不是同类项,因此它们错误。
北师大版七年级上册数学《期中检测试卷》含答案
北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A. b a a b ->>->B. a a b b >->>-C. b a b a >>->-D. b a a b -<<-<3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯5. 下列图形中是正方体表面展开图的是( )A. B.C. D.6. 单项式25x y-的系数和次数分别是( )A.1 5 -,2 B. -1,3 C.15-,3 D. -1,27. 如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是().A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18. 下列计算正确的是()A. 22232x y yx x y-= B. 532y y-= C. 277a a a+= D. 325a b ab+=9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n个图案中有白色砖()块A. 42n+ B. 64n+ C. 6n D. 24n+10. 下列结论中正确的是()A. 100101(1)(1)1-+-=- B. 若n为正整数,则2(1)1n-=C. 若||||a b=,则a b= D. 15(3)53-÷⨯+=-二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.13. 若m n、满足221|(2)|0m n++-=,则n m=__________.14. 已知x y,互为相反数且均不为0,a b,互为倒数,m是最大的负整数.则代数式2019x y xabm y+-+的值为__________.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯- 16. (1)化简:2222(324)(343)x xy y xy y x +---+.(2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题: (1)用含x 的代数式表示应付的车费; (2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少? 20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a xx b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款. 学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算? (2)若只在一家商店购买,请用含x代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱购买方案并求出最少的花费是多少. 28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ;②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A b a a b ->>-> B. a a b b >->>- C. b a b a >>->- D. b a a b -<<-<【答案】D 【解析】 【分析】根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,进而可得出结论. 【详解】解:∵由图可知,a <0<b ,|a|<|b|=b , ∴b >-a >a >-b . 故选:D .【点睛】本题考查的是有理数的大小比较,数轴上右边的点表示的数总比左边的大是解答此题的关键. 3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米【答案】D 【解析】 【分析】根据正负数的性质,判断最符合标准的即可. 【详解】∵0.20.30.50.6-<<<- ∴-0.2毫米最符合标准 故答案为:D .【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯【答案】B 【解析】 【分析】根据科学记数法的定义以及性质进行表示即可. 【详解】28000万82.810=⨯ 故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键. 5. 下列图形中是正方体表面展开图的是( )A. B.C. D.【答案】C 【解析】【分析】根据正方体表面的十一种展开图的性质进行判断即可. 【详解】A. 不属于正方体表面展开图,错误; B. 不属于正方体表面展开图,错误; C. 属于正方体表面展开图,正确; D. 不属于正方体表面展开图,错误; 故答案为:C .【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2 B. -1,3C. 15-,3D. -1,2【答案】C 【解析】 【分析】根据单项式的定义以及性质来判断系数和次数即可. 【详解】系数和次数分别是15-,3 故答案为:C .【点睛】本题考查了单项式的系数和次数问题,掌握单项式的定义以及性质是解题的关键. 7. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2 B. m =-1,n =2C. m =-2,n =2D. m =2,n =-1【答案】B 【解析】试题分析:本题考查同类项的定义,单项式x 2y m+2与x n y 的和仍然是一个单项式,意思是x 2y m+2与x n y 是同类项,根据同类项中相同字母的指数相同得出. 解:由同类项定义, 可知2=n,m+2=1, 解得m=﹣1,n=2. 