现代控制理论6状态观测器设计
现代控制理论 状态反馈与状态观测器
五、带观测器的状态反馈系统 • 在状态反馈中,不采样原系统的状态进行反 馈而采用状态观测器估计的状态进行反馈, 其结构图如下图所示.
• 状态估计器
x ( A GC ) x Bu Gy ˆ ˆ ˆ y Cx
• 原系统
x Ax Bu ˆ x Ax Bkx Bv y Cx ˆ x ( A Bk ) x Bk ( x x) Bv u v kx ˆ
• 传函不变,即
y C (sI A Bk ) B.v
1
• 显然系统的特性由矩阵的特征多项式
ˆ A Bk A 0 A GC Bk
决定.
• 由
ˆ det[ I A] det( I A Bk ) det( A GC ) 0
• 注意上述方法仅适用于SISO系统.
4.几点说明
(1).对SISO系统来说,状态反馈只改变极点位 臵,不影响零点. (2).由于改变了极点,因此可能出现零极点对 消,从而影响系统的可观性.
(3).从实现的角度,状态反馈比输出反馈 困难,复杂. (4)对SISO系统来说,极点配臵只改变了极 点在S平面上的位臵,显然不采用这种方法 难于达到系统动静性能的一致. (5).对MIMO来说,极点配臵的方法与SISO 方法是一致的,但SISO的k阵是唯一的,而 MIMO的k阵是非唯一的.
• 系统的状态估计器极点可任意配臵的充要 条件是:该系统的状态是可观的.
(3).状态估计器的设计方法. • 仿照状态反馈的极点配臵设计方法,只需先 进行可控性检验,改成可观性检查即可,其余 步骤相同.
四、降维观测器设计
• 一般情况下观测器是建立在对原系统模拟基 础上的,因而其维数和受控系统维数是相同 的,称为全维观测器(或估计器)。
现代控制理论状态反馈和状态观测器的设计实验报告
本科实验报告课程名称:现代控制理论实验项目:状态反馈和状态观测器的设计实验地点:中区机房专业班级:自动化学号:学生姓名:指导教师:年月日现代控制理论基础一、实验目的(1)熟悉和掌握极点配置的原理。
(2)熟悉和掌握观测器设计的原理。
(3)通过实验验证理论的正确性。
(4)分析仿真结果和理论计算的结果。
二、实验要求(1)根据所给被控系统和性能指标要求设计状态反馈阵K。
(2)根据所给被控系统和性能指标要求设计状态观测器阵L。
(3)在计算机上进行分布仿真。
(4)如果结果不能满足要求,分析原因并重复上述步骤。
三、实验内容(一)、状态反馈状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状态反馈不但可以实现闭环系统的极点任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。
1.全部极点配置给定控制系统的状态空间模型,则经常希望引入某种控制器,使得该系统的闭环极点移动到某个指定位置,因为在很多情况下系统的极点位置会决定系统的动态性能。
假设系统的状态空间表达式为(1)其中 n m C r n B n n A ⨯⨯⨯::;:;: 引入状态反馈,使进入该系统的信号为Kx r u -=(2)式中r 为系统的外部参考输入,K 为n n ⨯矩阵. 可得状态反馈闭环系统的状态空间表达式为(3)可以证明,若给定系统是完全能控的,则可以通过状态反馈实现系统的闭环极点进行任意配置。
假定单变量系统的n 个希望极点为λ1,λ2, …λn, 则可以求出期望的闭环特征方程为=)(*s f (s-λ1)(s-λ2)…(s-λn)=n n n a s a s +++-Λ11这是状态反馈阵K 可根据下式求得K=[])(100*1A f U c -Λ(4)式中[]bA Ab b U n c 1-=Λ,)(*A f是将系统期望的闭环特征方程式中的s 换成系统矩阵A 后的矩阵多项式。
