高中物理牛顿运动定律的应用专题训练答案及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理牛顿运动定律的应用专题训练答案及解析

一、高中物理精讲专题测试牛顿运动定律的应用

1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:

(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;

(3)小球向下运动到最低点时,物块M 所受的拉力大小T

【答案】(1)53F Mg mg =- (2)

65M m = (3)()85mMg T m M =+(4855

T mg =或8

11T Mg =

) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得5

3

F Mg mg =

- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得

65

M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T

牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma

解得85mMg T m M =

+()(488

5511

T mg T Mg =

=或) 【点睛】

本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.

2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:

(1)开始时B离小车右端的距离;

(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:

【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒

解得:,

A离左端距离,运动到左端历时,在A运动至左端前,木板静止

,,

解得

B离右端距离

(2)从开始到达共速历时,,,

解得

小车在前静止,在至之间以a向右加速:

小车向右走位移

接下来三个物体组成的系统以v共同匀速运动了

小车在6s内向右走的总距离:

【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.

3.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.

(1)若木板固定,求小滑块在木板上滑过的距离.

(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.

【答案】(1)20

3.6m 2v x a

==(2)t=1s (3)121x x m +=

【解析】 【分析】 【详解】

试题分析:(1)2

25m /s a g μ==

20 3.6m 2v x a

==

(2)对m :2

125/a g m s μ==,

对M :221()Ma mg m M g μμ=-+,

221m /s a =

012v a t a t -=

t=1s

(3)木板共速前先做匀加速运动2

110.52

x at m == 速度121m /s v a t ==

以后木板与物块共同加速度a 3匀减速运动

231/a g m s μ==,

2231

0.52

x vt a t m =+=

X=121x x m +=

考点:牛顿定律的综合应用

4.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,

作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)

(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;

(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。 【解析】 【详解】

(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D

mv mg R

=

可得:D 5m /s v =

(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2C

mv F mg R

-=

代入数据可得:F =6.3N

由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N

(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2

y 2gh v = 得:v y =3m/s

小球沿切线进入圆弧轨道,则:3

5m/s 370.6

y B v v sin =

=

=︒

(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:

3750.84/A B v v cos m s =︒=⨯=

小球在水平面上做加速运动时:1F mg ma μ-=

可得:2

18/a m s =

相关文档
最新文档