故选B .考点:同类项.8. 下列计算正确的是( )A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=【答案】A 【解析】 【分析】根据整式的加减法法则对各项进行运算即可. 【详解】A. 22232x y yx x y -=,正确; B. 532y y y -=,错误; C. 78a a a +=,错误; D. 3232a b a b +=+,错误; 故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +【答案】A 【解析】 【分析】根据图形的规律可得第n 个图案中有白色砖块的数量应是差为4的等差数列,求出代数式即可. 【详解】第1个图案中有白色砖6块 第2个图案中有白色砖10块 第3个图案中有白色砖14块 故第n 个图案中有白色砖24n +块 故答案为:A .【点睛】本题考查了图形的规律题,掌握图形的规律求出代数式是解题的关键.10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=- B. 若n 为正整数,则2(1)1n -= C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-【答案】B 【解析】 【分析】根据幂的运算法则、绝对值的性质、实数的混合运算法则对各项进行计算即可. 【详解】A. ()100101(1)(1)110-+-=+-=,错误;B. 若n 为正整数,则2(1)1n -=,正确;C. 若||||a b =,则a b =±,错误;D. 15(3)453-÷⨯+=-,错误; 故答案为:B .【点睛】本题考查了实数的运算问题,掌握幂的运算法则、绝对值的性质、实数的混合运算法则是解题的关键.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.【答案】 (1). 8- (2). 2- 【解析】 【分析】直接算减法即可;先算乘方,再算除法即可. 【详解】538--=-28(2)2-÷-=-故答案为:8-,2-.【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键. 12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.【答案】38【解析】【分析】根据题意可知,该程序计算是先乘以4,再减去2,若结果大于10,则就是所求,若小于等于10,则重新进行计算.【详解】输入x=3,∴3x-2=3×4-2=10,所以应将10再重新输入计算程序进行计算,即10×4-2=38,故答案为38.【点睛】本题考查了程序运算,代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.13. 若m n 、满足221|(2)|0m n ++-=,则n m =__________. 【答案】14【解析】【分析】根据绝对值和平方的非负性,求出mn 、的值,再代入求解即可. 【详解】∵221|(2)|0m n ++-= ∴21020m n +=⎧⎨-=⎩解得1,22m n =-= 将1,22m n =-=代入n m 中 21124n m ⎛⎫=-= ⎪⎝⎭ 故答案为:14. 【点睛】本题考查了整式的运算,掌握绝对值和平方的非负性是解题的关键.14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y x ab m y+-+的值为__________.【答案】2020-【解析】【分析】 根据相反数和倒数的定义以及性质得0111x x y ab m y +==-==-,,,,再代入求解即可. 【详解】∵x y ,互为相反数且均不为0, ∴0,1x x y y+==- ∵a b ,互为倒数∴1ab =∵m 是最大的负整数∴1m =- 将0111x x y ab m y +==-==-,,,代入2019x y x ab m y+-+中 原式020191=2020---=故答案为:2020-. 【点睛】本题考查了整式的混合运算,掌握相反数和倒数的定义以及性质、最大的负整数是1-是解题的关键.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷- (3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯-【答案】(1)11 (2)28- (3)96.89- (4)12-【解析】【分析】(1)直接算加减法即可.(2)先算乘方,再算乘除法,最后算加法即可.(3)根据乘法分配律计算即可.(4)先算乘方,再算中括号内的乘法,再算中括号内的减法,再算乘法,最后算减法即可,.【详解】(1)20(14)(18)13+----11=(2)2210(2)8()3-⨯--÷- 10412=-⨯+4012=-+28=-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- 36296.89111111⎛⎫=⨯--- ⎪⎝⎭()96.891=⨯-96.89=-(4)2214[102(3)]2--⨯-⨯- 116[1029]2=--⨯-⨯ 116[1018]2=--⨯- 116[8]2=--⨯- 16+4=-12=-【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键.16. (1)化简:2222(324)(343)x xy y xy y x +---+. (2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.【答案】(1)xy - (2)7-【解析】【分析】(1)先去括号,再合并同类项即可.(2)先去小括号,再去中括号,最后算加减法即可化简,再代入求值即可.【详解】(1)2222(324)(343)x xy y xy y x +---+ 2222324343x xy y xy y x =+--+-xy =-.