例1已知系统的状态方程为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•111101101112 采用状态反馈,将系统的极点配置到-1,-2,-3,求状态反馈阵K..其实,在MATLAB的控制系统工具箱中就提供了单变量系统极点配置函数acker(),该函数的调用格式为K=acker(A,b,p)式中,p为给定的极点,K为状态反馈阵。
江苏大学线性系统理论(现代控制理论)考试必备--第6章.答案
=
C R
P1
CP1
RP
1
I qq 0
0 I ( n q )( n q )
再来讨论(n-q)维状态观测器的构建,用线性变换 x = Px,
将方程(1)变换成
x = PAP-1x + PBu y = CP-1x = CP-1x = Iqq 0 x
记 : A=PAP-1 B=PB
C CP1
以足够快的速度趋近于零,也就是说,不管状态观测器的
初始状态如何,状态观测器所重构的状态变量 xˆ 终将逐渐
趋近于实际状态 x ,所以,这样的状态观测器也称之为渐 进状态观测器。该性质也使其在实际使用中毋需设置初始 状态。
第6章 状态观测器
江苏大学电气学院
值得一提的是,虽然 (A-MC) 特征值的负实部离虚
i (A C M ) i , i =1,2, , n
求出M后,即可构成闭环状态观测器:
xˆ = (A - MC)xˆ + My + Bu
(8)
第6章 状态观测器
江苏大学电气学院
全维状态观测器的另一种设计方法是,先对被观测系
统进行非奇异变换 z=T,x 再从形式上列出类似于式(8)
的观测器方程。
B
x
x C
y
A
xˆ 0
B
xˆ
xˆ C
yˆ
A
第6章 状态观测器
江苏大学电气学院
这样的观测器称为开环状态观测器,从开环状态观测
器中取出 xˆ 可作为 x 的估计值近似替代,当然希望 xˆ 与x 是相等的。用 x 来表示 x 和 xˆ 的偏差,即 x x xˆ , 下面来简单分析估计偏差 x的特性。式(1)和式(2)相减得
《现代控制理论》线性定常系统的反馈结构及状态观测器
求解状态反馈阵k 的步骤:
1) 校验系统的可控性
令
计算k
小结
B
I s
A
x
u
k
v
用状态反馈配置系统闭环极点
结论:1.状态反馈不改变系统的可控性,但可改变可观测性.
2.状态反馈不改变系统的闭环零点。
状态反馈的影响
二、状态反馈对系统零点和可观测性的影响
【例】 系统S:
此时系统可控可观
1).复合系统结构图(状态反馈+状态观测器)
输出内反馈及状态可观测性
续
状态反馈
状态观测器
复合系统
选状态变量
即:
y=Cx
输出内反馈及状态可观测性
2) 传递函数矩阵
结论:
状态观测器不影响传递函数
输出内反馈及状态可观测性
3)特征多项式
特征多项式
结论
1.引入观测器提高了系统的阶次(由n 2n )
2.整个闭环系统特征值由状态反馈下(A - BK)特征值和状态观测器下特征值(A-HC)组合而成,且相互独立。即观测器的引入不影响已配置好的系统特征值,而状态反馈也不影响观测性的特征值,这就是分离定理。
输出内反馈及状态可观测性
3.状态观测器的引入,不影响传递函数阵.且趋于 x(t) 的速度,取决于观测器的特征值。
分离定理
4).分离定理
定理: 若系统{A,B,C }可控又可观,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立运行,即K 和H 值的设计可分别进行,有时把K 和H 统称控制器. 一般观测器的响应速度应比状态反馈的响应速度快一些.
状态观测器概述
二、状态观测器概述
利用状态反馈能任意配置闭环系统的极点及有效改善系统性能,然而系统的状态变量并不能用物理方法测量.因此要使状态反馈在工程上实现就必须解决这个问题. 解决问题的方法之一就是重构系统的状态.并用这个重构状态代替原系统实际状态,实现状态反馈.
