上海市中考数学试题及答案解析word版
2024年上海市中考真题数学试卷含答案解析
![2024年上海市中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/5cc86c5902d8ce2f0066f5335a8102d276a261cd.png)
2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2020年上海市中考数学试题及参考答案(word解析版)
![2020年上海市中考数学试题及参考答案(word解析版)](https://img.taocdn.com/s3/m/e1957d444431b90d6c85c7e0.png)
2020年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=03.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a•3ab=.8.已知f(x)=,那么f(3)的值是.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为米.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.17.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD =3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:27+﹣()﹣2+|3﹣|.20.(10分)解不等式组:21.(10分)如图,在直角梯形ABCD中,AB∥DC,∠DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∠DBC的正切值.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.(12分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.24.(12分)在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.25.(14分)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.答案与解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列二次根式中,与是同类二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义,先化简,再判断.【解题过程】解:A.与的被开方数不相同,故不是同类二次根式;B.,与不是同类二次根式;C.,与被开方数相同,故是同类二次根式;D.,与被开方数不同,故不是同类二次根式.故选:C.【总结归纳】此题主要考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0【知识考点】换元法解分式方程.【思路分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2﹣2y+1=0即可求解.【解题过程】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.【总结归纳】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【知识考点】频数(率)分布直方图;频数(率)分布折线图;扇形统计图;条形统计图.【思路分析】根据统计图的特点判定即可.【解题过程】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.【总结归纳】本题考查了统计图,熟练掌握各统计图的特点是解题的关键.4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.【思路分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=,再将点的坐标代入求出待定系数k的值,从而得出答案.【解题过程】解:设反比例函数解析式为y=,将(2,﹣4)代入,得:﹣4=,解得k=﹣8,所以这个反比例函数解析式为y=﹣,故选:D.【总结归纳】本题主要考查待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形【知识考点】命题与定理.【思路分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解题过程】解:A、对角线相等的梯形是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、正确;D、对角线平分一组对角的梯形是菱形,故错误;故选:C.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【知识考点】平移的性质.【思路分析】证明平行四边形是平移重合图形即可.【解题过程】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形,故选:A.【总结归纳】本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a•3ab=.【知识考点】单项式乘单项式.【思路分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解题过程】解:2a•3ab=6a2b.故答案为:6a2b.【总结归纳】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.已知f(x)=,那么f(3)的值是.【知识考点】函数值.【思路分析】根据f(x)=,可以求得f(3)的值,本题得以解决.【解题过程】解:∵f(x)=,∴f(3)==1,故答案为:1.【总结归纳】本题考查函数值,解答本题的关键是明确题意,利用题目中新定义解答.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)【知识考点】正比例函数的性质.【思路分析】根据正比例函数的性质进行解答即可.【解题过程】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.【总结归纳】此题主要考查了正比例函数的性质,关键是掌握正比例函数的性质:正比例函数y =kx(k≠0)的图象是一条经过原点的直线,当k>0时,该直线经过第一、三象限,且y的值随x的值增大而增大;当k<0时,该直线经过第二、四象限,且y的值随x的值增大而减小.10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是.【知识考点】根的判别式.【思路分析】一元二次方程有两个相等的实根,即根的判别式△=b2﹣4ac=0,即可求m值.【解题过程】解:依题意,∵方程x2﹣4x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣4)2﹣4m=0,解得m=4,故答案为:4.【总结归纳】此题主要考查的是一元二次方程的根判别式,当△=b2﹣4ac=0时,方程有两个相等的实根,当△=b2﹣4ac>0时,方程有两个不相等的实根,当△=b2﹣4ac<0时,方程无实数根.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.【知识考点】概率公式.【思路分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是5的倍数的数据,再根据概率公式即可得出答案.【解题过程】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是=.故答案为:.【总结归纳】此题主要考查了概率公式,概率=所求情况数与总情况数之比求出是解决问题的关键.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.【知识考点】二次函数图象与几何变换.【思路分析】直接根据抛物线向上平移的规律求解.【解题过程】解:抛物线y=x2向上平移3个单位得到y=x2+3.故答案为:y=x2+3.【总结归纳】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为.【知识考点】用样本估计总体.【思路分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.【解题过程】解:8400×=3150(名).答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.【总结归纳】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为米.【知识考点】相似三角形的应用.【思路分析】根据相似三角形的判定和性质定理即可得到结论.【解题过程】解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△DBE,∴,∴=,∴AC=7(米),答:井深AC为7米.【总结归纳】本题考查了相似三角形的应用,正确的识别图形是解题的关键.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为.【知识考点】平行四边形的性质;平面向量.【思路分析】利用平行四边形的性质,三角形法则求解即可.【解题过程】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∴==,∵=+=+,∴==+,∵=+,∴=++=2+,故答案为:2+.【总结归纳】本题考查平行四边形的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.【知识考点】一次函数的应用.【思路分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.【解题过程】解:当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.【总结归纳】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式.17.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【知识考点】勾股定理;翻折变换(折叠问题).【思路分析】如图,过点E作EH⊥BC于H.首先证明△ABD是等边三角形,解直角三角形求出EH即可.【解题过程】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=,∴E到直线BD的距离为,故答案为.【总结归纳】本题考查翻折变换,勾股定理,等边三角形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.【知识考点】矩形的性质;直线与圆的位置关系.【思路分析】根据勾股定理得到AC=10,如图1,设⊙O与AD边相切于E,连接OE,如图2,设⊙O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.【解题过程】解:在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴,∴=,∴AO=,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴=,∴=,∴OC=,∴AO=,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是<AO<,故答案为:<AO<.【总结归纳】本题考查了直线与圆的位置关系,矩形的性质,相似三角形的判定和性质,正确的作出图形是解题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:27+﹣()﹣2+|3﹣|.【知识考点】实数的运算;分数指数幂;负整数指数幂.【思路分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【解题过程】解:原式=(33)+﹣2﹣4+3﹣=3+﹣2﹣4+3﹣=0.【总结归纳】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.20.(10分)解不等式组:【知识考点】解一元一次不等式组.【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解题过程】解:,解不等式①得x>2,解不等式②得x<5.故原不等式组的解集是2<x<5.【总结归纳】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(10分)如图,在直角梯形ABCD中,AB∥DC,∠DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∠DBC的正切值.【知识考点】直角梯形;解直角三角形.【思路分析】(1)过C作CE⊥AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到CE==6,于是得到梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH⊥BD于H,根据相似三角形的性质得到,根据勾股定理得到BD===10,BH===6,于是得到结论.【解题过程】解:(1)过C作CE⊥AB于E,∵AB∥DC,∠DAB=90°,∴∠D=90°,∴∠A=∠D=∠AEC=90°,∴四边形ADCE是矩形,∴AD=CE,AE=CD=5,∴BE=AB﹣AE=3,∵BC=3,∴CE==6,∴梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH⊥BD于H,∵CD∥AB,∴∠CDB=∠ABD,∵∠CHD=∠A=90°,∴△CDH∽△DBA,∴,∵BD===10,∴=,∴CH=3,∴BH===6,∴∠DBC的正切值===.【总结归纳】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【知识考点】一元二次方程的应用.【思路分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解题过程】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【总结归纳】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(12分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【知识考点】全等三角形的判定与性质;菱形的性质;相似三角形的判定与性质.【思路分析】(1)想办法证明∠BCE=∠H即可解决问题.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解题过程】(1)证明:∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CD∥AB,∵DF=BE,∴△CDF≌CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠BCE=∠H,∵∠B=∠B,∴△BEC∽△BCH.(2)证明:∵BE2=AB•AE,∴=,∵AG∥BC,∴=,∴=,∵DF=BE,BC=AB,∴BE=AG=DF,即AG=DF.【总结归纳】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.【知识考点】二次函数综合题.【思路分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,﹣m+5),则BC=|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.【解题过程】解:(1)针对于直线y=﹣x+5,令x=0,y=5,∴B(0,5),令y=0,则﹣x+5=0,∴x=10,∴A(10,0),∴AB==5;(2)设点C(m,﹣m+5),∵B(0,5),∴BC==|m|,∵BC=,∴|m|=,∴m=±2,∵点C在线段AB上,∴m=2,∴C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,∴,∴抛物线y=﹣x2+x;(3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,∴b=﹣10a,∴抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,∴抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣x+5中,得y=﹣×5+5=,∵顶点D位于△AOB内,∴0<﹣25a<,∴﹣<a<0;【总结归纳】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.25.(14分)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【知识考点】圆的综合题.【思路分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则==,推出==,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解题过程】(1)证明:连接OA.∵AB=AC,∴=,∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD,∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述,∠C的值为67.5°或72°.(3)如图3中,作AE∥BC交BD的延长线于E.则==,∴==,设OB=OA=4a,OH=3a,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25﹣49a2=16a2﹣9a2,∴a2=,∴BH=,∴BC=2BH=.【总结归纳】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.。
上海市中考数学试卷(完整解析版)
![上海市中考数学试卷(完整解析版)](https://img.taocdn.com/s3/m/eba684210c22590103029d8d.png)
20XX年上海市中考数学试卷(完整解析版)一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0B.√2C.﹣2D.2 72.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=03.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<04.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=.8.(4分)不等式组{2x>6x−2>0的解集是.9.(4分)方程√2x−3=1的解是.10.(4分)如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E ,设AE →=a →,CE →=b →,那么向量CD →用向量a →、b →表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是.17.(4分)如图,已知Rt △ABC ,∠C=90°,AC=3,BC=4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是.18.(4分)我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=.三、解答题(本大题共7小题,共78分)19.(10分)计算:√18+(√2﹣1)2﹣912+(12)﹣1. 20.(10分)解方程:3x 2−3x ﹣1x−3=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.20XX年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)(2017•上海)下列实数中,无理数是()A.0B.√2C.﹣2D.2 7【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,﹣2,27是有理数, √2数无理数,故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017•上海)下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x +1=0D .x 2﹣2x +2=0【考点】AA :根的判别式.【专题】11 :计算题.【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误;B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B 选项错误;C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C 选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确.故选D .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(4分)(2017•上海)如果一次函数y=kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <0【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限, ∴k <0,b >0,故选B .【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.(4分)(2017•上海)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和8【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.(4分)(2017•上海)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(4分)(2017•上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【考点】LC:矩形的判定;L5:平行四边形的性质.【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)(2017•上海)计算:2a•a2=2a3.【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a•a2=2×1a•a2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.(4分)(2017•上海)不等式组{2x>6x−2>0的解集是x>3.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)(2017•上海)方程√2x−3=1的解是x=2.【考点】AG:无理方程.【专题】11 :计算题.【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:√2x−3=1,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.(4分)(2017•上海)如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【考点】G4:反比例函数的性质.【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.(4分)(2017•上海)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【考点】1G:有理数的混合运算.【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.(4分)(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是3 10.【考点】X6:列表法与树状图法.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:32+3+5=310.故答案为:3 10.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.(4分)(2017•上海)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)【考点】H8:待定系数法求二次函数解析式.【分析】根据顶点坐标知其解析式满足y=ax2﹣1,由开口向上知a>0,据此写出一个即可.【解答】解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.(4分)(2017•上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120万元.【考点】VB :扇形统计图.【分析】利用一月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是13×360=120(万元). 故答案是:120.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.(4分)(2017•上海)如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E ,设AE →=a →,CE →=b →,那么向量CD →用向量a →、b →表示为b →+2a →.【考点】LM :*平面向量;JA :平行线的性质.【分析】根据CD →=CE →+ED →,只要求出ED →即可解决问题.【解答】解:∵AB ∥CD ,∴AB CD =AE ED =12, ∴ED=2AE ,∵AE →=a →,∴ED →=2a →,∴CD →=CE →+ED →=b →+2a →.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.(4分)(2017•上海)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是45.【考点】R2:旋转的性质;JA :平行线的性质.【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF ∥AB 时,∠ACE=∠A=45°,∴旋转角n=45时,EF ∥AB .②如图2中,EF ∥AB 时,∠ACE +∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.(4分)(2017•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【考点】MJ:圆与圆的位置关系;M8:点与圆的位置关系.【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.(4分)(2017•上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=√3 2.【考点】MM:正多边形和圆.【专题】23 :新定义.【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴ECBE=cos30°=√32,∴λ6=√3 2,故答案为√3 2.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.(10分)(2017•上海)计算:√18+(√2﹣1)2﹣912+(12)﹣1.【考点】79:二次根式的混合运算;2F:分数指数幂;6F:负整数指数幂.【专题】11 :计算题.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3√2+2﹣2√2+1﹣3+2=√2+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)(2017•上海)解方程:3x2−3x﹣1x−3=1.【考点】B3:解分式方程.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.(10分)(2017•上海)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【考点】T8:解直角三角形的应用.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=ADAB计算即可;(2)由EF∥AD,BE=2AE,可得EFAD=BFBD=BEBA=23,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB=√BD2+AD2=√92+62=3√13,∴sinB=ADAB=3√13=2√1313.(2)∵EF∥AD,BE=2AE,∴EFAD=BFBD=BEBA=23,∴EF6=BF9=23,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=√EF2+DF2=√42+32=5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)(2017•上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【考点】FH :一次函数的应用.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx +b ,则有{b =400100k +b =900, 解得{k =5b =400, ∴y=5x +400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.(12分)(2017•上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.【考点】LF :正方形的判定;LA :菱形的判定与性质.【分析】(1)首先证得△ADE ≌△CDE ,由全等三角形的性质可得∠ADE=∠CDE ,由AD ∥BC 可得∠ADE=∠CBD ,易得∠CDB=∠CBD ,可得BC=CD ,易得AD=BC ,利用平行线的判定定理可得四边形ABCD 为平行四边形,由AD=CD 可得四边形ABCD 是菱形;(2)由BE=BC 可得△BEC 为等腰三角形,可得∠BCE=∠BEC ,利用三角形的内角和定理可得∠CBE=180×14=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD 是正方形.【解答】证明:(1)在△ADE 与△CDE 中,{AD =CD DE =DE EA =EC,∴△ADE ≌△CDE ,∴∠ADE=∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE=∠CBD ,∴BC=CD ,∵AD=CD ,∴BC=AD ,∴四边形ABCD 为平行四边形,∵AD=CD ,∴四边形ABCD 是菱形;(2)∵BE=BC∴∠BCE=∠BEC ,∵∠CBE :∠BCE=2:3,∴∠CBE=180×22+3+3=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.(12分)(2017•上海)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c 经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c 可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣b 2a =1,即−b 2×(−1)=1,解得b=2. ∴y=﹣x 2+2x +c .将A (2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x 2+2x +2.配方得:y=﹣(x ﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A 作AC ⊥BM ,垂足为C ,则AC=1,C (1,2).∵M (1,m ),C (1,2),∴MC=m ﹣2.∴cot ∠AMB=CM AC=m ﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x 轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x 2+2x ﹣1,PQ=3.∵OP=OQ ,∴点O 在PQ 的垂直平分线上.又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为﹣32. 将y=﹣32代入y=﹣x 2+2x ﹣1得:﹣x 2+2x ﹣1=﹣32,解得:x=2+√62或x=2−√62. ∴点Q 的坐标为(2+√62,﹣32)或(2−√62,﹣32). 【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.(14分)(2017•上海)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【考点】MR:圆的综合题.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=AC•CD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,{OA=OA AB=AC OB=OC,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=12OA=12,∴AD=√OA2−OD2=√3 2,∴BC=AC=2AD=√3.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴ADDB=ODAD=OAAB,∴ADx+1=xAD=1AB,∴AD=√x(x+1),AB=√x(x+1)x,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=12AD•OH,S1=S△OAC=12•AC•OH,S3=12•CD•OH,∴(12AD•OH)2=12•AC•OH•12•CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=√x(x+1)x﹣√x(x+1),∴(√x(x+1))2=√x(x+1)x•(√x(x+1)x﹣√x(x+1)),整理得x2+x﹣1=0,解得x=√5−12或−√5−12,经检验:x=√5−12是分式方程的根,且符合题意,∴OD=√5−1 2.【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2022年上海中考数学真题(word解析版)
![2022年上海中考数学真题(word解析版)](https://img.taocdn.com/s3/m/66d1865b326c1eb91a37f111f18583d049640fea.png)
【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.