(2)362(31)(7)[]y x y x y --+-+-3662[2]7y x y x y =---++-355[4]y x y =---3+554+y x y =-8+45y x =-将23x y -=代入原式中原式()8+542544357y x x y =-=--+=-⨯+=-.【点睛】本题考查了整式的混合运算,掌握整式混合运算法则、合并同类项的方法是解题的关键. 17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.【答案】作图见解析【解析】【分析】根据几何体的三视图的性质,作出这个几何体的正视图和左视图即可.【详解】如图所示,即为所求.正视图左视图【点睛】本题考查了几何体的三视图问题,掌握几何体的三视图的性质是解题的关键.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?【答案】(1)西方向,2千米(2)180【解析】【分析】(1)把所有行驶记录相加,即可判断最后位置方向和距离.(2)把所有行驶记录的绝对值相加,再除以汽车行驶每千米的耗油量,即可求解.-+--+--++=-.【详解】(1)1098123767642∵约定向东为正,向西为负∴养护小组最后到达的地方在出发点的西方向,距出发点2千米.(2)10+9+8+12+3+7+6+7+6+41800.4=(升) 故这一天养护小组的汽车共耗油180升.【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题:(1)用含x 的代数式表示应付的车费;(2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少?【答案】(1)()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)11 (3)11 【解析】【分析】(1)根据题意,列出代数式即可;(2)将5x =代入方程求解即可;(3)将20y =代入方程求解即可.【详解】(1)设应付的车费为y 元,由题意得()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)∵53x =>∴()8 1.55311y =+⨯-=故他应付的车费为11元.(3)∵208>∴将20y =代入()8 1.53y x =+-中()208 1.53x =+-解得11x =故小明乘坐的路程是11km .【点睛】本题考查了一元一次方程的行程问题,掌握解一元一次方程的方法是解题的关键.20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?【答案】证明见解析【解析】【分析】先化简多项式,然后分别代入2a =-,3b =-和2a =,3b =-求原式的值,即可得证. 【详解】2222215[(31)2(4)]2a b ab a b a b ab -+--++ 222225[3128]a b ab a b a b ab =-+----225[9]a b a b =--2259a b a b =-+249a b =+当2a =-,3b =-时原式()()2423939=⨯-⨯-+=-当2a =,3b =-时原式()2423939=⨯⨯-+=- ∴小明做题时把2a =-错抄成2a =,但他最终求出的值也正确.【点睛】本题考查了多项式的计算问题,掌握化简多项式的方法、代入求值法是解题的关键.四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a x x b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.【答案】9【解析】【分析】根据多项式的定义以及性质求出,a b 的值,再代入求值即可.【详解】∵2324(2)25a x x b x x -+-+-+是关于x 的五次四项式∴2520a b -=⎧⎨+=⎩解得7,2a b ==-将7,2a b ==-代入-a b 中原式()729=--=故答案为:9.【点睛】本题考查了多项式的问题,掌握多项式的定义以及性质是解题的关键.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.【答案】 (1). 14 (2). 10【解析】【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______【答案】2-..【解析】【分析】首先认真分析找出规律,然后再代入数值计算.【详解】在1⊕x 中,1相当于a ,x 相当于b ,∵x=2,∴符合a<b 时的运算公式,∴(1⊕x )x=2.在3⊕x 中,3相当于a ,x 相当于b ,∵x=2,∴符合a ⩾b 时的运算公式,∴3⊕x=4.∴(1⊕x)−(3⊕x)=2−4=−2.【点睛】此题考查有理数的混合运算,掌握运算法则是解题关键24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.【答案】222a b c -+【解析】【分析】根据绝对值的性质以及数轴的性质进行计算即可.【详解】由数轴得0,0,0a c b c b a +>-<-> ∴a c b c b a ++---a c cb b a =++--+222a b c =-+故答案为:222a b c -+.【点睛】本题考查了绝对值的运算问题,掌握绝对值的性质以及数轴的性质是解题的关键.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.【答案】0【解析】【分析】根据绝对值的性质求出m 、n 的值,再代入求值即可.【详解】当0,0,0a b c >>>时,可得最大值=1+1+1+14a b c abc b a cm a c b +++== 当0,0,0a b c <<<时,可得最小值=11114a b c abc a b c a n bc+++----=-= ∴()20202020()440m n +=-=故答案为:0. 