传感器的原理及实用技术期末复习1
传感器原理及应用复习资料
传感器原理及应用复习资料1.传感器由敏感元件、转换元件、基本电路三部分组成; 被测量 敏感元件 转换元件 基本电路 电量输出①敏感元件感受被测量;②转换元件将响应的被测量转换成电参量(电阻、电容、电感);③基本电路把电参量接入电路转换成电量;④核心部分是转换元件,决定传感器的工作原理。
2. 传感器的基本特性:①静态特性:当输入量(X )为静态或变化缓慢的信号时,输入输出关系称静态特性。
静态特性主要包括:线性度、迟滞、重复性、灵敏度、漂移和稳定性②动态特性:当输入量随时间(频率)变化时,输入输出关系称动态特性。
影响传感器动态特性除固有因素外,还与输入信号的形式有关,在对传感器进行动态分析时一般采用标准的正弦信号和阶跃信号。
A.输入信号按正弦变化时,分析动态特性的相位、振幅、频率,称频率响应;B.输入信号为阶跃变化时,对传感器随时间变化过程进行分析,称阶跃响应(瞬态响应).频率响应 阶跃响应3.电阻应变式传感器是将被测的非电量转换成电阻值的变化,再经转换电路变换成电量(电流、电压)输出。
金属电阻应变片的基本原理基于电阻应变效应:即导体在外力作用下产生机械形变时阻值发生变化。
通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为电阻的变化进行测量,这是应变式传感器测量应变的基本原理。
4.直流电桥总结:单臂电桥输出电压11R R 4E U ∆•= 电压灵敏度4E K u =半桥差动电路全桥差动电路5. 电桥线路补偿:被测试件位置上安装一个补偿片处于相同的温度场;等臂电桥输出U0 与桥臂参数的关系为()2B 310R R -R R A U=。
如果 R1R3 = RBR4,电桥平衡时输出为零;若R1、RB 温度系数相同,当无应变而温度变化时ΔR1 = ΔRB ,电桥为平衡状态;当有应变时,R1有增量ΔR1,ΔR1=R1k0ε,补偿片无变化,ΔRB = 0;电桥输出为 U0 ∝R1R3 k0ε;可见此时电桥的输出电压与温度无关。
(完整版)传感器期末复习重点知识点总结必过
第一章传感器概述人的体力和脑力劳动通过感觉器官接收外界信号,将这些信号传送给大脑,大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程,计算机相当人的大脑,执行机构相当人的肌体,传感器相当于人的五官和皮肤。
1.1.1传感器的定义广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准对传感器定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置以上定义表明传感器有以下含义:1、它是由敏感元件和转换元件构成的检测装置;2、能按一定规律将被测量转换成电信号输出;3、传感器的输出与输入之间存在确定的关系;按使用的场合不同又称为: 变换器、换能器、探测器1.1.2传感器的组成传感器由敏感元件、转换元件、基本电路三部分组成:图示:被测量---敏感原件-----转换原件----基本电路-------电量输出电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器1.1.3传感器的分类1)按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度3)按传感器的输出信号分类:模拟传感器数字传感器4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器6)按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器。
7)按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器三大门类;1.2 传感器的地位与作用在基础学科研究中,传感器更有突出的地位。
宏观上的茫茫宇宙、微观上的粒子世界、长时间的天体演化、短的瞬间反应。
传感器原理与应用复习要点
传感器原理与应用复习要点传感器是一种将非电学量转换为电学信号的装置,广泛应用于各个领域。
其原理可以分为物理效应、化学效应和生物效应三类。
下面是传感器原理与应用的复习要点:1.物理效应传感器:-热敏电阻:利用物质的电阻随温度变化的特性,常用于温度测量。
-压电传感器:利用压电材料电荷随机梯度变化的特性,可用于压力、力和加速度的测量。
-光电传感器:利用光的吸收、散射或发射等特性,常用于光强度、颜色和距离的测量。
-磁敏电阻:利用材料的磁阻随磁场变化的特性,可用于磁场的测量。
2.化学效应传感器:-pH传感器:利用溶液中氢离子浓度对电位的影响,用于测量酸碱度。
-气体传感器:利用气体与特定材料发生化学反应,测量气体浓度或类型。
-电化学传感器:利用电化学反应产生的电位差,测量氧气、氢气等的浓度。
3.生物效应传感器:-生物传感器:利用生物体与特定物质相互作用的特性,测量生物学参数,如酶、抗原和抗体等。
-DNA传感器:利用DNA序列的特定识别反应,用于检测和识别DNA的序列。
传感器的应用:1.工业自动化:传感器可用于测量温度、压力、流量、液位等工业参数,实现工业自动化控制。