二.填空题
7.计算:3a-2a=__________.
【答案】a
【解析】
【详解】根据同类项与合并同类项法则计算:3a-2a=(3-2)a=a
8.已知f(x)=3x,则f(1)=_____.
【答案】3
故选:D.
【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.
5.下列说法正确的是()
A. 命题一定有逆命题B. 所有的定理一定有逆定理
C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题
【答案】B
【解析】
【分析】根据反比例函数性质求】解:∵反比例函数y= (k≠0),且在各自象限内,y随x的增大而增大,,
∴k=xy<0,
A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;
D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.
故选:A.
【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.
2022年上海中考数学真题
一.选择题
1.8的相反数是()
A. B.8C. D.
【答案】A
【解析】
2023年上海市中考数学试卷及答案解析
![2023年上海市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/aede4ae13086bceb19e8b8f67c1cfad6195fe902.png)
2023年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,共24分)1.(4分)下列运算正确的是()A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a2.(4分)在分式方程+=5中,设=y,可得到关于y的整式方程为()A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0 3.(4分)下列函数中,函数值y随x的增大而减小的是()A.y=6x B.y=﹣6x C.y=D.y=﹣4.(4分)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同5.(4分)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是()A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D 6.(4分)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:(本大题共12题,每题4分,共48分)7.(4分)分解因式:n2﹣9=.8.(4分)化简:﹣的结果为.9.(4分)已知关于x的方程=2,则x=.10.(4分)函数f(x)=的定义域为.11.(4分)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.12.(4分)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.(4分)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.14.(4分)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.(4分)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示=.16.(4分)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.(4分)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α=.18.(4分)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.三、解答题:(本大题共7题,共78分)19.(10分)计算:+﹣()﹣2+|﹣3|.20.(10分)解不等式组:.21.(10分)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.22.(10分)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.(12分)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.24.(12分)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.(14分)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.2023年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,共24分)1.【分析】根据合并同类项,同底数幂的除法,幂的乘方法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.【点评】本题考查了合并同类项,同底数幂的除法,幂的乘方与积的乘方,二次根式的性质与化简,准确熟练地进行计算是解题的关键.2.【分析】设=y,则=,原方程可变为:y+=5,再去分母得y2+1=5y,即可得出结论.【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.【点评】本题考查换元法解分式方程,熟练掌握换元法是解题的关键.3.【分析】根据反比例函数的性质和正比例函数的性质分别判断即可.【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.【点评】本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.4.【分析】观察图象,再逐项判断各选项即可.【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.【点评】本题考查折线统计图,解题的关键是能从图象中获取有用的信息.5.【分析】由矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.6.【分析】根据题意,作出图形,若梯形ABCD为等腰梯形,可得①;②,其余情况得不出这样的结论,从而得到答案.【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∴AC=BD,即BD=BE,∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.【点评】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,孰练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)7.【分析】利用平方差公式分解因式即可得到答案.【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).【点评】本题考查了因式分解,平方差公式,熟练掌握公式法分解因式是解题关键.8.【分析】根据分式的运算法则进行计算即可.【解答】解:原式===2,故答案为:2.【点评】本题考查分式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.9.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.10.【分析】根据函数有意义的条件求解即可.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数有意义的条件是解题的关键.11.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.12.【分析】从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,再根据概率公式求解即可.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.13.【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键.14.【分析】根据二次函数的图象与系数的关系求解(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【点评】本题考查了二次函数的图象与系数的关系,掌握数形结合思想是解题的关键.15.【分析】由三角形法则求得的值;然后结合平行线截线段成比例求得线段DE的长度,继而求得向量的值.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.【点评】本题主要考查了平面向量和平行线截线段成比例.注意:平面向量既有大小又有方向.16.【分析】先用60除以可回收垃圾所占百分比,得到该市试点区域的垃圾总量,乘以10得到全市垃圾总量,然后乘以干垃圾所占的百分比即可.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.【点评】本题考查的是扇形统计图,利用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.17.【分析】由AB=AD,∠BAD=α及角平分线的定义得∠CAD=∠BAD=α,根据三角形外角性质得∠ADB=35°+α,即有∠B=∠ADB=35°+α,由三角形的内角和定理求解即可.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.【点评】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质及三角形的内角和等知识,孰练掌握相关图形的性质是解题的关键.18.【分析】先画出图形,连接BE,利用勾股定理可得,,从而可得<r≤2,再根据⊙B与⊙E有公共点列不等式,用二次函数与一元二次方程,一元二次不等式的关系解答.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2或,画出函数y=3r2﹣14r﹣40的大致图象如下:同理可得:不等式②的解集为r≥2或,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.【点评】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+﹣9+3﹣=﹣6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.【点评】本题考查了解一元一次不等式组,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键,同大取大,同小取小,大大小小取不了,小大大小取中间.21.【分析】(1)过点O作OD⊥AB,垂足为D,根据垂径定理可得AD=BD=4,然后在Rt△OBD中,利用锐角三角函数的定义求出OB的长,即可解答;(2)过点C作CE⊥AB,垂足为E,根据已知可得BC=OB=7.5,再利用平行线分线段成比例可得=,从而求出BE的长,进而求出AE的长,然后在Rt△BCE中,利用勾股定理求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.【点评】本题考查了垂径定理,勾股定理,解直角三角形,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)根据打九折列出算式,计算即可;(2)根据每一升油,油的单价降低0.30元知:y=0.9(x﹣0.30);(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x﹣y)元,计算求解即可.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.【点评】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用,解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.【分析】(1)证明△ACF≌△ADE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.【点评】本题考查了相似三角形的性质和判定,梯形,勾股定理,熟练运用相似三角形的性质和判定是本题的关键.24.【分析】(1)根据题意,分别将x=0,y=0代入直线即可求得;(2)设,得到抛物线的顶点式为,将B(0,6)代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得,即可得到答案.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图性质等,解题的关键是根据的平移性质求出m和a的值.25.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F 是OB的中点,OG=DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE=α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO﹣AF,由AE2=EO2﹣AO2,有EO2﹣AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGOCD△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FEE,即得AE=2OG=4k,PE=AE﹣AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△POE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.【点评】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定是解题的关键。
2020年上海市中考数学试题及详解(WORD版)
![2020年上海市中考数学试题及详解(WORD版)](https://img.taocdn.com/s3/m/96f32773c950ad02de80d4d8d15abe23482f03da.png)
2020年上海市中考数学试题及详解(WORD版)一.选择题(共6小题)1.下列二次根式中,与 $\sqrt{2}+1$ 是同类二次根式的是()解析:$\sqrt{2}+1$ 可以化简为 $\dfrac{\sqrt{2}+1}{1}$,而 $\sqrt{2}-1$ 可以化简为 $\dfrac{\sqrt{2}-1}{1}$,它们的分母都是 $1$,因此选项 B 正确。
2.用换元法解方程 $y^2-2y+1=x$,则原方程可化为关于$y$ 的方程是()解析:将 $y^2-2y+1=x$ 中的 $x$ 替换为 $y$,得到 $y^2-2y+1=y$,移项化简得到 $y^2-3y+1=0$,因此选项 C 正确。
3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示。
下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()解析:条形图和频数分布直方图主要用于表示数据的数量,扇形图主要用于表示数据的比例,而折线图可以凸显数据的趋势和变化,因此选项 C 正确。
4.已知反比例函数的图象经过点 $(2,-4)$,那么这个反比例函数的解析式是()解析:反比例函数的通式为 $y=\dfrac{k}{x}$,代入点$(2,-4)$ 得到 $-4=\dfrac{k}{2}$,解得 $k=-8$,因此反比例函数的解析式为 $y=-\dfrac{8}{x}$,选项 B 正确。
5.下列命题中,真命题是()解析:对角线互相垂直的梯形不一定是等腰梯形,因此选项 A 错误;对角线互相垂直的平行四边形不一定是正方形,因此选项 B 错误;对角线平分一组对角的平行四边形不一定是菱形,因此选项 C 错误;但是对角线平分一组对角的梯形一定是直角梯形,因此选项 D 正确。
6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形。
下列图形中,平移重合图形是()解析:平行四边形和等腰梯形可以沿某个方向平移后重合,因此选项 A 和 B 都可以;正六边形无法沿任何方向平移后重合,因此选项 C 错误;圆也无法沿任何方向平移后重合,因此选项 D 错误。
上海市2021年中考数学真题试卷(Word版+答案+解析)
![上海市2021年中考数学真题试卷(Word版+答案+解析)](https://img.taocdn.com/s3/m/5429faf0a300a6c30d229f2b.png)
上海市2021年中考数学试卷一、单选题(共6题;共12分)1.下列实数中,有理数是( )A. √12B. √13C. √14D. √152.下列单项式中, a 2b 3 的同类项是( )A. a 3b 2B. 2a 2b 3C. a 2bD. ab 33.将抛物线 y =ax 2+bx +c(a ≠0) 向下平移两个单位,以下说法错误的是( )A. 开口方向不变B. 对称轴不变C. y 随x 的变化情况不变D. 与y 轴的交点不变4.商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适( )A. 2kg /包B. 3kg /包C. 4kg /包D. 5kg /包5.如图,已知平行四边形ABCD 中, AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ⃗ ,E 为 AB 中点,求 12a +b ⃗ = ( )A. EC⃗⃗⃗⃗⃗ B. CE ⃗⃗⃗⃗⃗ C. ED ⃗⃗⃗⃗⃗ D. DE ⃗⃗⃗⃗⃗ 6.如图,已知长方形 ABCD 中, AB =4,AD =3 ,圆B 的半径为1,圆A 与圆B 内切,则点 C,D 与圆A 的位置关系是( )A. 点C在圆A外,点D在圆A内B. 点C在圆A外,点D在圆A外C. 点C在圆A上,点D在圆A内D. 点C在圆A内,点D在圆A外二、填空题(共12题;共12分)7.计算:x7÷x2=________.8.已知f(x)=6x,那么f(√3)=________.9.已知√x+4=3,则x=________.10.不等式2x−12<0的解集是________.11.70°的余角是________.12.若一元二次方程2x2−3x+c=0无解,则c的取值范围为________.13.有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为________.14.已知函数y=kx经过二、四象限,且函数不经过(−1,1),请写出一个符合条件的函数解析式________.15.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚________元.16.如图,已知S△ABDS△BCD =12,则S△BOCS△BCD=________.17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积________.18.定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为________.三、解答题(共7题;共60分)19.计算:912+|1−√2|−2−1×√820.解方程组:{x+y=3x2−4y2=021.已知在△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=45,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.22.现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.23.已知:在圆O内,弦AD与弦BC交于点G,AD=CB,M,N分别是CB和AD的中点,联结MN,OG.(1)求证:OG⊥MN;(2)联结AC,AM,CN,当CN//OG时,求证:四边形ACNM为矩形.24.已知抛物线y=ax2+c(a≠0)过点P(3,0),Q(1,4).(1)求抛物线的解析式;(2)点A在直线PQ上且在第一象限内,过A作AB⊥x轴于B,以AB为斜边在其左侧作等腰直角ABC.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.25.