【点睛】本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.【答案】-216.【解析】试题分析:先化简()()423A A B A B ⎡⎤+--+⎣⎦可得34A B -,再把2222424,363A x xy y B x xy y =-+=-+代入34A B -可得其值为18xy ,再由23,16,0,x y xy ==<求得x 、y 的值,代入即可求值.试题解析:解:()()423A A B A B ⎡⎤+--+⎣⎦=423334A A B A B A B +---=-, 所以34A B -=22223(424)4(363)x xy y x xy y -+--+=222212612122412x xy y x xy y -+-+-=18xy ∵23,16,x y ==∴3,4,x y =±=±∵0,xy <∴x=3,y=-4或x=-3,y=4把x=3,y=-4代入,原式=183(4)216⨯⨯-=-;把x=-3,y=4代入,原式=18(3)4216⨯-⨯=-.考点:整式的加减混合运算.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款.学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算?(2)若只在一家商店购买,请用含x 的代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱的购买方案并求出最少的花费是多少.【答案】(1)若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【解析】【分析】(1)分别根据题意计算出若只在甲购买和若只在乙购买的花费,比较两个花费的大小,即可判断哪种方案更划算.(2)根据题意列出代数式表示即可.(3)设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元,可得方程y=165760x -+,再根据020x ≤≤,即可确定最省钱的购买方案.【详解】(1)若只在甲购买:()20020+6020405600⨯-⨯=(元)若只在乙购买:2002090+4060905760⨯⨯⨯⨯=%%(元)∵56005760<若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在甲购买: ()20020+2040403200x x ⨯-⨯=+若只在乙购买: 2002090+4090360036x x ⨯⨯⨯=+%%故若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)∵单买领带时,乙商店比甲商店便宜∴要想花费最少,在甲商店购买的西装套数等于领带的条数∴设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元 ()()2002009020409060y x x x =+⨯⨯-+⨯⨯-%%=165760x -+.∵020x ≤≤∴当20x 时,总花费y 有最小值最小值为162057605440-⨯+=故当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质以及最值问题是解题的关键.28. (1)探索材料1(填空): 数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ; ②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .【答案】(1)探索材料1(填空):3,46,3,,4x --,; (2)探索材料2(填空):①点A 和点B 之间;②点B 上;③点B 和点C 之间;(3)结论应用(填空):①7,34x -≤≤;②8,3-;③18,42x -≤≤.【解析】【分析】 (1)探索材料1(填空):根据给出的材料填写即可; (2)探索材料2(填空):分情况讨论点P 的位置,使点P 到其他点的距离之和最小;(3)结论应用(填空):根据探索材料2得出的结论填写即可.【详解】(1)探索材料1(填空):253-=,()314--=,()6363+=--,()44x x +=--故答案:3,46,3,,4x --,. (2)探索材料2(填空):①1)当点P 在点A 左边2PA PB PA AB +=+2)当点P 在点A 之间PA PB AB +=3)当点P 在点B 右边2PA PB PB AB +=+∴当点P 在点A 和点B 之间,才能使P 到A 的距离与P 到B 的距离之和最小②1)当点P 在点A 左边2PA PB PC PA PB AC ++=++2)当点P 在点A 和点B 之间PA PB PC AC BP ++=+3)当点P 在点B 和点C 之间PA PB PC AC BP ++=+4)当点P 在点C 右边2+PA PB PC PC PB AC ++=+∴最小值为AC BP +,当点P 在点B 上时,值最小为AC∴当点P 在点B 上时,才能使P 到A B C ,,三点的距离之和最小③1)当点P 在点A 左边42PA PB PC PD PA AB BC AD +++=+++2)当点P 在点A 和点B 之间2PA PB PC PD PB BC AD +++=++3)当点P 在点B 和点C 之间PA PB PC PD AD BC +++=+4)当点P 在点C 和点D 之间2PA PB PC PD PC BC AD +++=++5)当点P 在点D 右边42PA PB PC PD PD CD BC AD +++=+++∴当点P 在点B 和点C 之间时,才能使P 到A B C D ,,,四点的距离之和最小故答案为:①点A 和点B 之间;②点B 上;③点B 和点C 之间.