现代控制工程-第6章状态反馈控制与观测器设计
设状态反馈阵为
K k1
状态反馈系统的传递函数为
G( s)
c n 1 s n 1 c1 s c 0 s n (a n 1 k n ) s n 1 (a1 k 2 ) s (a 0 k1 )
结论:引入状态反馈改变了系统的极点,但没有改变零点。
D
u r Hy
r
u
B
x
x
y
C
如果没有直接传输,则
x ( A BHC) x Br y Cx
A
H
输出反馈的闭环传递函数阵为
图8.3 多输入系统的输出反馈
GH (s) C(sI A BHC) 1 B
7
6.1.3 状态反馈系统的能控性与能观性
1.状态反馈系统的能控性
令闭环特征多项式等于期望的闭环特征多项式,即令它们的 对应系数值相等,得到两个联立方程
1 (Tk 2 k1T 2 2) a1 2
1 k1T 2 Tk 2 1 a 0 2
解得状态反馈系数为
k1 1 T2 (1 a1 a0 )
1 k2 (3 a1 a 0 ) 2T
11
6.2.2 单输入系统的极点配置方法
对于线性(连续或离散)单输入系统 A, b,,按指定极点配置 c 设计状态反馈增益矩阵的基本方法,是选择状态反馈增益矩 阵使系统的特征多项式det[ I ( A bK )] 等于期望的特征多项 λ 式 f * ( ) ,即 det[ I ( A bK)] f * ( ) λ 例6.3 计算系统的状态反馈增益矩阵。
8
6.1.4 状态反馈对传递函数的影响
现代控制理论 状态反馈与状态观测器
• 所谓状态观测器是物理上可以实现的动力 学系统,它在被观测系统输入量和输出量的 激励下,产生一组逼近于被观测系统的状态 变量的输出.
• 这组输出的状态变量便可作为被观测系统 状态变量的估计值.
2.极点配置条件
• 若被控系统0(A, B) 是状态完全能控的,那么 反馈系统的极点必是可以任意配置的,或者 说,能使闭环系统极点任意配置的条件是被 控系统完全可控.
• 注意:
(1).对不可控的系统则不可能采用状态反馈 方法重新配置所有极点. (2).状态反馈可改变系统的极点,但不改变零 点.
• 以上是状态观测器的整个设计思想和目的.
• 估计的模型
xˆAxˆBuG(yCxˆ) (2) (AGC)xˆBuGy
(1).G的选择原则.
由(1)和(2)建立误差方程 定义 exxˆ 则 exxˆ(AG C)e显然误差e的特性是由
(A-GC)的特征值决定,显然G选择的原则是使 e tt1 0,t1 足够地小,从而G的选择也是使 A-GC的特征根按要求放在合适的位置上.
自动控制原理Ⅱ
第六章 状态反馈与状 态观测器
主要讲述:
1).状态反馈. 2).极点配置. 3).状态观测器.
一.系统的状态反馈
• 对于方程
x Ax Bu
y
Cx
• 系统的性质完全是由A决定的,因此要改变 系统的性质,只需改变A的形式.