如图,在梯形ABCD中,AD//BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD或边AD于E.(1)当点E在边CD上时,①求证:△DAC∽△OBC;②若BE⊥CD,求AD的值;BC(2)若DE=2,OE=3,求CD的长.答案解析部分一、单选题1.【答案】C【考点】有理数及其分类【解析】【解答】解:A、√12=√22∵√2是无理数,故√12是无理数B、√13=√33∵√3是无理数,故√13是无理数C、√14=12为有理数D、√15=√55∵√5是无理数,故√15是无理数故答案为:C【分析】先将各项二次根式化为最简二次根式,然后根据整数和分数统称有理数,有限小数和无限循环小数都可以化为分数;无限不循环小数叫做无理数,对于开方开不尽的数、圆周率π都是无理数;据此判断即可.2.【答案】B【考点】同类项【解析】【解答】∵a的指数是3,b的指数是2,与a2b3中a的指数是2,b的指数是3不一致,∴a3b2不是a2b3的同类项,不符合题意;∵a的指数是2,b的指数是3,与a2b3中a的指数是2,b的指数是3一致,∴2a2b3是a2b3的同类项,符合题意;∵a的指数是2,b的指数是1,与a2b3中a的指数是2,b的指数是3不一致,∴a2b不是a2b3的同类项,不符合题意;∵a的指数是1,b的指数是3,与a2b3中a的指数是2,b的指数是3不一致,∴ab3不是a2b3的同类项,不符合题意;故答案为:B【分析】所含字母相同,且相同字母的指数也相同的项叫做同类项,据此逐一判断即可.3.【答案】D【考点】二次函数图象的几何变换【解析】【解答】将抛物线y=ax2+bx+c(a≠0)向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变故答案为:D.【分析】由于抛物线上下平移后形状不变,开口方向不变、对称轴不变、从而可得增减性不变,但与y 轴的交点改变,据此判断即可.4.【答案】A【考点】条形统计图【解析】【解答】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故答案为:A.【分析】最合适的包装即是顾客购买最多的包装,据此判断即可.5.【答案】A【考点】平面向量【解析】【解答】∵四边形ABCD是平行四边形,E为AB中点,∴12a+b⃗=12AB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =EB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =EC⃗⃗⃗⃗⃗故答案为:A.【分析】根据平行四边形的性质及线段的中点,可得12a+b⃗=12AB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =EB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =EC⃗⃗⃗⃗⃗ ,据此判断即可.6.【答案】C【考点】点与圆的位置关系【解析】【解答】∵圆A与圆B内切,AB=4,圆B的半径为1∴圆A的半径为5∵AD=3<5∴点D在圆A内在Rt△ABC中,AC=√AB2+BC2=√42+32=5∴点C在圆A上故答案为:C【分析】根据两圆内切,可得圆A的半径为5,由点与圆的位置关系可得点D在圆A内,在Rt△ABC中,利用勾股定理求出AC=5,利用点与圆的位置关系可得点C在圆A上,据此判断即可.二、填空题7.【答案】x5【考点】同底数幂的除法【解析】【解答】∵x7÷x2=x5,故答案为: x5.【分析】同底数幂相除,底数不变,指数相减,据此计算即可.8.【答案】2√3【考点】代数式求值【解析】【解答】解:∵f(x)=6x,∴f(√3)==2√3,√3故答案为:2√3.【分析】将x=√3代入,求出函数值即可.9.【答案】5【考点】无理方程【解析】【解答】解:√x+4=3,两边同平方,得x+4=9,解得:x=5,经检验,x=5是方程的解,∴x=5,故答案是:5.【分析】将方程两边同平方,化为一元一次方程,求解并检验即可.10.【答案】x<6【考点】解一元一次不等式【解析】【解答】2x−12<02x<12x<6故答案为:x<6.【分析】利用移项、系数化为1即可求出解集.11.【答案】20°【考点】余角、补角及其性质【解析】【解答】70°的余角是90°- 70°= 20°故答案为:20°.【分析】互余的两个角的和等于90°,据此解答即可.12.【答案】c>98【考点】一元二次方程根的判别式及应用【解析】【解答】解:关于x的一元二次方程2x2−3x+c=0无解,∵a=2,b=−3,c=c,∴△=b2−4ac=(−3)2−4×2c<0,,解得c>98∴c的取值范围是c>9.8故答案为:c>9.8【分析】由关于x的一元二次方程2x2−3x+c=0无解,可得△<0,据此解答即可.13.【答案】38【考点】概率公式【解析】【解答】根据概率公式,得偶数的概率为 38 ,故答案为: 38 .【分析】直接利用概率公式计算即可.14.【答案】 y =−2x ( k <0 且 k ≠−1 即可)【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数 y =kx 经过二、四象限,∴k<0,当 y =kx 经过 (−1,1) 时,k=-1,由题意函数不经过 (−1,1) ,说明k≠-1,故可以写的函数解析式为: y =−2x (本题答案不唯一,只要 k <0 且 k ≠−1 即可).【分析】正比例函数经过二、四象限,可得k<0, 又不经过 (−1,1) ,可得k≠-1,,据此求解即可(答案不唯一).15.【答案】 33k 5【考点】一次函数的实际应用【解析】【解答】设卖出的苹果数量与售价之间的关系式为 y =mx +n(5≤x ≤10) ,将(5,4k ),(10,k )代入关系式:{5m +n =4k 10m +n =k ,解得 {m =−35k n =7k∴ y =−35kx +7k(5≤x ≤10)令 x =8 ,则 y =115k ∴利润= (8−5)×115k =335k【分析】利用待定系数法求出卖出的苹果数量与售价之间的关系式,再求出当售价为8元/千克时卖出的苹果数量,最后利用利润=(售价-进价)×销售量,计算即得.16.【答案】 23【考点】相似三角形的判定与性质【解析】【解答】解:作AE ⊥BC ,CF ⊥BD∵ S △ABDS △BCD =12 ∴△ABD 和△BCD 等高,高均为AE∴S△ABDS△BCD =12AD·AE12BC·AE=ADBC=12∵AD∥BC∴△AOD∽△COB∴ODOB =ADBC=12∵△BOC和△DOC等高,高均为CF∴S△BOCS△DOC =12OB·CF12OD·CF=OBOD=21∴S△BOCS△BCD =23故答案为:23【分析】作AE⊥BC,CF⊥BD,可得S△ABDS△BCD =12AD·AE12BC·AE=ADBC=12,利用平行线可证△AOD∽△COB可得ODOB =ADBC=12,从而求出S△BOCS△DOC=12OB·CF12OD·CF=OBOD=21,继而得出结论.17.【答案】3√32.【考点】正多边形的性质【解析】【解答】解:如图所示,连接AC、AE、CE,作BG⊥AC、DI⊥CE、FH⊥AE,AI⊥CE,在正六边形ABCDEF中,∵直角三角板的最短边为1,∴正六边形ABCDEF为1,∴△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,∵∠ABC=∠CDE =∠EFA =120°,AB=BC= CD=DE= EF=FA=1,∴∠BAG=∠BCG =∠DCE=∠DEC=∠FAE =∠FEA=30°,∴BG=DI= FH= 12,∴由勾股定理得:AG =CG = CI = EI = EH = AH = √32,∴AC =AE = CE = √3,∴由勾股定理得:AI= 32,∴S= 3×12×√3×12+12×√3×32=3√32,故答案为:3√32.【分析】如图所示,连接AC、AE、CE,作BG⊥AC、DI⊥CE、FH⊥AE,AI⊥CE,利用正六边形的性质可得△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,从而求出∠BAG=∠BCG=∠DCE=∠DEC=∠FAE =∠FEA=30︒,继而得出BG=DI= FH= 12,AC =AE = CE = √3,AI= 32,由中间正六边形的面积=3△ABC的面积+△ACE的面积,利用三角形的面积公式计算即可.18.【答案】2−√2≤d≤1【考点】旋转的性质,四边形-动点问题【解析】【解答】解:如图1,设AD的中点为E,连接OA,OE,则AE=OE=1,∠AEO=90°,OA=√2.∴点O与正方形ABCD边上的所有点的连线中,OE最小,等于1,OA最大,等于√2.∵OP=2,∴点P与正方形ABCD边上的所有点的连线中,如图2所示,当点E落在OP上时,最大值PE=PO-EO=2-1=1;如图3所示,当点A落在OP上时,最小值PA=PO−AO=2−√2.∴当正方形ABCD绕中心O旋转时,点P到正方形的距离d的取值范围是2−√2≤d≤1.故答案为:2−√2≤d≤1【分析】由旋转及正方形的性质可得,当点E落在OP上时,最大值为PE的长,当点A落在OP上时,最小值为PA的长,据此分别求出最大值与最小值,即得结论.三、解答题19.【答案】解:912+|1−√2|−2−1×√8,= √9−(1−√2)−12×2√2,= 3+√2−1−√2,=2.【考点】实数的运算【解析】【分析】利用算术平方根、负整数指数幂、绝对值的性质分别化简,再合并即可.20.【答案】解:由题意:{x+y=3⋯(1)x2−4y2=0⋯(2),由方程(1)得到:x=3−y,再代入方程(2)中:得到: (3−y)2−4y 2=0 ,进一步整理为: 3−y =2y 或 3−y =−2y , 解得 y 1=1 , y 2=−3 ,再回代方程(1)中,解得对应的 x 1=2 , x 2=6 , 故方程组的解为: {x =2y =1 和 {x =6y =−3 . 【考点】解二元一次方程组【解析】【分析】利用代入消元法解方程组即可. 21.【答案】 (1)∵ AC ⊥BD , cos ∠ABC =45 ∴ cos ∠ABC =BCAB =45 ∴AB=10∴ AC = √AB 2−BC 2=6 ;(2)过点F 作FG ⊥BD ,∵ BF 为 AD 边上的中线. ∴F 是AD 中点 ∵FG ⊥BD , AC ⊥BD ∴ FG //AC∴FG 是△ACD 的中位线 ∴FG= 12AC = 3 CG= 12CD =2∴在Rt △BFG 中, tan ∠FBD = FGBG =38+2=310 . 【考点】勾股定理,锐角三角函数的定义【解析】【分析】(1) 利用 cos ∠ABC =BCAB =45可求出AB 的长,再利用勾股定理求出AC 的长即可; (2)过点F 作FG ⊥BD ,由AC ⊥BD 可得FG ∥AC ,可得FG 是△ACD 的中位线,从而可得= 3, =2 ,在Rt △BFG 中,由tan ∠FBD .22.【答案】(1)3月份的百分比= 1−30%−25%=45%三月份共生产的手机数= 80×45%=36(万部)答:三月份共生产了36万部手机.(2)设5G手机的下载速度为x MB/秒,则4G下载速度为(x−95)MB/秒,由题意可知:1000x−95−1000x=190解得:x=100检验:当x=100时,x⋅(x−95)≠0∴x=100是原分式方程的解.答:5G手机的下载速度为100 MB/秒.【考点】分式方程的实际应用,扇形统计图【解析】【分析】(1)由扇形统计图求出三月份所占百分比,再乘以总数即得结论;(2)设5G手机的下载速度为x MB/秒,则4G下载速度为(x−95)MB/秒,根据“下载一部1000MB的电影,5G比4G要快190秒”列出方程,求解并检验即可.23.【答案】(1)证明:连结OM,ON,∵M、N分别是CB和AD的中点,∴OM,ON为弦心距,∴OM⊥BC,ON⊥AD,∴∠GMO=∠GNO=90°,在⊙O中,AB=CD,∴OM=ON,在Rt△OMG和Rt△ONG中,{OM=ONOG=OG,∴RtΔGOM≌RtΔGON(HL),∴MG=NG,∠MGO=∠NGO,∴OG⊥MN;(2)设OG 交MN 于E , ∵RtΔGOM ≌RtΔGON(HL) , ∴ MG =NG ,∴ ∠GMN =∠GNM ,即 ∠CMN =∠ANM , ∵CM =12CB =12AD =AN ,在△CMN 和△ANM 中 {CM =AN∠CMN =∠ANM MN =NM ,∴△CMN ≌△ANM ,∴AM =CN,∠AMN =∠CNM , ∵CN ∥OG ,∴∠CNM =∠GEM =90° , ∴∠AMN =∠CNM =90° ,∴∠AMN +∠CNM =90°+90°=180° , ∴AM ∥CN ,∴ACNM 是平行四边形, ∵∠AMN =90° , ∴四边形ACNM 是矩形.【考点】矩形的判定,圆的综合题【解析】【分析】(1)连结OM,ON , 证明RtΔGOM ≌RtΔGON(HL) ,可得MG=NG , ∠MGO=∠NGO , MG =NG ,∠MGO =∠NGO ,24.【答案】 (1)将 P(3,0)、Q(1,4) 两点分别代入 y =ax 2+c ,得 {9a +c =0,a +c =4,解得 a =−12,c =92 .所以抛物线的解析式是 y =−12x 2+92 .(2)①如图2,抛物线的对称轴是y 轴,当点A 与点 Q(1,4) 重合时, AB =4 , 作 CH ⊥AB 于H .∵ △ABC 是等腰直角三角形,∴ △CBH 和 △CAH 也是等腰直角三角形, ∴ CH =AH =BH =2 ,∴点C 到抛物线的对称轴的距离等于1.②如图3,设直线PQ 的解析式为y=kx+b ,由 P(3,0)、Q(1,4) ,得 {3k +b =0,k +b =4,解得 {k =−2,b =6,∴直线 PQ 的解析式为 y =−2x +6 , 设 A(m,−2m +6) , ∴ AB =−2m +6 ,所以 CH =BH =AH =−m +3 .所以 y C =−m +3,x C =−(−m +3−m)=2m −3 . 将点 C(2m −3,−m +3) 代入 y =−12x 2+92 , 得 −m +3=−12(2m −3)2+92 . 整理,得 2m 2−7m +3=0 . 因式分解,得 (2m −1)(m −3)=0 .解得 m =12 ,或 m =3 (与点B 重合,舍去).当 m =12 时, 2m −3=1−3=−2,−m +3=−12+3=52 . 所以点C 的坐标是 (−2,52) .【考点】待定系数法求二次函数解析式,二次函数-动态几何问题【解析】【分析】(1)将P 、Q 两点坐标代入抛物线解析式中,求出a 、c 的值即可;(2)① 作 CH ⊥AB 于H .抛物线的对称轴是y 轴,当点A 与点 Q(1,4) 重合时, AB =4 , 可得出 △CBH 和 △CAH 也是等腰直角三角形,从而得出CH =AH =BH =2 , 继而得出点C 到抛物线的对称轴的距离等于1;②先求出直线 PQ 的解析式为 y =−2x +6 , 设A(m,−2m +6) ,可求出点 C(2m −3,−m +3) ,将点C 坐标代入y =−12x 2+92中,可求出m 值,即得点C 坐标.25.【答案】 (1)①由 AD =CD ,得 ∠1=∠2 . 由 AD//BC ,得 ∠1=∠3 .因为 BO 是 Rt △ABC 斜边上的中线,所以 OB =OC .所以 ∠3=∠4 . 所以 ∠1=∠2=∠3=∠4 . 所以 △DAC ∽△OBC .②若BE⊥CD,那么在Rt△BCE中,由∠2=∠3=∠4.可得∠2=∠3=∠4=30°.作DH⊥BC于H.设AD=CD=2m,那么BH=AD=2m.在Rt△DCH中,∠DCH=60°,DC=2m,所以CH=m.所以BC=BH+CH=3m.所以ADBC =2m3m=23.(2)①如图5,当点E在AD上时,由AD//BC,O是AC的中点,可得OB=OE,所以四边形ABCE是平行四边形.又因为∠ABC=90°,所以四边形ABCE是矩形,设AD=CD=x,已知DE=2,所以AE=x−2.已知OE=3,所以AC=6.在Rt△ACE和Rt△DCE中,根据CE2=CE2,列方程62−(x−2)2=x2−22.解得x=1+√19,或x=1−√19(舍去负值).②如图6,当点E在CD上时,设AD=CD=x,已知DE=2,所以CE=x−2.设OB=OC=m,已知OE=3,那么EB=m+3.一方面,由△DAC∽△OBC,得DCOC =ACBC,所以xm=2OCBC,所以OCBC=x2m,另一方面,由∠2=∠4,∠BEC是公共角,得△EOC∽△ECB.所以EOEC =ECEB=OCCB,所以3x−2=x−2m+3=OCCB.等量代换,得3x−2=x−2m+3=x2m.由3x−2=x2m,得m=x2−2x6.将m=x2−2x6代入3x−2=x−2m+3,整理,得x2−6x−10=0.解得x=3+√19,或x=3−√19(舍去负值).【考点】相似三角形的判定与性质,四边形的综合,四边形-动点问题【解析】【分析】(1)①由等腰三角形的性质得出∠1=∠2,由平行线的性质得出∠1=∠3,利用直角三角形的性质得出∠3=∠4,即得∠1=∠2=∠3=∠4,根据两角分别相等可证△DAC∽△OBC;② 在Rt△BCE中,得出∠2=∠3=∠4=30°,作DH⊥BC于H.设AD=CD=2m,那么BH=AD=2m,从而求出CH=m,继而得出BC=BH+CH=3m,据此即可求出结论;(2)分两种情况:① 当点E在AD上时,证明四边形ABCE是矩形,设AD=CD=x,在Rt△ACE和Rt△DCE中,根据CE2=CE2建立方程,求出x值即可;② 当点E在CD上时,设AD=CD=x,设OB=OC=m,由△DAC∽△OBC=ACBC ,据此可得xm=2OCBC,证明△EOC∽△ECB,可得EOEC =ECEB=OCCB,据此可得3x−2=x−2m+3=OCCB,从而得出方程,求出x值即可.。
2023年上海市数学中考真题(含解析
![2023年上海市数学中考真题(含解析](https://img.taocdn.com/s3/m/bc3013d85ff7ba0d4a7302768e9951e79b89698a.png)