2.环境监测:用于监测大气污染物质、水质、土壤质量等环境参数。
3.医疗保健:用于测量心率、体温、血压等生物参数,实现远程医疗监护。
4.智能家居:用于检测温度、湿度、光线等,实现智能调控家居环境。
5.汽车工业:应用于测量车速、转向角度、发动机参数,提升安全性和性能。
6.农业领域:用于监测土壤水分、光照强度、气温等农作物生长参数,实现精确农业。
总结起来,传感器的原理涉及物理、化学和生物效应,应用广泛,包括工业自动化、环境监测、医疗保健、智能家居、汽车工业和农业等领域。
对传感器的深入理解和应用有助于提升各个领域的技术水平和生活质量。
传感器原理及应用期末复习
传感器原理及应用期末复习传感器是一种用于将其中一种物理量转换为可电信号或其他信息形式的装置。
传感器通常由感受元件和转换元件两部分组成。
感受元件负责感知其中一种物理量的变化,并将其转换为电信号或其他信息形式。
转换元件负责将感受元件产生的信号进行放大、滤波、线性化等处理,最终将其转换为符合要求的输出信号。
传感器的原理可以分为电磁原理、光电原理、机械原理、热电原理、化学原理等多种类型。
以下是一些常见的传感器原理及其应用。
1.电磁原理传感器:根据电磁场的变化来感知物理量的变化。
常见的有电位计、变压器、电感、霍尔传感器等,广泛应用于测量位置、速度、加速度、电流、磁场等物理量。
2.光电原理传感器:通过光电效应或光学原理来感知物理量的变化。
例如光敏电阻、光电二极管、光电三极管等传感器,用于测量光强、颜色、距离、位置等。
3.机械原理传感器:利用机械力学原理来感知物理量的变化。
例如应变计、压力传感器、力传感器、加速度传感器等,用于测量压力、重量、力、加速度等。
4.热电原理传感器:利用热电效应来感知物理量的变化。
常见的有热电偶、热电阻、热敏电阻等,广泛应用于测量温度、湿度等。
5.化学原理传感器:利用化学反应来感知物理量的变化。
例如气体传感器、PH传感器、红外传感器等,用于检测气体浓度、溶液酸碱度等。
传感器在各个领域都有广泛的应用。
以下是一些常见的传感器应用:1.工业自动化:传感器在工业自动化中起到了至关重要的作用,可以实现对温度、湿度、压力、流量、液位等工艺参数的监测和控制。
2.交通领域:传感器在交通领域中用于交通流量监测、车辆定位与导航、智能交通信号控制等。
3.医疗健康:传感器在医疗健康领域中用于生命体征的监测,如心率、血压、血氧浓度等。
4.环境监测:传感器在环境监测中用于测量大气污染物、水质污染物、土壤湿度等。
5.智能家居:传感器在智能家居中用于实现智能门锁、智能灯光、智能温控等功能。
6.农业领域:传感器应用于农业领域,可以监测土壤湿度、温度、光照强度等,实现精准灌溉、智能温室等控制。
传感器原理及应用期末复习资料
信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
1.什么是传感器?广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
2.传感器由哪几个部分组成?分别起到什么作用?传感器一般由敏感元件、转换原件和基本电路组成。
敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。
传感器的核心部分是转换原件,转换原件决定传感器的工作原理。
3.传感器的总体发展趋势是什么?传感器的应用情况。
传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。
未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。
发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。
4.了解传感器的分类方法。
所学的传感器分别属于哪一类?按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器按传感器的功能分类:单功能传感器、多功能传感器、智能传感器按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。
1.传感器的性能参数反映了传感器的输入输出关系2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数拟合方法:理论线性度(理论拟合)、 c、端基线性度(端点连线拟合)d、独立线性度(端点平移)最小二乘法线性度2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。
《传感器期末复习》课件
精度
传感器输出测量值与 实际值之间的偏差程 度,通常用百分比来 描述。
稳定性
传感器在长时间使用 过程中表现出来的性 能稳定程度。
ቤተ መጻሕፍቲ ባይዱ
选择传感器的 方法
选择传感器需考虑测 量物理量、测量范围、 环境等因素,同时也 需考虑性能和成本方 面。
传感器的应用案例
温度传感器在工业生产中 的应用
光敏传感器在智能家居中 的应用
在本次期末复习中,我对传 感器的理解更加深入,同时 也认识到其在社会中的重要 性和潜力。