(3)结论应用(填空):①由探索材料2得,当34x -≤≤时,|3||4|x x ++-有最小值,最小值为|3||4|347x x x x ++-=++-=②由探索材料2得,这是在求点x 到6,3,2--三个点的最小距离,∴当3x =-时,|632x x x ++++-|有最小值,最小值为|3303386325-++++-=+--+=| ③由探索材料2得,这是在求点x 到7,4,2,5--四个点的最小距离,∴当42x -≤≤时,7425||x x x x ++++-+-有最小值,最小值为7425|742|518x x x x x x x x ++++-+-=++++-+-=.故答案为:①7,34x -≤≤;②8,3-;③18,42x -≤≤.【点睛】本题考查了数轴上两点之间的距离最值问题,掌握数轴上两点之间的距离公式、绝对值的性质是解题的关键.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。
北师大版七年级下册数学《期中检测试卷》及答案
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。
2023-2024学年北师大新版七年级上册数学期中复习试卷(含答案)
2023-2024学年北师大新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,﹣a,﹣b的大小关系是( )A.﹣a<a<b<﹣b B.﹣a<b<a<﹣b C.﹣b<﹣a<a<b D.b<﹣a<a<﹣b 2.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为( )A.0.34×1010B.3.4×109C.3.4×108D.34×1083.如图,四个几何体分别为四棱锥、三棱柱、圆柱体和长方体,这四个几何体中截面可能是圆形的几何体是( )A.四棱锥B.三棱柱C.圆柱体D.长方体4.下列式子中和3x2y3是同类项的是( )A.xy4B.3x2+3y3C.x3y2D.y3x25.如图,有理数m,n在数轴上对应的点分别为M,N,则m﹣n的结果可能是( )A.﹣1B.1C.2D.36.如图是一个正方体展开图,把展开图折叠成正方体后,“牢”字一面的相对面上的字是( )A.初B.心C.使D.命7.通道县出租车的收费标准是:起步价5元(行驶距离不超过3km,都需付5元车费),超过3km每增加1km(不足1km时,以1km计算),加收1.5元,设小陈乘出租车到达目的地的路程为xkm(x>3),[x]是大于x的最小整数,则小陈应付的车费是( )A.(5+1.5x)元B.(5+1.5[x])元C.(0.5+1.5[x])元D.(0.5+1.5x)元8.若A为五次多项式,B为四次多项式,则A+B一定是( )A.次数不高于九次多项式B.四次多项式C.五次多项式或五次单项式D.次数不定9.下列说法正确的个数有( )(1)若a2=b2,则|a|=|b|;(2)若a、b互为相反数,则;(3)绝对值相等的两数相等;(4)单项式7×102a4的次数是6;(5)﹣a一定是一个负数;(6)平方是本身的数是1A.1B.2C.3D.410.72021+1的个位数字是( )A.8B.4C.2D.0二.填空题(共5小题,满分15分,每小题3分)11.将一个长3cm宽2cm的长方形沿着边所在直线旋转形成的几何体体积是 .12.若有理数m、n满足|2m﹣1|+(n+1)2=0,则mn= .13.如果单项式﹣3x2m y3与2x6y n是同类项,那么m的值为 .14.已知x+3y=﹣3,则2x+6y+3= .15.已知A,B,C三点在数轴上对应的数为a,b,c,它们在数轴上的位置如图所示,化简:|a+b+c|﹣|c﹣b﹣a|= .三.解答题(共7小题,满分75分)16.计算:(1)(﹣2)2×5﹣(﹣2)3÷4.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].17.先化简,再求值:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy,其中x=﹣1,y=1.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图,并将形状图的内部用阴影表示.19.出租车司机小王某天上午营运是在东西走向的大街上进行的.如果规定向东为正,向西为负;他这天上午行车里程(单位:千米)如下:﹣2,﹣1,+10,﹣9,+11,﹣5.(1)将最后一名乘客送到目的地时,小王距出发点多远?(2)若汽车耗油量为0.05升/千米,小王的汽车共耗油多少升?(3)出租车在营运过程中,离开出发点最远多少千米?20.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个草坪(图中阴影部分).(1)用字母表示图中阴影部分的面积(写出化简后的结果);(2)若a=2,b=4,计算阴影部分的面积(π取3)21.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和= ;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,﹣5,3,9,﹣1,11,﹣3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.22.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7.(1)请写出点A表示的数为 ,点B表示的数为 ,A、B两点的距离为 ;(2)若一动点P从点A出发,以3个单位长度/秒的速度向右运动;同一时刻,另一动点Q从点B出发,以1个单位长度/秒的速度向右运动.①点P刚好在点C追上点Q,请你求出点C对应的数;②经过多长时间PQ=5?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵a>0,b<0,a<|b|,∴﹣a<0,﹣b>0,﹣b>a,﹣a>b,即b<﹣a<a<﹣b.