2023年上海市初中学业水平考试考生注意:1. 本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2. 作答前,在答题纸指定位置填写姓名、报名号、座位号.将核对后的条形码贴在答题纸指定位置.3. 所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上的作答一律不得分.4. 选择题和作图题用2B铅笔作答,其余题型用黑色字迹钢笔、水笔或圆珠笔作答.一、选择题:(本大题共6题,每题4分,共24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上】1. 下列运算正确的是()A. B. C. D.【答案】A【解析】【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A、,故正确,符合题意;B、,故错误,不符合题意;C、,故错误,不符合题意;D、,故错误,不符合题意;故选:A.【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.2. 在分式方程中,设,可得到关于y的整式方程为()A. B. C. D.【答案】D【解析】【分析】设,则原方程可变形为,再化为整式方程即可得出答案.【详解】解:设,则原方程可变形为,即;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.3. 下列函数中,函数值y随x的增大而减小的是()A. B. C. D.【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A、,,y随x的增大而增大,不符合题意;B、,,y随x的增大而减小,符合题意;C、,,在每个象限内,y随x的增大而减小,不符合题意;D、,,在每个象限内,y随x的增大而增大,不符合题意;故选:B.【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.4. 如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A. 小车的车流量与公车的车流量稳定;B. 小车的车流量的平均数较大;C. 小车与公车车流量在同一时间段达到最小值;D. 小车与公车车流量的变化趋势相同.【答案】B【解析】【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.5. 在四边形中,.下列说法能使四边形为矩形的是()A. B. C. D.【答案】C【解析】【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A:,为平行四边形而非矩形故A不符合题意B:,为平行四边形而非矩形故B不符合题意C:为矩形故C符合题意D:不是平行四边形也不是矩形故D不符合题意故选:C .【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6. 已知在梯形中,连接,且,设.下列两个说法:①;②则下列说法正确的是()A. ①正确②错误B. ①错误②正确C. ①②均正确D. ①②均错误【答案】D【解析】【分析】根据已知及结论,作出图形,进而可知当梯形为等腰梯形,即,时,①;②,其余情况得不出这样的结论,从而得到答案.【详解】解:过作,交延长线于,如图所示:若梯形为等腰梯形,即,时,四边形是平行四边形,,,,,,即,又,,在中,,,则,,此时①正确;过作于,如图所示:在中,,,,则,,,此时②正确;而题中,梯形是否为等腰梯形,并未确定;梯形是还是,并未确定,无法保证①②正确,故选:D.【点睛】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,熟练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)【请将结果直接填入答题纸的相应位置上】7. 分解因式:________.【答案】【解析】【分析】利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题考查因式分解,熟练掌握平方差公式是解题的关键.8. 化简:结果为________.【答案】2【解析】【分析】根据同分母分式的减法计算法则解答即可.【详解】解:;故答案为:2.【点睛】本题考查了同分母分式减法计算,熟练掌握运算法则是解题关键.9. 已知关于的方程,则________【答案】【解析】【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,,即,,等式两边分别平方,移项,,符合题意,故答案:.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.10. 函数的定义域为________.【答案】【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由可知:,∴;故答案为.【点睛】本题主要考查函数及分式有意义的条件,熟练掌握函数的概念及分式有意义的条件是解题的关键.11. 已知关于x的一元二次方程没有实数根,那么a的取值范围是________.【答案】【解析】【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x的一元二次方程没有实数根,∴,解得:;故答案为:.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12. 在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.【答案】【解析】【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为,故答案为:.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.13. 如果一个正多边形的中心角是,那么这个正多边形的边数为________.【答案】18【解析】【分析】根据正n边形的中心角的度数为进行计算即可得到答案.【详解】根据正n边形的中心角的度数为,则,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.14. 一个二次函数的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.【答案】(答案不唯一)【解析】【分析】根据二次函数的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,可确定,对称轴,,从而确定答案.【详解】解:∵二次函数的对称轴左侧的部分是上升的,∴抛物线开口向上,即,∵二次函数的顶点在y轴正半轴上,∴,即,,∴二次函数的解析式可以是(答案不唯一).【点睛】本题考查二次函数的性质,能根据增减性和二次函数图象与y轴的交点确定系数的正负是解题的关键.15. 如图,在中,点D,E在边,上,,联结,设向量,,那么用,表示________.【答案】【解析】【分析】先根据向量的减法可得,再根据相似三角形的判定可得,根据相似三角形的性质可得,由此即可得.【详解】解:∵向量,,,,,,,,,,故答案为:.【点睛】本题考查了向量的运算、相似三角形的判定与性质,熟练掌握向量的运算是解题关键.16. 垃圾分类(Refuse sorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60 吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为________.【答案】1500吨【解析】【分析】由题意易得试点区域垃圾收集总量为300吨,然后问题可求解.【详解】解:由扇形统计图可得试点区域的垃圾收集总量为(吨),∴全市可收集干垃圾总量为(吨);故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.17. 如图,在中,,将绕着点A旋转,旋转后的点B落在上,点B的对应点为D,连接是的角平分线,则________.【答案】【解析】【分析】如图,,,根据角平分线的定义可得,根据三角形的外角性质可得,即得,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:,,∵是的角平分线,∴,∵,,∴,则在中,∵,∴,解得:;故答案为:【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.18. 在中,点D在边上,点E在延长线上,且,如果过点A,过点D,若与有公共点,那么半径r的取值范围是________.【答案】【解析】【分析】先画出图形,连接,利用勾股定理可得,,从而可得,再根据与有公共点可得一个关于的不等式组,然后利用二次函数的性质求解即可得.【详解】解:由题意画出图形如下:连接,过点,且,的半径为7,过点,它的半径为,且,,,,,在边上,点在延长线上,,即,,与有公共点,,即,不等式①可化为,解方程得:或,画出函数的大致图象如下:由函数图象可知,当时,,即不等式①的解集为,同理可得:不等式②的解集为或,则不等式组的解集为,又,半径r的取值范围是,故答案为:.【点睛】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19. 计算:【答案】【解析】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.20. 解不等式组【答案】【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.21. 如图,在中,弦的长为8,点C在延长线上,且.(1)求的半径;(2)求的正切值.【答案】(1)5 (2)【解析】【分析】(1)延长,交于点,连接,先根据圆周角定理可得,再解直角三角形可得,由此即可得;(2)过点作于点,先解直角三角形可得,从而可得,再利用勾股定理可得,然后根据正切的定义即可得.【小问1详解】解:如图,延长,交于点,连接,由圆周角定理得:,弦的长为8,且,,解得,的半径为.【小问2详解】解:如图,过点作于点,的半径为5,,,,,,即,解得,,,则的正切值为.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.22. “中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900 (2)(3)【解析】【分析】(1)根据,计算求解即可;(2)由题意知,,整理求解即可;(3)当,则,根据优惠后油的单价比原价便宜元,计算求解即可.【小问1详解】解:由题意知,(元),答:实际花了900元购买会员卡;【小问2详解】解:由题意知,,整理得,∴y关于x的函数解析式为;【小问3详解】解:当,则,∵,∴优惠后油的单价比原价便宜元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.23. 如图,在梯形中,点F,E分别在线段,上,且,(1)求证:(2)若,求证:【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行线的性质可得,再根据三角形的全等的判定可得,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得,从而可得,再根据相似三角形的判定可得,然后根据相似三角形的性质即可得证.【小问1详解】证明:,,在和中,,,.【小问2详解】证明:,,,即,在和中,,,,由(1)已证:,,.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.24. 在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.【答案】(1),(2),(3)或【解析】【分析】(1)根据题意,分别将,代入直线即可求得;(2)设,得到抛物线的顶点式为,将代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设,,根据平移的性质可得点,点向下平移的距离相同,即列式求得,,然后得到抛物线N解析式为:,将代入可得,即可得到答案.【小问1详解】解:∵直线与x轴交于点A,y轴交于点B,当时,代入得:,故,当时,代入得:,故,【小问2详解】设,则可设抛物线的解析式为:,∵抛物线M经过点B,将代入得:,∵,∴,即,∴将代入,整理得:,故,;【小问3详解】如图:∵轴,点P在x轴上,∴设,,∵点C,B分别平移至点P,D,∴点,点向下平移的距离相同,∴,解得:,由(2)知,∴,∴抛物线N的函数解析式为:,将代入可得:,∴抛物线N的函数解析式为:或.【点睛】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,平移的性质,二次函数的图象和性质等,解题的关键是根据的平移性质求出m和a的值.25. 如图(1)所示,已知在中,,在边上,点边中点,为以为圆心,为半径的圆分别交,于点,,联结交于点.(1)如果,求证:四边形为平行四边形;(2)如图(2)所示,联结,如果,求边的长;(3)联结,如果是以为腰的等腰三角形,且,求的值.【答案】(1)见解析(2)(3)【解析】【分析】(1)根据等边对等角得出,,等量代换得出,则,根据是的中点,,则是的中位线,则,即可得证;(2)设,,则,由(1)可得则,等量代换得出,进而证明,得出,在中,,则,解方程即可求解;(3)是以为腰的等腰三角形,分为①当时,②当时,证明,得出,设,根据,得出,可得,,连接交于点,证明在与中,,,得出,可得,根据相似三角形的性质得出,进而即可求解.【小问1详解】证明:∵∴∵∴,∴∴,∵是的中点,,∴是的中位线,∴,即,∴四边形是平行四边形;【小问2详解】解:∵,点边中点,设,,则由(1)可得∴,∴,又∵∴,∴即,∵,在中,,∴,∴解得:或(舍去)∴;【小问3详解】解:①当时,点与点重合,舍去;②当时,如图所示,延长交于点P,∵点是的中点,,∴,设,∵∴,∴,设,∵∴,∴,∴,∴,连接交于点,∵,∴∴,∴,在与中,,,∴,又,∴,∴,∴,∴,,∴.【点睛】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定,第三问中,证明是解题的关键.。
2023年上海市中考数学试卷含答案解析
![2023年上海市中考数学试卷含答案解析](https://img.taocdn.com/s3/m/9672903603020740be1e650e52ea551810a6c9d9.png)
绝密★启用前2023年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( ) A. a 5÷a 2=a 3B. a 3+a 3=a 6C. (a 3)2=a 5D. √ a 2=a2. 在分式方程2x−1x2+x 22x−1=5中,设2x−1x 2=y ,可得到关于y 的整式方程为( )A. y 2+5y +5=0B. y 2−5y +5=0C. y 2+5y +1=0D. y 2−5y +1=03. 下列函数中,函数值y 随x 的增大而减小的是( ) A. y =6xB. y =−6xC. y =6xD. y =−6x4. 如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A. 小车的车流量与公车的车流量稳定B. 小车的车流量的平均数较大C. 小车与公车车流量在同一时间段达到最小值D. 小车与公车车流量的变化趋势相同5. 在四边形ABCD 中,AD//BC ,AB =CD.下列说法能使四边形ABCD 为矩形的是( )A. AB//CDB. AD =BCC. ∠A =∠BD. ∠A =∠D6. 已知在梯形ABCD 中,联结AC ,BD ,且AC ⊥BD ,设AB =a ,CD =b.下列两个说法:①AC =√ 22(a +b);②AD =√ 22√ a 2+b 2,则下列说法正确的是( )A. ①正确②错误B. ①错误②正确C. ①②均正确D. ①②均错误二、填空题(本大题共12小题,共48.0分)7. 分解因式:n 2−9= ______ . 8. 化简:21−x −2x1−x 的结果为______ .9. 已知关于x 的方程√ x −14=2,则x = ______ . 10. 函数f(x)=1x−23的定义域为______ .11. 已知关于x 的一元二次方程ax 2+6x +1=0没有实数根,那么a 的取值范围是______ .12. 在不透明的盒子中装有一个黑球,两个白成,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为______ .13. 如果一个正多边形的中心角是20°,那么这个正多边形的边数为______ . 14. 一个二次函数y =ax 2+bx +c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______ .15. 如图,在△ABC 中,点D ,E 在边AB ,AC 上,2AD =BD ,DE//BC ,联结DE ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么用a ⃗ ,b ⃗ 表示DE ⃗⃗⃗⃗⃗⃗ = ______ .16. 垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为______ .17. 如图,在△ABC 中,∠C =35°,将△ABC 绕着点A 旋转α(0°<α<180°),旋转后的点B 落在BC 上,点B 的对应点为D ,联结AD ,AD 是∠BAC 的角平分线,则α= ______ .18. 在△ABC 中,AB =7,BC =3,∠C =90°,点D 在边AC 上,点E 在CA 延长线上,且CD =DE ,如果⊙B 过点A ,⊙E 过点D ,若⊙B 与⊙E 有公共点,那么⊙E 半径r 的取值范围是______ .三、解答题(本大题共7小题,共78.0分。
2023年上海市中考数学试卷及答案解析
![2023年上海市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/aede4ae13086bceb19e8b8f67c1cfad6195fe902.png)
2023年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,共24分)1.(4分)下列运算正确的是()A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a2.(4分)在分式方程+=5中,设=y,可得到关于y的整式方程为()A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0 3.(4分)下列函数中,函数值y随x的增大而减小的是()A.y=6x B.y=﹣6x C.y=D.y=﹣4.(4分)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同5.(4分)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是()A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D 6.(4分)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:(本大题共12题,每题4分,共48分)7.(4分)分解因式:n2﹣9=.8.(4分)化简:﹣的结果为.9.(4分)已知关于x的方程=2,则x=.10.(4分)函数f(x)=的定义域为.11.(4分)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.12.(4分)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.(4分)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.14.(4分)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.(4分)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示=.16.(4分)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.(4分)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α=.18.(4分)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.三、解答题:(本大题共7题,共78分)19.(10分)计算:+﹣()﹣2+|﹣3|.20.(10分)解不等式组:.21.(10分)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.22.(10分)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.(12分)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.24.(12分)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.(14分)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.2023年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,共24分)1.【分析】根据合并同类项,同底数幂的除法,幂的乘方法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.【点评】本题考查了合并同类项,同底数幂的除法,幂的乘方与积的乘方,二次根式的性质与化简,准确熟练地进行计算是解题的关键.2.【分析】设=y,则=,原方程可变为:y+=5,再去分母得y2+1=5y,即可得出结论.【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.【点评】本题考查换元法解分式方程,熟练掌握换元法是解题的关键.3.【分析】根据反比例函数的性质和正比例函数的性质分别判断即可.【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.【点评】本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.4.【分析】观察图象,再逐项判断各选项即可.【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.【点评】本题考查折线统计图,解题的关键是能从图象中获取有用的信息.5.【分析】由矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.6.【分析】根据题意,作出图形,若梯形ABCD为等腰梯形,可得①;②,其余情况得不出这样的结论,从而得到答案.【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∴AC=BD,即BD=BE,∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.