温度传感器广泛应用于各行各业, 如自动化生产线、空调、冰箱等。
光敏传感器在智能灯具、自动晾 衣架、自动窗帘等智能家居中被 广泛应用。
磁力传感器在医学检测中 的应用
磁力传感器可用于检测人体磁场 分布,目前主要应用于心电监测 和磁共振成像等方面。
压力传感器在气象预测中的应用
气压传感器通常应用于气象站、飞机、导弹及地矿勘察等领域,可以帮助进行气象预测和环境监测。
传感器的发展趋势
1 无线传感器网络
2 微型化传感器
无线传感器网络有望提高传感器的可拓展性、 灵活性和传输效率。
随着微型技术的发展,将出现越来越小的传 感器,为监测和控制提供更便捷的方式。
3 智能化传感器
感知科技的发展使得传感器从单纯的物理信 号转变为可以进行数据分析和决策的智能系 统。
4 物联网时代下的传感器应用
传感器技术在物联网环境中得到更广泛的应 用和普及,未来有望推动社会的数字化和智 能化进程。
总结与展望
传感器对社会的贡献
传感器技术的发展改变了社 会的面貌,为经济的发展和 社会的进步带来了巨大的贡 献。
传感器的未来发展方向
随着新技术的涌现和应用环 境的变化,未来传感器技术 还有很大的发展空间。
传感器原理及应用期末试题
传感器原理及应用期末试题一.判断题.(本题共10分,对则打“√”,不对则打“×”)1.A/D 转换就是把模拟信号转换成连续的数字信号。
( )2.固有频率f n =400Hz 的振动子的工作频率范围为f > 400Hz 。
( )3.信号在时域上波形有所变化,必然引起频谱的相应变化。
( )4.一台仪器的重复性很好,但测得的结果并不准确,这是由于存在随机误差的缘故。
( )5.一般来说测量系统的固有频率越高,则其灵敏度就越低。
( )6.交流电桥的输出信号经放大后,直接记录就能获得其输入信号的模拟信号了。
( )7.测量小应变时,应选用灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应变片。
( )8.传递函数表征了系统的传递特性,并反映了物理结构,因此凡传递函数相同的系统,其物理结构必然相同。
( ) 9.dt e t x ftj ⎰+∞∞--π2)(称为信号x(t)的频率响应函数。
( )10.作为温度补偿的应变片应和工作应变片作相邻桥臂且分别贴在与被测试件相同的置于同一温度 场的材料上。
( )二.选择题(共24分,每空1.5分,每题只有一个正确答案)1.压电式加速度计测量系统的工作频率下限取决于( )a.加速度计力学系统的频率特性;b.压电晶体的电路特性;c.测量电路的时间常数。
2.用惯性式加速度计进行测量,为保证相位关系不变,应选择适当的阻尼比β,一般取β=( )或β=( );而对惯性式位移传感器应有β=( )a.β=0 ;b.β=0.7 ;c.β=1 ;d.β=0.863.要测量x(t)=5aSin40πt+aSin2000πt 的振动位移信号,为了尽量减少失真,应采用( ) 的惯性加速度计。
a. f n =15Hz 、β=0.707;b. f n =1000Hz 、β=0.707 ;c. f n =50kHz 、β=0.044.压电式加速度传感器的阻尼率一般为( )a.β>1 ;b.0.707<β<1 ;c.β=0.707 ;d.β<<0.7075.描述非周期信号的数学工具是( )。
(完整版)传感器期末复习重点知识点总结必过.doc
国家标准对传感器定义是:
能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置
以上定义表明传感器有以下含义:
1、它是由敏感元件和转换元件构成的检测装置;
2、能按一定规律将被测量转换成电信号输出;
3、传感器的输出与输入之间存在确定的关系;
按使用的场合不同又称为:变换器、换能器、探测器
1.1.2传感器的组成
传感器由敏感元件、转换元件、基本电路三部分组成:
图示 :被测量---敏感原件-----转换原件----基本电路-------电量输出
电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器
1.1.3传感器的分类
第一章传感器概述
人的体力和脑力劳动通过感觉器官接收外界信号, 将这些信号传送给大脑, 大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程, 计算机相当人的大脑, 执行机构相当人的肌体, 传感器相当于人的五官和皮肤。
1.1.1传感器的定义
广义: 传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
1) 按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、
2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度
3)按传感器的输出信号分类:模拟传感器数字传感器
4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器
5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器
差!