• 从数学上来讲,即构造u,从而导致下列方程 成立
四、降维观测器设计
x Ax Br
y
Cx
• A 是满足要求的方阵
现代控制实验状态反馈器和状态观测器的设计
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
现代控制理论习题之状态观测设计
对应于能观标准型的观测器矩阵:
L
=
⎢⎡l1
⎤ ⎥
⎣l2 ⎦
=
⎡a0
⎢ ⎣
a1
* −a0 ⎤
*
−a1
⎥ ⎦
=
⎡2r 2 − 0⎤
⎢
⎥
⎢⎣ 3r − 0 ⎥⎦
=
⎡2r 2 ⎤ ⎢⎥ ⎢⎣ 3r ⎥⎦
对应于原系统的观测器矩阵:
P1
=
V0
−1
⎡0⎤ ⎢⎣1⎥⎦
=
⎡0⎤ ⎢⎣1⎥⎦,
Po = [p1
Ap1
]
=
系统能观,可设计观测器。
求希望特征多项式:
f * (s) = (s + 3)(s + 4)(s + 5) = s3 + 12s 2 + 47s + 60
求观测器特征多项式:
f (s) = sI − A + LC
计算观测器系数矩阵: 方法二:
⎡ − 6.5 ⎤
令
f
*(s) =
f
(s)
得
L
=
⎢ ⎢
15.5
A
= T −1AT
=
⎢ ⎢
0
−1
⎢⎣ 1 −1
− 4⎤ − 1⎥⎥ − 1⎥⎦
=
⎡ ⎢ ⎣
A11 A21
A12
⎤ ⎥,
A22 ⎦
A11 = −1,
A12 = [− 2
− 4],
A21
=
⎡0⎤ ⎢⎣1⎥⎦,
A22
=
⎡−1 ⎢⎣− 1
− 1⎤ − 1⎥⎦
⎡2⎤ B = T −1B = ⎢⎢0⎥⎥,
⎢⎣1⎥⎦
第6章状态反馈控制与观测器设计
⎡ c ⎤ ⎡2 rank ⎢ ⎥ = rank ⎢ ⎣ cA ⎦ ⎣0
能观性判别矩阵满秩
0⎤ = 2= n ⎥ 2⎦
所以,系统可观,状态观测器极点可以任意配置。
22
6.3.1 全维状态观测器设计
设 K = ⎡ Ke1 ⎤ e ⎢ ⎥ K ⎣ e2 ⎦
⎡ −2Ke1 1 ⎤ ⎡ 0 1 ⎤ ⎡Ke1 ⎤ 则 A−Kec = ⎢ −⎢ ⎥[ 2 0] = ⎢ ⎥ ⎥ 2 2 3 − − − K K 2 3 − − ⎣ ⎦ ⎣ e2 ⎦ e2 ⎣ ⎦
要实现状态反馈,需要测量到每个状态量,并可以作为反馈信 号。但有些状态很难测量,或者受到经济上和使用上的限制, 不能设置太多的传感器,有些状态变量没有物理意义而无法测 量。因此,需要设计状态观测器估计实际状态,实现状态反馈。 状态观测器是指一个在物理上可以实现的动态系统,它在被 观测系统的输入和输出的驱动下,产生一组逼近于被观测系统 的状态变量。状态观测器所输出的一组状态变量可以作为被观 测系统的状态估计值 , 因此状态观测器又称为状态估计器 ,或 状态重构器。 下面只讨论无噪声干扰下的状态观测器设计问题,并详细介绍 单输入单输出系统的状态观测器的设计原理和设计步骤。
~ ˆ 令 x = x−x
= ( A − K e c) x 则x
其解为 ~ x (t ) = e ( A− K ec )t ⋅ ~ x (t 0 ) 可知,当选取 K e ,使得 A − K e c 所有特征值具有负实部则有: 若观测器和系统的初始状态相同,观测器的状态与系统实 际状态完全相同; 若观测器初始状态与系统初始状态不相等,观测器状态以 ~ 指数收敛到系统的实际状态, 即 lim x (t ) = 0 。因此,这 种观测器称为渐近状态观测器。
现代控制理论_状态观测器(PDF)
x
ˆx是否与一样?
(2)闭环状态观测器
如果利用输出对状态误差进行校正,构成
闭环状态观测器。
&
[]
ˆˆ
=−++
x A H C x bu H y
两个输入:
控制作用u
待观测系统的输出:y
待观测系统的输出
一个输出:
状态估计值:ˆx
六、带状态观测器的状态反馈系统
原系统
-ˆx
反馈是否与
反馈一样?
x H 与K 阵的求法?