【点评】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,孰练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)7.【分析】利用平方差公式分解因式即可得到答案.【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).【点评】本题考查了因式分解,平方差公式,熟练掌握公式法分解因式是解题关键.8.【分析】根据分式的运算法则进行计算即可.【解答】解:原式===2,故答案为:2.【点评】本题考查分式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.9.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.10.【分析】根据函数有意义的条件求解即可.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数有意义的条件是解题的关键.11.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.12.【分析】从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,再根据概率公式求解即可.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.13.【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键.14.【分析】根据二次函数的图象与系数的关系求解(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【点评】本题考查了二次函数的图象与系数的关系,掌握数形结合思想是解题的关键.15.【分析】由三角形法则求得的值;然后结合平行线截线段成比例求得线段DE的长度,继而求得向量的值.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.【点评】本题主要考查了平面向量和平行线截线段成比例.注意:平面向量既有大小又有方向.16.【分析】先用60除以可回收垃圾所占百分比,得到该市试点区域的垃圾总量,乘以10得到全市垃圾总量,然后乘以干垃圾所占的百分比即可.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.【点评】本题考查的是扇形统计图,利用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.17.【分析】由AB=AD,∠BAD=α及角平分线的定义得∠CAD=∠BAD=α,根据三角形外角性质得∠ADB=35°+α,即有∠B=∠ADB=35°+α,由三角形的内角和定理求解即可.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.【点评】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质及三角形的内角和等知识,孰练掌握相关图形的性质是解题的关键.18.【分析】先画出图形,连接BE,利用勾股定理可得,,从而可得<r≤2,再根据⊙B与⊙E有公共点列不等式,用二次函数与一元二次方程,一元二次不等式的关系解答.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2或,画出函数y=3r2﹣14r﹣40的大致图象如下:同理可得:不等式②的解集为r≥2或,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.【点评】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+﹣9+3﹣=﹣6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.【点评】本题考查了解一元一次不等式组,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键,同大取大,同小取小,大大小小取不了,小大大小取中间.21.【分析】(1)过点O作OD⊥AB,垂足为D,根据垂径定理可得AD=BD=4,然后在Rt△OBD中,利用锐角三角函数的定义求出OB的长,即可解答;(2)过点C作CE⊥AB,垂足为E,根据已知可得BC=OB=7.5,再利用平行线分线段成比例可得=,从而求出BE的长,进而求出AE的长,然后在Rt△BCE中,利用勾股定理求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.【点评】本题考查了垂径定理,勾股定理,解直角三角形,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)根据打九折列出算式,计算即可;(2)根据每一升油,油的单价降低0.30元知:y=0.9(x﹣0.30);(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x﹣y)元,计算求解即可.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.【点评】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用,解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.【分析】(1)证明△ACF≌△ADE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.【点评】本题考查了相似三角形的性质和判定,梯形,勾股定理,熟练运用相似三角形的性质和判定是本题的关键.24.【分析】(1)根据题意,分别将x=0,y=0代入直线即可求得;(2)设,得到抛物线的顶点式为,将B(0,6)代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得,即可得到答案.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图性质等,解题的关键是根据的平移性质求出m和a的值.25.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F 是OB的中点,OG=DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE=α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO﹣AF,由AE2=EO2﹣AO2,有EO2﹣AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGOCD△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FEE,即得AE=2OG=4k,PE=AE﹣AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△POE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.【点评】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定是解题的关键。
2021年上海市中考数学试卷+答案解析,完整word版
![2021年上海市中考数学试卷+答案解析,完整word版](https://img.taocdn.com/s3/m/85dbbb95cf84b9d529ea7aa4.png)
2021年上海市中考数学试卷+答案解析,完整word版2021年上海市中考数学试卷一、选择题(共9小题,每小题4分,满分36分) 1.(2021?上海)下列运算中,计算结果正确的是()3332325336A.x?x=2x B.x÷x=x C.(x)=x D.x+x=2x 2.(2021?密云县)2021北京奥运会主会场“鸟巢”的座席数是91 000个,这个数用科学记数法表示为()5433A.0.91×10 B.9.1×10 C.91×10 D.9.1×10 3.(2021?锦州)下列图形中,既是中心对称图形又是轴对称图形的是()A. B.2C. D.4.(2021?上海)若抛物线y=(x+1)��2与x轴的正半轴相交于点A,则点A的坐标为() A.(��1��,0) B.(,0) C.(��1,��2) D.(��1+,0)5.(2021?上海)若一元二次方程4x+A.x1+x2=��,x1?x2=��2x=1的两个根分别为x1,x2,则下列结论正确的是() B.x1+x2=��,x1?x2=��1C.x1+x2=,x1?x2=D.x1+x2=,x1?x2=1 6.(2021?上海)下列结论中,正确的是() A.圆的切线必垂直于半径 B.垂直于切线的直线必经过圆心 C.垂直于切线的直线必经过切点D.经过圆心与切点的直线必垂直于切线 7.(2021?上海)一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()8.(2021?上海)若A.||=||是非零向量,则下列等式正确的是() B.=C.+≠0D.||+||=0A.B.C.D.9.(2021?上海)下列事件中,属必然事件的是()A.男生的身高一定超过女生的身高 B.方程4x+4=0在实数范围内无解定得满分D.两个无理数相加一定是无理数二、填空题(共12小题,每小题4分,满分48分) 10.(2021?上海)不等式2��3x>0的解集是 _________ . 11.(2021?上海)分解因式:xy��x��y+1=_________ .2C.明天数学考试,小明一12.(2021?上海)化简:13.(2021?上海)方程14.(2021?上海)函数= _________ .的根是x= _________ .的定义域是 _________ .15.(2021?上海)若反比例函数y=(k<0)的函数图象过点P(2,m)、Q(1,n),则m与n的大小关系是:m _________ n.16.(2021?上海)关于x的方程mx+mx+1=0有两个相等的实数根,那么m=_________ . 17.(2021?上海)在平面直角坐标系中,点A的坐标为(��2,3),点B的坐标为(��1,6).若点C与点A关于y轴对称,则点B与点C之间的距离为_________ . 18.(2021?上海)如图,将直线OP向下平移3个单位,所得直线的函数解析式为 _________ .219.(2021?上海)在△ABC中,过重心G且平行BC的直线交AB于点D,那么AD:DB= _________ .20.(2021?上海)如图,圆O1与圆O2相交于A、B两点,它们的半径都为2,圆O1经过点O2,则四边形O1AO2B的面积为 _________ .21.(2021?上海)如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD 翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为 _________ .三、解答题(共7小题,满分78分) 22.(2021?上海)先化简,再求值:,其中a=+1,b=��1.23.(2021?上海)解方程:24.(2021?上海)如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=求:(1)cos∠DAC的值;(2)线段AD的长.,BC=26.25.(2021?上海)近五十年来,我国土地荒漠化扩展的面积及沙尘暴发生的次数情况如表1,表2所示.表1:土地荒漠化扩展的面积情况 ?? 年代 50,60年代的20年70,80年代的20年 2100 90年代的20年 2460 平均每年土地荒漠化1360 2扩展的面积(km)表2:沙尘暴发生的次数情况年代每十年沙尘暴发生次数 5 8 50年代的10年60年代的10年 70年代的10年 80年代的10年 90年代的10年 13 14 23 (1)求出五十年来平均每年土地荒漠化扩展的面积;(2)在图中画出不同年代沙尘暴发生的次数的折线图;(3)观察表2或(2)所得的折线图,你认为沙尘暴发生次数呈 _________ (选择“增加”,“稳定”或“减少”)趋势.26.(2021?上海)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.27.(2021?上海)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,��3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E两点.(1)求点B,C,D的坐标;(2)如果一个二次函数图象经过B,C,D三点,求这个二次函数解析式;(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切之为时,求点P的坐标.28.(2021?上海)正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.(1)如图,当CE=时,求线段BG的长;(2)当点O在线段BC上时,设,BO=y,求y关于x的函数解析式;(3)当CE=2ED时,求线段BO的长.2021年上海市中考数学试卷参考答案与试题解析一、选择题(共9小题,每小题4分,满分36分) 1.(2021?上海)下列运算中,计算结果正确的是()3332325336A.x?x=2x B.x÷x=x C.(x)=x D.x+x=2x考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
2021年中考真题精品解析数学(上海卷)精编word版(解析版)
![2021年中考真题精品解析数学(上海卷)精编word版(解析版)](https://img.taocdn.com/s3/m/57d00a51b0717fd5370cdc1b.png)
一、 选择题1.如果a 与3互为倒数,那么a 是( ) A .3- B .3 C .13- D .13【答案】D . 【解析】试题分析:3的倒数是13.故选D . 考点:倒数关系.2.下列单项式中,与2a b 是同类项的是( )A .22a b B .22a b C .2ab D .3ab 【答案】A . 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)2y x =++ C .21y x =+ D .23y x =+ 【答案】C . 【解析】试题分析:抛物线22y x =+向下平移1个单位变为221y x =+-,即为21y x =+.故选C . 考点:图象的平移变换.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )A .3次B .3.5次C .4次D .4.5次【答案】C . 【解析】试题分析:平均数为:1(223241056)20⨯+⨯+⨯+⨯=4(次).故选C . 考点:加权平均数的计算.5.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =,那么向量AC 用向量a 、b 表示为( ) A .12a b + B .12a b - C .12a b -+ D .12a b -- 【答案】A .考点:平面向量,等腰三角形的三线合一.6.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( ) A .14r << B .24r << C .18r << D .28r <<【答案】B . 【解析】考点:勾股定理,点与圆、圆与圆的位置关系.二、 填空题7.计算:3a a ÷=__________. 【答案】2a . 【解析】试题分析:同底数幂相除,底数不变,指数相减,所以,原式=312a a -=.故答案为:2a .考点:单项式的计算. 8.函数32y x =-的定义域是__________. 【答案】2x ≠. 【解析】试题分析:由分式的意义,得:2x -≠0,即2x ≠.故答案为:2x ≠. 考点:分式的意义.912x -=的解是__________. 【答案】5x =. 【解析】试题分析:原方程两边平方,得:x -1=4,所以,5x =.故答案为:5x =. 考点:根式方程. 10.如果12a =,3b =-,那么代数式2a b +的值为__________. 【解析】试题分析:2a b +=1232⨯-=-2..故答案为:-2. 考点:求代数式的值. 11.不等式组2510x x <⎧⎨-<⎩的解集是__________.【答案】1x <. 【解析】考点:一元一次不等式,不等式组的求解.12.如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是__________. 【答案】94. 【解析】试题分析:因为原方程有两个相等的实数根,所以,△=9-4k =0,所以,k =94.故答案为:94. 考点:一元二次方程根的判别式. 13.已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是__________. 【答案】0k >.考点:反比例函数的性质.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是__________. 【答案】13. 【解析】试题分析:向上的一面出现的点数是3的倍数有3、6两种,所以,所求概率为:2163=.故答案为:13. 考点:概率.15.在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比 是__________. 【答案】14. 考点:三角形中位线定理,相似三角形的性质.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__________.【答案】6000. 【解析】试题分析:设总人数为x ,由扇形统计图可知,自驾点40%,所以,x =480040%=12000,选择公交前往的人数是:1200050%⨯=6000.故答案为:6000. 考点:条形统计图与扇形统计图.17.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为__________米.(精确到1米,参3 1.73≈)【答案】208.【解析】试题分析:依题意,有∠BAD=30°,∠DAC=60°,tan30BDAD︒=,所以,BD=90tan30°=303,tan60CDAD︒=,所以,CD=90tan60°=903,所以,BC=1203120 1.73≈⨯≈208.故答案为:208.考点:三角函数的应用.18.如图,矩形ABCD中,2BC=,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A'、C'处,如果点A'、C'、B在同一条直线上,那么tan ABA'∠的值为__________.51-考点:三角形相似的性质,一元二次方程,三角函数.三、解答题19.计算:122131|412()3---.【答案】63【解析】试题分析:根据绝对值、分数指数幂,二次根式、负指数幂的定义解答即可.试题解析:原式31223963=--=考点:实数的运算.20.解方程:214124x x -=--. 【答案】. 【解析】试题解析:去分母,得2244x x +-=-,移项、整理得220x x --=,经检验:12x =是增根,舍去;21x =-是原方程的根,所以,原方程的根是1x =-. 考点:解分式方程.21.如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =,DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值.【答案】(1)22;(2)12. 【解析】试题分析:(1)先计算出AD 的长,进而算出AE 的长,在Rt △ABC 中,得到AB 的长,由BE =AB -AE 即可得到结论;(2)过点E 作EH ⊥BC 于H ,可得到EH =BH =2,从而有CH =1,在Rt △ECH 中,由三角函数定义可得到结论.22.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解答下列问题: (1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)9090B y x =-(16x ≤≤);(2)B 种机器人比A 种机器人多搬运了150千克. 【解析】试题分析:(1)设B y 关于x 的函数解析式为1B y k x b =+,把E 、P 的坐标代入即可得到结论;(2)设A y 关于x 的函数解析式为2A y k x =,把P 的坐标代入即可得到A y 的表达式,令x =6,代入B y ,令x =5,代入A y ,两者相减即可得到结论.