入信号按正弦 化 ,分析 特性的相位、振幅、
率, 称 率响 ;
传感器原理及应用期末考试试卷(含答案)
传感器原理及应用期末考试试卷(含答案)传感器原理及应用一、单项选择题(每题2分.共40分)1、热电偶的最基本组成部分是( )。
A、热电极B、保护管C、绝缘管D、接线盒2、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括( )。
A、补偿导线法B、电桥补偿法C、冷端恒温法D、差动放大法3、热电偶测量温度时( )。
A、需加正向电压B、需加反向电压C、加正向、反向电压都可以D、不需加电压4、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪个基本定律( )。
A、中间导体定律B、中间温度定律C、标准电极定律D、均质导体定律5、要形成测温热电偶的下列哪个条件可以不要()。
A、必须使用两种不同的金属材料;B、热电偶的两端温度必须不同;C、热电偶的冷端温度一定要是零;D、热电偶的冷端温度没有固定要求。
6、下列关于测温传感器的选择中合适的是()。
A、要想快速测温,应该选用利用PN结形成的集成温度传感器;B、要想快速测温,应该选用热电偶温度传感器;C、要想快速测温,应该选用热电阻式温度传感器;D、没有固定要求。
7、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是( )。
A、接线方便B、减小引线电阻变化产生的测量误差C、减小桥路中其他电阻对热电阻的影响D、减小桥路中电源对热电阻的影响8、在分析热电偶直接插入热水中测温过程中,我们得出一阶传感器的实例,其中用到了()。
A、动量守恒;B、能量守恒;C、机械能守恒;D、电荷量守恒;9、下列光电器件中,基于光电导效应工作的是( )。
A、光电管B、光敏电阻C、光电倍增管D、光电池10、构成CCD的基本单元是( )。
A、 P型硅B、PN结C、光敏二极管D、MOS电容器11、下列关于光敏二极管和光敏晶体管的对比不正确的是( )。
A、光敏二极管的光电流很小,光敏晶体管的光电流则较大B、光敏二极管与光敏晶体管的暗电流相差不大C、工作频率较高时,应选用光敏二极管;工作频率较低时,应选用光敏晶体管D、光敏二极管的线性特性较差,而光敏晶体管有很好的线性特性12、制作霍尔元件最合适的材料是()。
传感器原理复习提纲及详细知识点()
传感器原理复习提纲第一章 绪论1. 检测系统的组成。
传感器 测量电路 输出单元把被测非电量转换成为与之有确定对应关系,且便于应用的某些物理量(通常为电量)的测量装置。
把传感器输出的变量变换成电压或电流信号,使之能在输出单元的指示仪上指示或记录仪上记录;或者能够作为控制系统的检测或反馈信号。
指示仪、记录仪、累加器、报警器、数据处理电路等。
2. 传感器的定义及组成。
定义 能感受被测量并按一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
组成 敏感元件转换元件 转换电路 直接感受被测量,并输出与被测量成确定关系的物理量。
敏感元件的输出就是它的输入,抟换成电路参量。
上述电路参数接入基本转换电路,便可转换成电量输出。
3. 传感器的分类。
工作机理 物理型、化学型、生物型构成原理 结构型(物理学中场的定律)、物性型:物质定律 能量转换 能量控制型、能量转换型物理原理 电参量式传感器、磁电传感器、压电式传感器 用途位移、压力、振动、温度4. 什么是传感器的静态特性和动态特性。
静特性 输入量为常量,或变化极慢 动特性 输入量随时间较快地变化时5. 列出传感器的静态特性指标,并明确各指标的含义。
230123n ny a a x a x a x a x =+++++x 输入量,y 输出量,a 0零点输出,a 1理论灵敏度,a 2非线性项系数灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。
表征传感器对输入量变化的反应能力线性传感器 非线性传感器迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、 运动部件摩擦、 传动机构的间隙、 紧固件松动等。
线性度传感器的实际输入-输出曲线的线性程度。
4种典型特性曲线k y x=∆∆%1002max⨯∆=FSH Y H γ非线性误差%100max⨯∆±=FSL Y L γ,ΔLmax ——最大非线性绝对误差,YFS ——满量程输出值。
传感器原理与检测期末复习知识
第一章传感器是将各种非电量(包括物理量、化学量、生物量等)按一定规律转化成便于处理和传输的另一种物理量(一般为电量)的装置。
传感器技术是利用各种功能材料实现信息检测的一门应用技术,是检测原理、材料科学,工艺加工等三个要素的最佳结合。
变送器是将非电量的信息转换成具有标准信号的装置。
凡能输出标准信号的传感器就称为变送器。
传感器一般有敏感元件、转换元件及测量电路组成,有时还要加辅助电源。
敏感元件:直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
转换元件:能将敏感元件感受的非电量直接转换为电量的器件。
测量电路:将转换元件输出的电量转换成便于记录、显示、控制和处理的电信号的电路。