状态观测器
反馈:ˆx ˆ()()
()x A bk x bv bk x x A bk x bv bkx
=−++−=−++&%()x
A H C x =−&%%带状态观测器的状态反馈系统
分离定理
如果系统(A,B,C)可控可观,则系统的状态反馈矩阵K和观测器反馈矩阵H可分别进行设计。
这个性质成为闭环极点设计的分离性。
例:010
()()()
05100
t t u t
⎡⎤⎡⎤
=+
⎢⎥⎢⎥
−
⎣⎦⎣⎦
x x
&
[]
()10()
y t x t
=
X不可测量,设计状态反馈,期望极点为
λ1=-7.07+j7.07
=-7.07-j7.07
λ27.07j7.07。
现代控制理论-第六章_状态反馈与状态观测器-562
6.2 极点配置问题
例6.3 考虑线性定常系统
x = Ax + Bu
0
1
0
0
A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制 u = v - Kx
希望使该系统的闭环极点为s = -2±j4和s = -10。 试设计状态反馈增益矩阵K。
24
6.2 极点配置问题
0 1
0
0
A 0
0
1
,
2、以上原理同样适用于多输入系统,但具体设 计较困难。
22
6.2 极点配置问题
3、对于低阶系统(n≤3),求解状态反馈
阵K时,并不一定要进行能控标准型的变 换; 可以直接计算状态反馈后的特征多项式 (其系数均为k的函数),然后与闭环系 统希望的特征多项式的系数相比较,确定 出矩阵K——另一种解题思路
状态微分 x 处
u
B
x
x
y
1/s
C
-+
.
x
A
.
x
h
.
x Ax Bu hy, y Cx
.
x (A hC)x Bu, y Cx 28
6.2 极点配置问题
2. 输出反馈至参考输入的极点配置:
v
u B
x
x
1/s
C
y
-
+
A
f
引入输出反馈:
x (A BfC)x Bv, y Cx
29
6.2 极点配置问题 注意:关于输出反馈,有如下定理: • 定理:对单入单出系统,即使完全能控,
f () ( 2)( 1 j)( 1 j) 3 42 6 4 19
现代控制理论6状态观测器设计ppt课件
C 0
0 0 2
1
1
,B
1
2 0
1
0 1
设计观测器,使其极点配置在-3,-4,-5上。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 例:设系统的系数矩阵为:
1
A
3
0
• 对于完全能控的系统,状态反馈可任意 配置闭环系统的极点,从而使得闭环系 统具有期望的稳态和动态性能。
• 条件:所有的状态变量可测。 • 实际系统,状态变量未必都可以直接测
量到。 • 状态能观性说明:系统是状态能观的,
则系统的任意状态信息必定在系统的输 出中得到反映。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 问题:如何用系统的外部输入输出信息 来确定系统的内部状态?
• 观测器设计问题 • 观测器的输出就是系统状态的估计值。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
6.1 观测器设计
• 已知系统模型
问题:如何从系统的输入输出数据得到系 统的状态?
现代控制理论第六章
的列向量可以由 [ B AB A B] 的列向量 的线性组合表示。这意味着
rankuc ' ≤ rankuc
n1
系统 也可看成是由系统 K 经过状态反馈
( K,I ) 而获得的,因此,同理有
rankuc rankuc '
所以系统 K 的能控性等价于系统 的能控性,
于是定理得证。
例 6.1.1
系统
1 2 0 & : x x 1 u 3 1
y [1 2]x
完全能控能观,引入反馈
u [3 1]x V
则闭环系统 K的状态空间表达式为
1 2 0 & K : x x 1 v 0 0
1 式(6.3.2)可写为 y(s) G(s)u(s) C (sI A) Bu (s)
y1 ( s ) g11 ( s )u1 ( s ) g12 ( s )u2 ( s ) L L g1 p ( s )u p ( s ) y2 ( s ) g 21 ( s )u1 ( s ) g 22 ( s )u2 ( s ) L L g 2 p ( s )u p ( s ) M M yq ( s ) g q1 ( s )u1 ( s ) g q 2 ( s )u2 ( s ) L L g qp ( s )u p ( s )
y [1 2]x
不难判断,系统 K 仍然是能控的,但已不再 能观测。
6.2 极点配置
6.2.1 极点配臵定理 定理 6.2.1 给定系统
:
& x Ax Bu y Cx Du
u v kx
任意配臵极点的充
通过状态反馈
要条件 完全能控。
现代控制理论-011(第6章状态观测器设计)
Modern Control Theory (11)
俞
立
浙江工业大学 信息与控制研究所
第6章 状态观测器设计
已知系统模型
⎧ x = Ax + Bu ⎨ ⎩ y = Cx
问题:如何从系统的输入输出数据得到系统的状态?