答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克. 考点:一次函数的图象,函数解析式,应用题.23.已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =. (1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)证明△ABD ≌△CAE 即可;试题解析:(1)在⊙O 中,∵AB AC =,∴AB AC =,∴B ACB ∠=∠.∵AE ∥BC ,∴EAC ACB ∠=∠,∴B EAC ∠=∠.又∵BD AE =,∴ABD ∆≌CAE ∆,∴AD CE =;(2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径,∴AH BC ⊥,∴BH CH =.∵AD AG =,∴DH HG =,∴BH DH CH GH -=-,即BD CG =.∵BD AE =,∴CG AE =.又∵CG ∥AE ,∴四边形AGCE 是平行四边形.考点:圆的性质定理,三角形的全等,平行四边形的判定.24.如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B ,与y 轴交于点C ,且5OC OB =,抛物线的顶点为D . (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标.【答案】(1)245y x x =--;(2)18;(3)E 3(0,)2.【解析】1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩,∴这条抛物线的表达式为245y x x =--; (2)由245y x x =--,得顶点D 的坐标是(2,9)-.联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=,∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H .∵1102ABC S AB CH ∆=⨯⨯=,52AB =,∴22CH =.在Rt BCH ∆中,90BHC ∠=︒,26BC =,2232BH BC CH =-=,∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BO BEO EO ∠=.∵BEO ABC ∠=∠,∴23BO EO =,得32EO =,∴点E 的坐标为3(0,)2.考点:二次函数的图象,二元一次方程组,三角函数,三角形的面积.25.如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠. (1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函数解析式,并写出x 的取值范围;【答案】(1)7;(2)15或252;(3)22518x y x -=(2592x <<). 【解析】试题分析:(1)过点D 作DH AB ⊥,垂足为点H ,由勾股定理求出AH 的长,进而求出DC 的长;(2)可证AEG ∆∽DEA ∆,从而得到DEA ∆是以AE 为腰的等腰三角形,分两种情况讨论:① 若AE AD =,② 若AE DE =;(3)表示出DE 的长,由AEG ∆∽DEA ∆,得出EG 的长,从而得出DG 的长,由DF ∥AE ,得到DF DG AE EG=,化简即可得到结论. ① 若AE AD =,∵15AD =,∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ,∴11522AQ AD ==. 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠==,∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,222212(9)DE DH EH x =+=+-.∵AEG ∆∽DEA ∆,∴AE EG DE AE =,∴22212(9)EG x =+-,∴2222212(9)12(9)DG x x =+-+-.∵DF ∥AE ,∴DF DG AE EG =,222212(9)y x x x x+--=,∴22518x y x -=,x 的取值范围为2592x <<. 考点:勾股定理,三角形的相似,应用数学知识解决问题的能力.。
2019年上海市中考数学试题(Word版,含解析)
![2019年上海市中考数学试题(Word版,含解析)](https://img.taocdn.com/s3/m/69cbb271e53a580217fcfec2.png)
2019年上海市中考数学试卷一、选择题:(本大题共6题。
每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x2.(4分)如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y B.y C.y D.y4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.(4分)下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.(4分)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)计算:(2a2)2=.8.(4分)已知f(x)=x2﹣1,那么f(﹣1)=.9.(4分)如果一个正方形的面积是3,那么它的边长是.10.(4分)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.(4分)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.(4分)在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.(4分)如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.(4分)如图,在正边形ABCDEF中,设,,那么向量用向量、表示为.17.(4分)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.(4分)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|1|820.(10分)解方程: 121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点",其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.2019年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题。
上海市中考数学试题及参考答案(word解析版)
![上海市中考数学试题及参考答案(word解析版)](https://img.taocdn.com/s3/m/2c948720182e453610661ed9ad51f01dc28157e4.png)
上海市中考数学试题及参考答案(word解析版)中考真题,详细解析,精心整理,word编辑。
2022年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x2x=x C.3x?2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m2>n2 C.2m>2n D.2m>2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=C.y=D.y=4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x21,那么f(1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2x+m=0没有实数根,那么实数m的取值范围是.1中考真题,详细解析,精心整理,word编辑。
211.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ℃,那么y 关于x 的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1=度.16.如图,在正边形ABCDEF 中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD 中,E 是边AD 的中点.将△ABE 沿直线BE 翻折,点A 落在点F 处,联结DF ,那么∠EDF 的正切值是.中考真题,详细解析,精心整理,word编辑。
上海市2020年中考数学试题(Word版,含答案与解析)
![上海市2020年中考数学试题(Word版,含答案与解析)](https://img.taocdn.com/s3/m/cde461bdf7ec4afe05a1df17.png)
上海市2020年中考数学试卷一、单选题(共6题;共12分)1.下列各式中与√3是同类二次根式的是()A. √6B. √9C. √12D. √18【答案】C【考点】最简二次根式,同类二次根式【解析】【解答】解:A、√6和√3是最简二次根式,√6与√3的被开方数不同,故A选项不符合题意;B、√9=3,3不是二次根式,故B选项不符合题意;C、√12=2√3,2√3与√3的被开方数相同,故C选项符合题意;D、√18=3√2,3√2与√3的被开方数不同,故D选项不符合题意;故答案为:C.【分析】根据同类二次根式的概念逐一判断即可.2.用换元法解方程x+1x2+ x2x+1=2时,若设x+1x2=y,则原方程可化为关于y的方程是( )A. y2﹣2y+1=0B. y2+2y+1=0C. y2+y+2=0D. y2+y﹣2=0 【答案】A【考点】列式表示数量关系,解分式方程,定义新运算,数学思想【解析】【解答】把x+1x2=y代入原方程得:y+ 1y=2,转化为整式方程为y2﹣2y+1=0.故答案为:A.【分析】方程的两个分式具备倒数关系,设x+1x2=y,则原方程化为y+ 1y=2,再转化为整式方程y2-2y+1=0即可求解.3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A. 条形图B. 扇形图C. 折线图D. 频数分布直方图【答案】B【考点】扇形统计图,统计图的选择【解析】【解答】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故答案为:B.【分析】根据统计图的特点判定即可.4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A. y= 2x B. y=﹣2xC. y= 8xD. y=﹣8x【答案】 D【考点】待定系数法求反比例函数解析式【解析】【解答】解:设反比例函数解析式为y= k,x,将(2,-4)代入,得:-4= k2解得:k=-8,.所以这个反比例函数解析式为y=- 8x故答案为:D.,代入点(2,-4)求出k即可.【分析】设解析式y= kx5.下列命题中,真命题是( )A. 对角线互相垂直的梯形是等腰梯形B. 对角线互相垂直的平行四边形是正方形C. 对角线平分一组对角的平行四边形是菱形D. 对角线平分一组对角的梯形是直角梯形【答案】C【考点】菱形的判定,正方形的判定,直角梯形,等腰梯形的判定,真命题与假命题【解析】【解答】A.对角线互相垂直且相等的梯形是等腰梯形,故不符合题意;B.对角线相等且互相垂直的平行四边形是正方形,故不符合题意;C.对角线平分一组对角的平行四边形是菱形,符合题意;D.对角线平分一组对角的梯形是菱形,故不符合题意.故答案为:C.【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )A. 平行四边形B. 等腰梯形C. 正六边形D. 圆【答案】A【考点】平行四边形的性质,图形的平移【解析】【解答】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF=FD,BE=EC,AB=EF=CD,∴四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形.故答案为:A.【分析】证明平行四边形是平移重合图形即可.二、填空题(共12题;共12分)7.计算:2a·3ab=________.【答案】6a2b.【考点】单项式乘单项式【解析】【解答】解:2a·3ab=6a2b故填:6a2b.【分析】利用单项式乘单项式的法则进行计算即可.8.已知f(x)= 2,那么f(3)的值是________.x−1【答案】1.【考点】代数式求值,代数式的定义,【解析】【解答】解:由题意得:f(x)= 2x−1∴将x=3代替表达式中的x,∴f(3)= 2=1.3−1故答案为:1.,将x=3代入即可求解.【分析】根据f(x)= 2x−19.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而________.(填“增大”或“减小”)【答案】减小【考点】正比例函数的图象和性质【解析】【解答】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.【分析】根据正比例函数的性质进行解答即可.10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是________.【答案】4.【考点】一元二次方程根的判别式及应用【解析】【解答】依题意:∵方程x2﹣4x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣4)2﹣4m=0,解得:m=4.故答案为:4.【分析】一元二次方程有两个相等的实根,即根的判别式△=b2-4ac=0,即可求m值.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是________..【答案】15【考点】概率公式【解析】【解答】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是210= 15.故答案为:15.【分析】从1到10这10个整数中任意选取一个数,找出是5的倍数的个数,再根据概率公式求解即可.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.【答案】y=x2+3.【考点】二次函数图象的几何变换,平移的性质【解析】【解答】抛物线y=x2向上平移3个单位得到y=x2+3.故答案为:y=x2+3.【分析】直接根据抛物线向上平移的规律求解.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为________.【答案】3150名.【考点】用样本估计总体【解析】【解答】解:由题意可知,150名学生占总人数的百分比为:150400=38,∴估计该区会游泳的六年级学生人数约为8400× 38=3150(名) .故答案为:3150名.【分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为________米.【答案】7米.【考点】相似三角形的判定与性质【解析】【解答】解:∵BD⊥AB,AC⊥AB,∴BD//AC,∴△ACE∽△DBE,∴ACBD =AEBE,∴AC1=1.40.2,∴AC =7(米),故答案为:7(米).【分析】根据相似三角形的判定和性质定理即可得到结论.15.如图,AC 、BD 是平行四边形ABCD 的对角线,设 BC ⃗⃗⃗⃗⃗ = a , CA ⃗⃗⃗⃗⃗ = b ⃗ ,那么向量 BD ⃗⃗⃗⃗⃗⃗ 用向量 a ,b⃗ 表示为________.【答案】 2 a+ b ⃗ . 【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD 是平行四边形,∴AD =BC , AD ∥BC , AB =CD , AB ∥CD ,∴ AD ⃗⃗⃗⃗⃗ = BC⃗⃗⃗⃗⃗ = a , ∵ CD ⃗⃗⃗⃗⃗ = CA ⃗⃗⃗⃗⃗ + AD ⃗⃗⃗⃗⃗ = b⃗ + a , ∴ BA ⃗⃗⃗⃗⃗ = CD ⃗⃗⃗⃗⃗ = b ⃗ + a ,∵ BD ⃗⃗⃗⃗⃗⃗ = BA ⃗⃗⃗⃗⃗ + AD ⃗⃗⃗⃗⃗ ,∴ BD⃗⃗⃗⃗⃗⃗ = b ⃗ + a + a = 2a + b ⃗ . 故答案为: 2a+ b ⃗ . 【分析】利用平行四边形的性质,三角形法则求解即可.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行________米.【答案】 350.【考点】分段函数,一次函数的实际应用,通过函数图象获取信息并解决问题【解析】【解答】解:当8≤t ≤20时,设s=kt+b ,将(8,960)、(20,1800)代入,得:{8k +b =96020k +b =1800, 解得: {k =70b=400 , ∴s =70t +400;当t=15时,s=1450,1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米.故答案为:350.【分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.17.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为________.【答案】3√32.【考点】等边三角形的判定与性质,翻折变换(折叠问题)【解析】【解答】解:如图,过点E作EH⊥BC于H,∵BC=7,CD=3,∴BD=BC-CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°.∵DE=DC=3,∴EH=DE×sin∠HDE=3× √32= 3√32,∴E到直线BD的距离为3√32.故答案为:3√32.【分析】过E点作EH⊥BC于H,证明△ABD是等边三角形,进而求得∠ADC=120°,再由折叠得到∠ADE=∠ADC=120°,进而求出∠HDE=60°,最后在Rt△HED中使用三角函数即可求出HE的长.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是________.【答案】103<AO<203.【考点】勾股定理,直线与圆的位置关系,相似三角形的判定与性质【解析】【解答】解:在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE//CD,∴△AOE∽△ACD,∴OECD =AOAC,∴AO10=26,∴AO= 103;如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF//AB,∴△COF∽△CAB,∴OCAC =OFAB,∴OC10=26,∴OC= 103,∴AO= 203,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203.故答案为:103<AO<203.【分析】根据勾股定理得到AC=10,如图1,设⊙O 与AD 边相切于E ,连接OE ,证明△AOE ∽△ACD 即可求出与AD 相切时的AO 值;如图2,设⊙O 与BC 边相切于F ,连接OF ,证明△COF ∽△CAB 即可求出BC 相切时的AO 值,最后即可得到结论.三、解答题(共7题;共70分)19.计算: 2713 + √5+2 ﹣( 12 )﹣2+|3﹣ √5 |. 【答案】 原式= (33)13 + √5−2 ﹣4+3﹣ √5=3+ √5−2 ﹣4+3﹣ √5=0.【考点】实数的运算,负整数指数幂的运算性质,分母有理化【解析】【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.20.解不等式组: {10x >7x +6x −1<x+73【答案】 解:由题意知: {10x >7x +6⋯①x −1<x+73⋯② , 解不等式①,移项得:3x >6,系数化为1得:x>2,解不等式②,去分母得:3x-3<x+7.移项得:2x<10,系数化为1得:x<5,∴原不等式组的解集是2<x <5.故答案为:2<x <5.【考点】解一元一次不等式组【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解. 21.如图,在直角梯形ABCD 中, AB //DC ,∠DAB =90°,AB =8,CD =5,BC =3 √5 .(1)求梯形ABCD 的面积;(2)联结BD , 求∠DBC 的正切值.