故选:D.2.解:34亿=3400000000=3.4×109.故选:B.3.解:四棱锥、三棱柱和长方体的截面不可能是圆,圆柱的截面可能是圆.故选:C.4.解:下列式子中和3x2y3是同类项的是y3x2.故选:D.5.解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,1<m﹣n<3∴m﹣n的结果可能是2.故选:C.6.解:牢”字一面的相对面上的字是命,故选:D.7.解:∵x>3,∴小陈应付的车费是:5+1.5(x﹣3)=5﹣4,5+1.5x=0.5+1.5x,∵不足1km时,以1km计算,∴陈应付的车费是:(0.5+1.5[x])元.故选:C.8.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式或五次单项式,9.解:(1)若a2=b2,则|a|=|b|,原说法正确;(2)若a、b互为相反数且ab≠0时,,原说法错误;(3)绝对值相等的两数相等或互为相反数,原说法错误;(4)单项式7×102a4的次数是4,原说法错误;(5)当a=0时,说法“﹣a一定是一个负数”错误;(6)平方是本身的数是1或0,原说法错误.故选:A.10.解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴这列数的个位数字依次以7,9,3,1循环出现,∵2021÷4=505……1,∴72021的个位数字是7,∴72021+1的个位数字是8,故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:长方形沿着长或宽旋转的圆柱,故答案为:圆柱.12.解:∵m、n满足|2m﹣1|+(n+1)2=0,∴2m﹣1=0,m=;n+1=0,n=﹣;则mn=×(﹣)=﹣.故答案为:﹣.13.解:∵单项式﹣3x2m y3与2x6y n是同类项,∴2m=6,故答案为:3.14.解:2x+6y+3=2(x+3y)+3=2×(﹣3)+3=﹣6+3=﹣3.故答案为:﹣3.15.解:由题意得:a<b<0<c,|a|>|b|>|c|,∴a+b+c<0,c﹣b﹣a>0,∴|a+b+c|﹣|c﹣b﹣a|=﹣a﹣b﹣c﹣(c﹣b﹣a)=﹣a﹣b﹣c﹣c+b+a=﹣2c,故答案为:﹣2c.三.解答题(共7小题,满分75分)16.解:(1)(﹣2)2×5﹣(﹣2)3÷4=4×5+8÷4=20+2=22.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=﹣1000+16+8×2=﹣968.17.解:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy =3x2y+3xy﹣2x2y+xy﹣5xy=x2y﹣xy;当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1=2.18.解:如图所示:19.解:(1)﹣2+(﹣1)+(+10)+(﹣9)+(+11)+(﹣5)=4(千米),答:将最后一名乘客送到目的地时,小王距出发点4千米;(2)0.05×(2+1+10+9+11+5)=1.9(升),答;小王的汽车共耗油1.9升;(3)将第一名乘客送到目的地时离出发点的距离为|﹣2|=2(千米),将第二名乘客送到目的地时离出发点的距离为|﹣2﹣1|=3(千米),将第三名乘客送到目的地时离出发点的距离为|﹣2﹣1+10|=7(千米),将第四名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9|=2(千米),将第五名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9+11|=9(千米),将最后一名乘客送到目的地时,小王距出发点4千米;所以离开出发点最远9千米.20.解:(1)阴影部分的面积=ab﹣﹣=ab﹣﹣=ab﹣;(2)当a=2,b=4时,阴影部分的面积=2×4﹣3×22=8﹣=.21.解:(1)由题意可得,幻和=﹣2×3=﹣6,故答案为:﹣6;(2)如图:由(1)知:b﹣2+x=﹣6=c﹣2+y,∵b=4,c=6,∴4﹣2+x=﹣6=6﹣2+y,∴x=﹣8,y=﹣10,∵c+x+z=﹣6,∴6﹣8+z=﹣6,∴z=﹣4,∵y+a+z=﹣6,∴﹣10+a﹣4=﹣6,∴a=8;(3)如图:22.解:(1)∵点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7,∴点A表示的数为﹣5,点B表示的数为7,AB=AO+BO=12.故答案为:﹣5;7;12.(2)当运动时间为t秒时,点P表示的数为3t﹣5,点Q表示的数为t+7.①依题意,得:3t﹣5=t+7,解得:t=6,∴3t﹣5=13.答:点C对应的数为13.②当点P在点Q的左侧时,t+7﹣(3t﹣5)=5,解得:t=;当点P在点Q的右侧时,3t﹣5﹣(t+7)=5,解得:t=.答:经过秒或秒时,PQ=5.。
最新北师大版七年级数学上册期中测试题(附答案)