x (t ) = e x (0) + ∫ e A(t −τ ) Bu(τ )dτ
状态估计的开环处理: 问题:不能处理模型 不确定性和扰动! 初始状态未知!
x = Ax + Bu
x
~ x
C
y
u
~ = A~ + Bu x x
C
~ y
应用反馈校正思想来实现状态重构。 通过误差来校正系统:状态误差,输出误差。
x = Ax + Bu y = Cx
u L
-
y
~ = A~ + Bu x x
⎡ 0 1⎤ A=⎢ ⎥, ⎣ − 1 0⎦ ⎡1⎤ B = ⎢ ⎥, ⎣0 ⎦ C = [1 0]
要求设计一个观测器,使得观测器两个极点都是-2。
检验系统的能观性:
⎡ C ⎤ ⎡1 0⎤ Γo [ A, C ] = ⎢ ⎥ = ⎢ CA⎦ ⎣0 1⎥ ⎦ ⎣
系统是能观的,因此问题可解。 要求确定观测器增益矩阵
x c = Ac x c + Bc y u = C c x c + Dc y
其中:x c ∈ R nc 是控制器的状态向量,Ac , Bc , C c 和 Dc 是 待定的控制器参数。 若 n c = 0 ,则相应的控制器是静态的,具有形式:
u = Dc y
静态输出反馈控制器。 特点:设计参数多,可达到更多性能; 物理意义不明显; 设计更加复杂。
《现代控制理论》线性定常系统的反馈结构及状态观测器
《现代控制理论》线性定常系统的反馈结构及状态观测器现代控制理论中,线性定常系统的反馈结构及状态观测器是控制系统中的关键部分。
反馈结构和状态观测器的设计对于控制系统的性能和稳定性有着重要的影响。
本文将从反馈结构和状态观测器的定义、功能和设计方法等方面进行详细介绍。
首先,我们来介绍反馈结构。
反馈结构是控制系统中最常见的一种控制方式,通过将系统的输出信号与期望值进行比较,计算出控制量,并作为输入信号对系统进行控制,以实现对系统输出的调节。
在线性定常系统中,反馈结构一般由比例控制器、积分控制器和微分控制器组成,通过调节这些控制器的参数,可以实现对系统性能的优化。
其中,比例控制器用于调节系统的过渡过程,积分控制器用于消除系统的稳态误差,微分控制器用于抑制系统的振荡和提高系统的动态响应速度。
通过适当选择和调节这些控制器的参数,可以使系统的性能指标如超调量、响应时间等得到满足。
接下来我们来介绍状态观测器。
状态观测器是用于估计和反馈系统状态的一种装置,通过测量系统的输出信号和输入信号,以及系统的数学模型,来估计系统的状态。
状态观测器在控制系统中起到了关键的作用,可以实现对系统状态的估计和补偿,从而提高系统的稳定性和性能。
在线性定常系统中,状态观测器一般由状态估计器和状态补偿器组成。
状态估计器根据系统的输出信号和输入信号,以及系统的数学模型,通过运算得到系统的状态估计值,以反馈给系统进行控制。
状态补偿器则根据系统的状态估计值和期望值,以及系统的数学模型,通过运算得到控制量,以控制系统的输出。
关于反馈结构和状态观测器的设计方法,一般可以采用经典控制理论方法和现代控制理论方法。
经典控制理论方法主要包括根轨迹法、频率响应法等。
根轨迹法可以通过绘制系统的根轨迹图来分析系统的稳定性和性能,并通过调节控制器参数来满足系统的性能指标。
频率响应法则通过分析系统的频率特性来设计合适的频率补偿器,以达到系统的优化。
现代控制理论方法则主要包括状态空间法和最优控制方法。
现代控制理论状态反馈和状态观测器的设计实验报告
现代控制理论状态反馈和状态观测器的设计实验报告本次实验是关于现代控制理论中状态反馈与状态观测器的设计与实现。