【答案】 (1)过C 作CE ⊥AB 于E ,如下图所示:∵AB //DC,∠DAB=90°,∴∠D=90°,∴∠A=∠D=∠AEC=90°,∴四边形ADCE是矩形,∴AD=CE,AE=CD=5,∴BE=AB﹣AE=3.∵BC=3 √5,∴CE= √BC2−BE2=6,∴梯形ABCD的面积= 12×(5+8)×6=39,故答案为:39.(2)过C作CH⊥BD于H,如下图所示:∵CD //AB,∴∠CDB=∠ABD.∵∠CHD=∠A=90°,∴△CDH∽△DBA,∴CHAD =CDBD,∵BD= √AB2+AD2= √82+62=10,∴CH6=510,∴CH=3,∴BH= √BC2−CH2= √(3√5)2−32=6,∴∠DBC的正切值= CHBH = 36= 12.故答案为:12.【考点】勾股定理,矩形的性质,梯形,相似三角形的判定与性质【解析】【分析】(1)过C作CE⊥AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到CE=√BC2−BE2=6,即可求出梯形的面积;(2) 过C作CH⊥BD于H,根据相似三角形的性质得到CHAD =CDBD,根据勾股定理得到BD=√AB2+AD2=10,BH=√BC2−CH2=6即可求解.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【答案】(1)第七天的营业额是450×12%=54(万元),故这七天的总营业额是450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【考点】一元二次方程的实际应用-百分率问题【解析】【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.23.已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【答案】(1)∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CD //AB.∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE.∵CD //BH,∴∠H=∠DCF,∴∠BCE=∠H.且∠B=∠B,∴△BEC∽△BCH.(2)∵BE2=AB•AE,∴BEAB = AEEB,∵AG //BC,∴AEBE = AGBC,∴BEAB = AGBC,∵DF=BE,BC=AB,∴BE=AG=DF,即AG=DF.【考点】菱形的性质,相似三角形的判定与性质【解析】【分析】(1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CD//BH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.(2)由BE2=AB•AE,得到BEAB = AEEB,再利用AG//BC,平行线分线段成比例定理得到BEAB = AGBC,再结合已知条件即可求解.24.在平面直角坐标系xOy中,直线y=﹣12x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC= √5,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.【答案】(1)针对于直线y=﹣12x+5,令x=0,y=5,∴B(0,5),令y=0,则﹣12x+5=0,∴x=10,∴A(10,0),∴AB= √52+102=5 √5;(2)设点C(m,﹣12m+5).∵B(0,5),∴BC= √m2+(−12m+5−5)2= √52|m|.∵BC= √5,∴ √52|m|= √5 , ∴m=±2.∵点C 在线段AB 上,∴m=2,∴C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax 2+bx(a≠0)中,得 {100a +10b =04a +2b =4, ∴ {a =−14b =52, ∴抛物线y=﹣ 14 x 2+ 52 x ;(3)∵点A(10,0)在抛物线y=ax 2+bx 中,得100a+10b=0,∴b=﹣10a ,∴抛物线的解析式为y=ax 2﹣10ax=a(x ﹣5)2﹣25a ,∴抛物线的顶点D 坐标为(5,﹣25a),将x=5代入y=﹣ 12 x+5中,得y=﹣ 12 ×5+5= 52 ,∵顶点D 位于△AOB 内,∴0<﹣25a < 52 ,∴﹣ 110 <a <0.【考点】待定系数法求二次函数解析式,两点间的距离,勾股定理,二次函数的其他应用【解析】【分析】(1)先求出A ,B 坐标,即可得出结论;(2)设点C (m ,- 12 m+5),则BC= √52 |m ,进而求出点C (2,4),最后将点A ,C 代入抛物线解析式中,即可得出结论;(3)将点A 坐标代入抛物线解析式中得出b=-10a ,代入抛物线解析式中得出顶点D 坐标为(5,-25a ),即可得出结论. 25.如图,△ABC 中,AB =AC , ⊙O 是△ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:∠BAC =2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.【答案】 (1)连接OA ,如下图1所示:∵AB=AC,∴AB⌢= AC⌢,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.(3)如图3中,过A点作AE //BC交BD的延长线于E.则AEBC = ADDC= 23,且BC=2BH,∴AOOH = AEBH= 43,设OB=OA=4a,OH=3a.则在Rt△ABH和Rt△OBH中,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25 - 49a2=16a2﹣9a2,∴a2= 2556,∴BH= 5√24,∴BC=2BH= 5√22.故答案为:5√22.【考点】三角形内角和定理,等腰三角形的性质,垂径定理,平行线分线段成比例,数学思想【解析】【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3) 如图3中,作AE //BC交BD的延长线于E.则AEBC =ADDC=23,进而得到AOOH=AEBH=34,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.。
2024年上海市中考数学试卷正式版含答案解析
![2024年上海市中考数学试卷正式版含答案解析](https://img.taocdn.com/s3/m/ba6e3c48cd7931b765ce0508763231126edb7721.png)
绝密★启用前2024年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如果x>y,那么下列正确的是( )A. x+5≤y+5B. x−5<y−5C. 5x>5yD. −5x>−5y的定义域是( )2.函数f(x)=2−xx−3A. x=2B. x≠2C. x=3D. x≠33.以下一元二次方程有两个相等实数根的是( )A. x2−6x=0B. x2−9=0C. x2−6x+6=0D. x2−6x+9=04.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )A. 甲种类B. 乙种类C. 丙种类D. 丁种类5.四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6.在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )A. 内含B. 相交C. 外切D. 相离第II 卷(非选择题)二、填空题:本题共12小题,每小题4分,共48分。
7.计算:(4x 2)3= ______. 8.计算(a +b)(b −a)= ______. 9.已知√ 2x −1=1,则x = ______.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的______倍.(用科学记数法表示)11.若正比例函数y =kx 的图象经过点(7,−13),则y 的值随x 的增大而______.(选填“增大”或“减小”) 12.在菱形ABCD 中,∠ABC =66°,则∠BAC = ______°.13.某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为______万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有______个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC ⃗⃗⃗⃗⃗ =a ⃗ ,BE ⃗⃗⃗⃗⃗ =b ⃗ ,若AE =2EC ,则DC ⃗⃗⃗⃗⃗ = ______(结果用含a ,b ⃗ 的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR 增强讲解的人数约有______人.17.在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cos∠ABC=______.18.对于一个二次函数y=a(x−m)2+k(a≠0)中存在一点P(x′,y′),使得x′−m=y′−k≠0,则称2|x′−m|为该抛物线的“开口大小”,那么抛物线y=−12x2+13x+3“开口大小”为______.三、解答题:本题共7小题,共78分。
2023年上海市中考数学考试卷及答案解析
![2023年上海市中考数学考试卷及答案解析](https://img.taocdn.com/s3/m/8c29318988eb172ded630b1c59eef8c75fbf9503.png)
2023年上海市中考数学考试卷及答案解析一、选择题:(本大题共6题,每题4分,共24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上】1.下列运算正确的是()A.523a a a ÷=B.336a a a +=C.()235a a =D.a=【答案】A【解析】【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意;B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.2.在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A.2550y y ++= B.2550y y -+= C.2510y y ++= D.2510y y -+=【答案】D【解析】【分析】设221x y x-=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x -=,则原方程可变形为15y y +=,即2510y y -+=;故选:D .【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.3.下列函数中,函数值y 随x 的增大而减小的是()A.6y x= B.6y x =- C.6y x = D.6y x=-【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A 、6y x =,60k =>,y 随x 的增大而增大,不符合题意;B 、6y x =-,60k =-<,y 随x 的增大而减小,符合题意;C 、6y x =,60k =>,在每个象限内,y 随x 的增大而减小,不符合题意;D 、6y x =-,60k =-<,在每个象限内,y 随x 的增大而增大,不符合题意;故选:B .【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.4.如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【解析】【分析】根据折线统计图逐项判断即可得.【详解】解:A 、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B 、小车的车流量的平均数较大,则此项正确,符合题意;C 、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D 、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B .【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.5.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是()A.AB CDB.AD BC =C.A B ∠=∠D.A D ∠=∠【答案】C【解析】【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A : AB CD ,,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故A 不符合题意B : AD BC =,,AD BC AB CD=∥∴ABCD 为平行四边形而非矩形故B 不符合题意C : AD BC∥180A B ∴∠+∠=︒A B∠=∠∴90A B ∠=∠=︒AB CD= ∴AB ∥CD∴四边形ABCD 为矩形故C 符合题意D : AD BC∥180A B ∴∠+∠=︒A D∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6.已知在梯形ABCD 中,连接AC BD ,,且AC BD ⊥,设,AB a CD b ==.下列两个说法:①()2AC a b =+;②AD =则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误【答案】D【解析】【分析】根据已知及结论,作出图形,进而可知当梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,①()2AC a b =+;②AD =,其余情况得不出这样的结论,从而得到答案.【详解】解:过B 作BE CA ∥,交BC 延长线于E ,如图所示:若梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,∴四边形ACEB 是平行四边形,,CE AB AC BE ∴==,AB DC ∥,DAB CBA ∴∠=∠,AB AB =Q ,()SAS DAB CBA ∴△≌△AC BD ∴=,即BD BE =,又 AC BD ⊥,∴BE BD ⊥,在Rt BDE △中,BD BE =,,AB a CD b ==,则DE DC CE b a =+=+,)22AC BE DE a b ∴====+,此时①正确;过B 作BF DE ⊥于F ,如图所示:在Rt BFC △中,BD BE =,,AB a CD b ==,DE b a =+,则()1122BF FE DE a b ===+,()()1122FC FE CE a b a b a =-=+-=-,BC ∴===,此时②正确;而题中,梯形ABCD 是否为等腰梯形,并未确定;梯形ABCD 是AB CD 还是AD BC ∥,并未确定,∴无法保证①②正确,故选:D .【点睛】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,熟练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)【请将结果直接填入答题纸的相应位置上】7.分解因式:x 2-9=______.【答案】(x +3)(x -3)【解析】【详解】解:x 2-9=(x +3)(x -3),故答案为:(x +3)(x -3).8.化简:2211x x x---的结果为________.【答案】2【解析】【分析】根据同分母分式的减法计算法则解答即可.【详解】解:2211x x x ---()2122211x x x x--===--;故答案为:2.【点睛】本题考查了同分母分式减法计算,熟练掌握运算法则是解题关键.9.已知关于x2=,则x =________【答案】18【解析】【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.10.函数()123f x x =-的定义域为________.【答案】23x ≠【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由()123f x x =-可知:230x -≠,∴23x ≠;故答案为23x ≠.【点睛】本题主要考查函数及分式有意义的条件,熟练掌握函数的概念及分式有意义的条件是解题的关键.11.已知关于x 的一元二次方程2610ax x ++=没有实数根,那么a 的取值范围是________.【答案】9a >【解析】【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x 的一元二次方程2610ax x ++=没有实数根,∴243640b ac a ∆=-=-<,解得:9a >;故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.【答案】25【解析】【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为42105P ==,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.13.如果一个正多边形的中心角是20︒,那么这个正多边形的边数为________.【答案】18【解析】【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷,则3602018n =÷=,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.14.一个二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.【答案】21y x =-+(答案不唯一)【解析】【分析】根据二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,可确定a<0,对称轴02b x a=-=,0c >,从而确定答案.【详解】解:∵二次函数2y ax bx c =++的对称轴左侧的部分是上升的,∴抛物线开口向上,即a<0,∵二次函数2y ax bx c =++的顶点在y 轴正半轴上,∴02b a-=,即0b =,0c >,∴二次函数的解析式可以是21y x =-+(答案不唯一).【点睛】本题考查二次函数的性质,能根据增减性和二次函数图象与y 轴的交点确定系数的正负是解题的关键.15.如图,在ABC 中,点D ,E 在边AB ,AC 上,2,AD BD DE BC =∥,联结DE ,设向量AB a =,AC b = ,那么用a ,b 表示DE = ________.【答案】1133b a - 【解析】【分析】先根据向量的减法可得BC b a =-,再根据相似三角形的判定可得ADE ABC ,根据相似三角形的性质可得13DE BC =,由此即可得.【详解】解:∵向量AB a = ,AC b = ,BC AC AB b a ∴=-=- ,2AD BD = ,13AD AB ∴=,DE BC ∥,ADE ABC ∴ ,13DE AD BC AB ∴==,13DE BC ∴=,111333DE BC b a ∴==- ,故答案为:1133b a - .【点睛】本题考查了向量的运算、相似三角形的判定与性质,熟练掌握向量的运算是解题关键.16.垃圾分类(Refuse sorting ),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为________.【答案】1500吨【解析】【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解.【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷---=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨);故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.17.如图,在ABC 中,35C ∠=︒,将ABC 绕着点A 旋转(0180)αα︒<<︒,旋转后的点B 落在BC 上,点B 的对应点为D ,连接AD AD ,是BAC ∠的角平分线,则α=________.