最新北师大版七年级数学上册期中测试题时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.12.如图所示是由4个大小相同的正方体组合而成的几何体,则从正面看到的图形是( )3.下列各式计算正确的是( ) A.-7-2×5=-45 B.3÷54×45=3C.-22-(-3)3=22D.2×(-5)-5÷⎝⎛⎭⎫-12=0 4.如果-2a m b 2与12a 5b n +1是同类项,那么m +n 的值为( )A.5B.6C.7D.85.用一个平面去截一个圆锥,截面图形不可能是( )6.已知a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.ab 〉0B.a -b 〉0C.a 2b 〉0D.|b|〈|a|二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-5x 2yz 的系数是 ,次数是 .8.天宫二号空间实验室将开展空间冷原子钟实验,有望实现3千万年误差一秒的超高精准,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响.其中3千万用科学记数法表示为 .9.在akg 含糖15%的糖水中,若加入mkg 的水,则这些糖水的浓度变为 ;若再加入nkg 的糖并假设这些糖全部溶解,则这些糖水的浓度变为 .10.若m 、n 互为相反数,则54(3m -2n)-2⎝⎛⎭⎫54m -158n = .11.如图所示是一个正方体纸盒的展开图,若在其中三个正方形的a 、b 、c 内分别填入适当的数,使得它们折成正方体后a 与其相对面上的数互为相反数,b 与其相对面上的数互为倒数,则a = ,b = .12.若|x|=7,|y|=5,且xy >0,则x +y = . 三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-3.25-⎝⎛⎭⎫-19+(-6.75)+179;(2)-12018-(1+0.5)×13÷(-4).14.化简:(1)3x 2-1-2x -5+3x -x 2;(2)(2a 2-1+2a)-3(a -1+a 2).15.将下列各数在数轴上表示出来,然后用“<”连接起来.-212,0,|-4|,0.5,-(-3).16.已知(x +1)2+|y -1|=0,求代数式4⎝⎛⎭⎫x -12y -[2y +3(x +y)+3xy]的值.17.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.四、(本大题共3小题,每小题8分,共24分)18.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?19.如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π).五、(本大题共2小题,每小题9分,共18分)21.定义一种新运算:观察下列各式:1⊙3=1×4+3=7,3⊙(-1)=3×4-1=11,5⊙4=5×4+4=24,4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a-b)⊙(2a+b),其中a=1,b=2.22.如图,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN =(用m,n表示).(3)利用发现的结论解决下列问题:数轴上表示x的点P与点E之间的距离是3,求x 的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图案如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?参考答案与解析1.C2.C3.D4.B5.A6.B7.-548.3×1079.15%aa+m15%a+na+m+n10.011.-31212.12或-12解析:⊙|x|=7,|y|=5,⊙x=±7,y=±5.⊙xy>0,⊙x=7时,y=5,则x +y =7+5=12;x =-7时,y =-5,则x +y =-7-5=-12.综上所述,x +y =12或-12.13.解:(1)原式=-8.(3分) (2)原式=-78.(6分)14.解:(1)原式=3x 2-x 2-2x +3x -1-5=2x 2+x -6.(3分) (2)原式=2a 2-1+2a -3a +3-3a 2=-a 2-a +2.(6分) 15.解:如图所示.(3分)用“<”连接为-212<0<0.5<-(-3)<|-4|.(6分)16.解:由题意可知x +1=0,y -1=0,解得x =-1,y =1.(3分)故原式=x -7y -3xy =-1-7-3×(-1)×1=-5.(6分)17.解:如图所示.(每图3分)18.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(6分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)19.解:(1)阴影部分的面积为12b 2+12a(a +b).(4分)(2)当a =3,b =5时,12b 2+12a(a +b)=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:由题意及图形可知,该包装盒是一个圆柱,此圆柱的直径为20cm ,高为20cm ,(3分)⊙表面积为π×20×20+π×⎝⎛⎭⎫12×202×2=400π+200π=600π(cm 2).(8分) 21.解:(1)4a +b (2分) (2)≠(4分)(3)(a -b)⊙(2a +b)=4(a -b)+(2a +b)=4a -4b +2a +b =6a -3b.(7分)当a =1,b =2时,原式=6×1-3×2=0.(9分)22.解:(1)3 2(2分) (2)4 7 |m -n|(5分)(3)由图可知,当点P 在点E 左边时,x =2-3=-1;(7分)当点P 在点E 右边时,x =2+3=5,故x 的值为-1或5.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T ”字形图案中棋子的个数为(3n +2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).所以第20个“T”字形图案共有棋子62个.(12分)。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)b-a>0(B)a-b>0(C)ab>0(D)a+b>0
9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( ).