本次实验采用MATLAB进行模拟与仿真,并通过实验数据进行验证。
一、实验目的1、学习状态反馈控制的概念、设计方法及其在实际工程中的应用。
3、掌握MATLAB软件的使用方法。
二、实验原理1、状态反馈控制状态反馈控制是指将系统状态作为反馈控制的输出,通过对状态反馈控制器参数的设计,使系统的状态响应满足一定的性能指标。
状态反馈控制的设计步骤如下:(1) 确定系统的状态方程,即确定系统的状态矢量、状态方程矩阵和输出矩阵;(2) 设计状态反馈控制器的反馈矩阵,即确定反馈增益矩阵K;(3) 检验状态反馈控制器性能是否满足要求。
2、状态观测器(1) 确定系统的状态方程;(2) 设计观测器的状态估计矩阵和输出矩阵;(3) 检验观测器的状态估计精度是否符合标准。
三、实验内容将简谐信号加入单个质点振动系统,并对状态反馈控制器和状态观测器进行设计与实现。
具体实验步骤如下:1、建立系统状态方程:(1)根据系统的物理特性可得单自由度振动系统的运动方程为:m¨+kx=0(2)考虑到系统存在误差、干扰等因素,引入干扰项,得到系统状态方程:(3)得到系统状态方程为:(1)观察系统状态方程,可以发现系统状态量只存在于 m 行 m 到 m 行 n 之间,而控制量只存在于 m 行 1 到 m 行 n 之间,满足可控性条件。
(2)本次实验并未给出状态变量的全部信息,只给出了系统的一维输出,因此需要设计状态反馈器。
(3)我们采用极点配置法进行状态反馈器设计。
采用 MATLAB 工具箱函数,计算出极点:(4) 根据极点求解反馈矩阵,得到状态反馈增益矩阵K:(1)通过矩阵计算得到系统的可观性矩阵:(2)由若干个实测输出建立观测器,可将观测器矩阵与可观测性矩阵组合成 Hankel 矩阵,求解出状态观测器系数矩阵:(3)根据系统的状态方程和输出方程,设计观测方程和状态估计方程,如下:4、调试控制器和观测器(1)经过上述设计步骤,将反馈矩阵和观测矩阵带入 MATLAB 工具箱函数进行仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实现系统状态重构的系统称为状态观测器。
状态估计的开环处理方法:
• 问题: ➢初始状态未知 ➢不确定性和扰动 ➢不能处理模型
• 解决办法:用反馈校正思想来重构系统 状态。
• 通过误差来校正系统:状态误差、输出 误差
• 状态观测器模型:
• 例:设系统的系数矩阵为:
1 0 0 2 A 3 1 1 , B 1
• 实际系统,状态变量未必都可以直接测 量到。
• 状态能观性说明:系统是状态能观的, 则系统的任意状态信入输出信息 来确定系统的内部状态?
• 观测器设计问题 • 观测器的输出就是系统状态的估计值。
6.1 观测器设计
• 已知系统模型
问题:如何从系统的输入输出数据得到系 统的状态?
0 2 0 1
C 0 0 1
设计观测器,使其极点配置在-3,-4,-5上。
6.2 基于观测器的控制器设计
6.3 降维观测器设计
作业
• 习题6.6,6.9(P182)
现代控制理论
Modern Control Theory
浙江理工大学自动化研究所
第6章 状态观测器设计
6.1 观测器设计 6.2 基于观测器的控制器设计 6.3 降维观测器设计
• 对于完全能控的系统,状态反馈可任意 配置闭环系统的极点,从而使得闭环系 统具有期望的稳态和动态性能。
• 条件:所有的状态变量可测。