【答案】1103⎛⎫︒⎪⎝⎭【解析】【分析】如图,AB AD =,BAD ∠=α,根据角平分线的定义可得CAD BAD α∠=∠=,根据三角形的外角性质可得35ADB α∠=︒+,即得35B ADB α∠=∠=︒+,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD =,BAD ∠=α,∵AD 是BAC ∠的角平分线,∴CAD BAD α∠=∠=,∵35ADB C CAD α∠=∠+∠=︒+,AB AD =,∴35B ADB α∠=∠=︒+,则在ABC 中,∵180C CAB B ∠+∠+∠=︒,∴35235180αα︒++︒+=︒,解得:1103α⎛⎫=︒ ⎪⎝⎭;故答案为:1103⎛⎫︒⎪⎝⎭【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.18.在ABC 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B 过点A ,E 过点D ,若B 与E 有公共点,那么E 半径r 的取值范围是________.1010r <≤【解析】【分析】先画出图形,连接BE ,利用勾股定理可得294BE r =+,210AC =,从而可得1010r <≤,再根据B 与E 有公共点可得一个关于r 的不等式组,然后利用二次函数的性质求解即可得.【详解】解:由题意画出图形如下:连接BE ,B 过点A ,且7AB =,B ∴e 的半径为7,E 过点D ,它的半径为r ,且CD DE =,2CE CD DE r ∴=+=,3,90BC C =∠=︒,BE ∴==,AC ==,D 在边AC 上,点E 在CA 延长线上,CD AC CE AC ≤⎧∴⎨>⎩,即2r r ⎧≤⎪⎨>⎪⎩,r <≤B 与E 有公共点,AB DE BE AB DE ∴-≤≤+,即77r r ≤+-≤⎪⎩①,不等式①可化为2314400r r --≤,解方程2314400r r --=得:2r =-或203r =,画出函数231440y r r =--的大致图象如下:由函数图象可知,当0y ≤时,2023r -≤≤,即不等式①的解集为2023r -≤≤,同理可得:不等式②的解集为2r ≥或203r ≤-,则不等式组的解集为2023r ≤≤,又r <≤,半径r的取值范围是r <≤,故答案为r <≤.【点睛】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.2133-⎛⎫-+ ⎪⎝⎭【答案】6-【解析】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=+-+-6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.20.解不等式组36152x x x x >+⎧⎪⎨<-+⎪⎩【答案】1033x <<【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:36152x x x x >+⎧⎪⎨<-+⎪⎩①②,解不等式①得:3x >,解不等式②得:103x <,则不等式组的解集为1033x <<.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.21.如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【解析】【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【小问1详解】解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.【小问2详解】解:如图,过点C 作CE AB ⊥于点E,O 的半径为5,5OB ∴=,12OC OB = ,31522BC OB ∴==,4cos 5ABC ∠= ,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,92CE ==,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900(2)0.90.27y x =-(3)1.00【解析】【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【小问1详解】解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;【小问2详解】解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;【小问3详解】解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ∠∠,AC AD =(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行线的性质可得DAE ACF ∠=∠,再根据三角形的全等的判定可得DAE ACF ≅ ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC DEA ∠=∠,从而可得AFB CED ∠=∠,再根据相似三角形的判定可得ABF CDE ,然后根据相似三角形的性质即可得证.【小问1详解】证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.【小问2详解】证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠,在ABF △和CDE 中,AFB CED ABF CDE ∠=∠⎧⎨∠=∠⎩,ABF CDE ∴ ,AF BF CE DE∴=,由(1)已证:DE AF =,AF BF CE AF∴=,2AF BF CE =∴⋅.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.24.在平面直角坐标系xOy 中,已知直线364y x =+与x 轴交于点A ,y 轴交于点B ,点C 在线段AB 上,以点C 为顶点的抛物线M :2y ax bx c =++经过点B .(1)求点A ,B 的坐标;(2)求b ,c 的值;(3)平移抛物线M 至N ,点C ,B 分别平移至点P ,D ,联结CD ,且CD x ∥轴,如果点P 在x 轴上,且新抛物线过点B ,求抛物线N 的函数解析式.【答案】(1)()8,0A -,()0,6B (2)32b =,6c =(3)(2316y x =-或(2316y x =+【解析】【分析】(1)根据题意,分别将0x =,0y =代入直线364y x =+即可求得;(2)设3,64C m m ⎛⎫+ ⎪⎝⎭,得到抛物线的顶点式为()2364y a x m m +-+=,将()0,6B 代入可求得34m a =-,进而可得到抛物线解析式为2362y ax x =++,即可求得b ,c ;(3)根据题意,设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,根据平移的性质可得点B ,点C 向下平移的距离相同,即列式求得4m =-,316a =,然后得到抛物线N 解析式为:()2316y x p =-,将()0,6B 代入可得p =±即可得到答案.【小问1详解】解:∵直线364y x =+与x 轴交于点A ,y 轴交于点B ,当0x =时,代入得:6y =,故()0,6B ,当0y =时,代入得:8x =-,故()8,0A -,【小问2详解】设3,64C m m ⎛⎫+ ⎪⎝⎭,则可设抛物线的解析式为:()2364y a x m m +-+=,∵抛物线M 经过点B ,将()0,6B 代入得:23664am m ++=,∵0m ≠,∴34am =-,即34m a =-,∴将34m a =-代入()2364y a x m m +-+=,整理得:2362y ax x =++,故32b =,6c =;【小问3详解】如图:∵CD x ∥轴,点P 在x 轴上,∴设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,∵点C ,B 分别平移至点P ,D ,∴点B ,点C 向下平移的距离相同,∴3366644m m ⎛⎫+=-+ ⎪⎝⎭,解得:4m =-,由(2)知34m a =-,∴316a =,∴抛物线N 的函数解析式为:()2316y x p =-,将()0,6B 代入可得:p =±∴抛物线N 的函数解析式为:(2316y x =-或(2316y x =+.【点睛】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,平移的性质,二次函数的图象和性质等,解题的关键是根据的平移性质求出m 和a 的值.25.如图(1)所示,已知在ABC 中,AB AC =,O 在边AB 上,点F 为边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG 是以OB 为腰的等腰三角形,且AO OF =,求OG OD 的值.【答案】(1)见解析(2)1+(3)12【解析】【分析】(1)根据等边对等角得出B C ∠=∠,ODB B ∠=∠,等量代换得出C ODB ∠=∠,则OD AC ∥,根据F 是OB 的中点,OG DG =,则FG 是OBD 的中位线,则FG BC ∥,即可得证;(2)设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a ==,由(1)可得OD AC ∥则AEO DOE α∠=∠=,等量代换得出OFE AEO α∠=∠=,进而证明AEO AFE ∽,得出2AE AO AF =⋅,在Rt AEO △中,222AE EO AO =-,则22EO AO AO AF -=⨯,解方程即可求解;(3)OBG 是以OB 为腰的等腰三角形,分为①当OG OB =时,②当BG OB =时,证明BGO BPA ∽,得出2=3OG AP ,设2,3OG k AP k ==,根据OG AE ∥,得出FOG FAE ∽,可得24AE OG k ==,PE AE AP k =-=,连接OE 交PG 于点Q ,证明QPE QGO ∽在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,得出14PQ QE OQ BQ ==,可得PQE OQB ∽,根据相似三角形的性质得出2a k =,进而即可求解.【小问1详解】证明:∵AC AB=∴ABC C∠=∠∵OD OB=∴ODB ABC ∠=∠,∴C ODB∠=∠∴OD AC ∥,∵F 是OB 的中点,OG DG =,∴FG 是OBD 的中位线,∴FG BC ∥,即GE CD ,∴四边形CEDG 是平行四边形;【小问2详解】解:∵,4OFE DOE AO ∠=∠=,点F 边OB 中点,设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a==由(1)可得OD AC∥∴AEO DOE α∠=∠=,∴OFE AEO α∠=∠=,又∵A A∠=∠∴AEO AFE ∽,∴AE AOAF AE=即2AE AO AF =⋅,∵90A ∠=︒,在Rt AEO △中,222AE EO AO =-,∴22EO AO AO AF -=⨯,∴()()222444a a -=⨯+解得:1332a =或1332a -=(舍去)∴21OB a ==;【小问3详解】解:①当OG OB =时,点G 与点D 重合,舍去;②当BG OB =时,如图所示,延长BG 交AC 于点P ,∵点F 是OB 的中点,AO OF =,∴AO OF FB ==,设AO OF FB ==a =,∵OG AC∥∴BGO BPA ∽,∴2233OG OB a AP AB a ===,设2,3OG k AP k ==,∵OG AE∥∴FOG FAE ∽,∴122OG OFaAE AF a ===,∴24AE OG k ==,∴PE AE AP k =-=,连接OE 交PG 于点Q ,∵OG PE ∥,∴QPE QGO∽∴22GO QG OQ k PE PQ EQ k ====,∴12,33PQ a QG a ==,24,33EQ a OQ a==在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,∴14PQ QEOQ BQ ==,又PQE BQO ∠=∠,∴PQE OQB ∽,∴14PE OB =,∴124k a =,∴2a k =,2,2OD OB a OG k === ,∴2122OG k k OD a a ===.【点睛】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定,第三问中,证明PQE OQB ∽是解题的关键.。
2024年上海市中考数学真题卷及答案解析
![2024年上海市中考数学真题卷及答案解析](https://img.taocdn.com/s3/m/e96c5aa08ad63186bceb19e8b8f67c1cfbd6ee5e.png)
2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B. 290x -=C. 2660x x -+= D. 2690x x -+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯.形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7 计算:()324x =___________.8 计算()()a b b a +-=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人...17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|1|24(1-++--.20. 解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠值.22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三为的角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示);②小平行四边形的底、高和面积(结果用h 表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =.24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键..【详解】解:函数2()3xf x x -=-的定义域是30x -≠,解得3x ≠,故选:D .3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B. 290x -=C. 2660x x -+= D. 2690x x -+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B 【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形 B. 矩形C. 直角梯形D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x=___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8. 计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9. 1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小.【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=,解得:137k =-,又1307k =-< ,y ∴的值随x 的增大而减小.故答案为:减小.12. 菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 菱形,∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒,在是故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个,∵摸到绿球的概率是35,∴球的总数为3355x x ÷=个,∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=-=-,∴23DC a b =- ,故答案为:23a b - .16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解,∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=,由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=,∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人),故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.【分析】先化简,再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【分析】根据中位数和众数的概念解答.【解答】解:对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选:D.5.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.8.(4.00分)计算:(a+1)2﹣a2=2a+1.【分析】原式利用完全平方公式化简,合并即可得到结果.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+19.(4.00分)方程组的解是,.【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【解答】解:②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为:,.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是0.8a 元.(用含字母a的代数式表示).【分析】根据实际售价=原价×即可得.【解答】解:根据题意知售价为0.8a元,故答案为:0.8a.11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是0.25.【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25,故答案为:0.25.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而减小.(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为+2.【分析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.【解答】解:如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴==,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是540度.【分析】利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.【解答】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.【分析】先根据要求画图,设矩形的宽AF=x,则CF=x,根据勾股定理列方程可得结论.【解答】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,,解得:x=或0(舍),即它的宽的值是,故答案为:.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:20.(10.00分)先化简,再求值:(﹣)÷,其中a=.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当a=时,原式===5﹣2.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而B E⊥EP,∴EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长;(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标.【解答】解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,=AC•DF=××(1﹣)=.∴S△ACD。