(A)1022.01(精确到0.01)(B)1.0×103(保留2个有效数字)
2017年七年ቤተ መጻሕፍቲ ባይዱ数学期中试卷
满分:120分 时间:120分钟
一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 的绝对值是().
(A) (B) (C)2 (D) -2
2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( ).
(2)如果一列数 是等比数列,且公比为 .那么有: , ,
则: =.(用 与 的式子表示)(2分)
(3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分)
解:
全球通
神州行
月租费
50元/分
0
本地通话费
0.40元/分
0.60元/分
22.(本题8分)两种移动电话记费方式表
(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)
14.已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高____________m.
15.十一国庆节期间,吴家山某眼镜店开展优
惠学生配镜的活动,某款式眼镜的广告如图,请你
为广告牌补上原价.
16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入
…
1
2
3
4
5
…
输出
…
…
(A)1个 (B)2个 (C)3个 (D)4个
12.已知 、 互为相反数, 、 互为倒数, 等于-4的2次方,则式子 的值为().
(A)2 (B)4 (C)-8 (D)8
二、填一填, 看看谁仔细(本大题共4小题,每小题3分,共12分,请将你的答案写在“_______”处)
13.写出一个比 小的整数:.
解:
21.(本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.
(1)等比数列5、-15、45、…的第4项是_________.(2分)
解:
七年级数学期中考试参考答案与评分标准
一、选一选,比比谁细心
1.A 2.A 3.D 4.B 5.C 6.B 7.C 8.A 9.无答案 10.B 11.B 12.D
二、填一填,看看谁仔细
13.-1等14.350 15.200 16.
三、解一解,试试谁更棒
17.(1)解:
=-48+8-36………………………………3分
=-76………………………………5分
(A)1.68×104m(B)16.8×103m(C)0.168×104m(D)1.68×103m
3.如果收入15元记作+15元,那么支出20元记作()元.
(A)+5 (B)+20 (C)-5 (D)-20
4.有理数 , , , ,-(-1), 中,其中等于1的个数是( ).
(A)3个(B)4个 (C)5个(D)6个
(C)1020(精确到十位)(D)1022.010(精确到千分位)
10.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).
(A)x=-x+4(B)x=-x+(-4) (C)x=-x-(-4)(D)x-(-x)=4
11. 下列等式变形:①若 ,则 ;②若 ,则 ;③若 ,则 ;④若 ,则 .其中一定正确的个数是( ).
星期
一
二
三
四
五
六
日
增减/辆
-1
+3
-2
+4
+7
-5
-10
(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)
(2)本周总的生产量是多少辆?(3分)
解:
20.(本题7分)统计数据显示,在我国的 座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的 倍.求严重缺水城市有多少座?
5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是().
(A) (B) (C) (D)
6.方程5-3x=8的解是( ).
(A)x=1 (B)x=-1 (C)x= (D)x=-
7.下列变形中,不正确的是( ).
(A)a+(b+c-d)=a+b+c-d(B)a-(b-c+d)=a-b+c-d
(C)a-b-(c-d)=a-b-c-d(D)a+b-(-c-d)=a+b+c+d
(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)
解:
23.(本题10分)关于x的方程 与 的解互为相反数.
(1)求m的值;(6分)
(2)求这两个方程的解.(4分)
解:
24.(本题12分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(4分)
解:
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)
解:
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)
那么,当输入数据为8时,输出的数据为.
三、 解一解, 试试谁更棒(本大题共9小题,共72分)
17.(本题10分)计算(1) (2)
解:解:
18.(本题10分)解方程(1) (2)
解:解:
19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):