结构型:主要是通过机械结构的几何形状或尺寸的变化,将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,从而检测出被测信号。
物性型:利用某些材料本身物理性质的变化而实现测量,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。
复合型:将中间转换环节与物性型敏感元件复合而成的传感器。
静态特性:当输入量是常量(稳定状态的信号或变化及其缓慢的信号)时,输入与输出间的关系。
动态特性:当输入量随时间变化时,输入与输出间的关系(动态量指周期信号、瞬变信号或随机信号) 。
线性度(非线性误差):在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(Full Scale)输出值的百分比称为线性度。
在标准工作状态下,利用一定精度等级的校准设备,对传感器进行往复循环测试,即可得到输出-输入数据。
将这些数据列成表格,再画出各被测量值对应输出平均值的连线,称为传感器的静态校准曲线。
灵敏度:传感器的灵敏度是指到达稳定工作状态时,输出变化量与引起此变化的输入变化量之比。
精度的指标:精密度,正确度,精确度、精密度δ它说明测量结果的分散性(随即误差)。
正确度ε说明测量结果偏离真值大小的程度(系统误差)。
精确度τ它含有精密度和正确度之和的意思,即测量的综合优良程度。
传感器期末复习资料)
传感器绪论概念:1.传感器的定义:①:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
②:狭义的定义:能把外界非电信息转换成电信号输出的器件。
2.传感器组成:传感器一般由敏感元件、转换元件、基本转换电路三部分组成。
第一章概念:1.传感器的一般特性:描述此种变换的输入与输出关系。
静特性:输入量为常量或变化极慢时(慢变或稳定信号)。
1) 线性度:传感器的输出与输入关系呈线性,实际上这往往是不可能的。
假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述:x ——输入量; y ——输出量; a 0——零点输出;a 1——传感器的灵敏度,常用k 表示;a 2,a 3,…,a n ——非线性项系数。
非线性误差(线性度) 定义:输出输入的实际测量曲线与某一选定拟合直线之间的最大偏差,用相对误差γL表示其大小。
即传感器的正、反行程平∑=+=++++=n i i i n n x a a x a x a x a a y 102210...均测量曲线与拟合直线之间的最大偏差对满量程(F.S.)输出之比(%):γL——非线性误差(线性度);ΔLmax——输出平均值与拟合直线间的最大非线性误差;y F.S.——满量程输出。
满量程输出用测量上限标称值y H与测量下限标称值y L之差的绝对值表示,即y F.S.=|y H-y L|。
大多数传感器的输出曲线是通过零点的,或者使用“零点调节”使它通过零点。
某些量程下限不为零的传感器,也可以将量程下限作为零点处理。
目前常用的拟合方法有:①理论拟合;②过零旋转拟合;③端点连线拟合;④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合等。
2)迟滞:迟滞表明传感器在正(输入量增大)、反(输入量减小)行程期间,输出-输入曲线不重合的程度(信号大小不相等)。
迟滞产生原因:传感器的机械部分和结构材料方面不可避免的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、碎裂等。
传感器原理与应用复习要点
第一章传感器的一般特性1.传感器技术的三要素。
传感器由哪3部分组成?2.传感器的静态特性有哪些指标?并理解其意义。
3.画出传感器的组成方框图,理解各部分的作用。
4.什么是传感器的精度等级?一个0.5级电压表的测量范围是0~100V,那么该仪表的最大绝对误差为多少伏?5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、非线性度?第二章应变式传感器6.应变片有那些种类?金属丝式、金属箔式、半导体式。
7.什么是压阻效应?8.应变式传感器接成应变桥式电路的理解、输出信号计算。
应变片桥式传感器为什么应配差动放器?9.掌握电子称的基本原理框图,以及各部分的作用。
10.电阻应变片/半导体应变片的工作原理各基于什么效应?11.半导体应变片与金属应变片各有哪些特点。
第三章电容式传感器12.电容式传感器按工作原理可分为哪3种?13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容影响的方法有那些?14.什么是电容电场的边缘效应?理解等位环的工作原理。
15.运算法电容传感器测量电路的原理及特点。
第四章电感式传感器16.了解差动变压器的用途及特点。
17.差动变压器的零点残余电压产生的原因?第五章压电式传感器18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些?19.压电传感器能否测量缓慢变化和静态信号?为什么?20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大器、电荷放大器的作用。
第六章数字式传感器21.光栅传感器的原理。
采用什么技术可测量小于栅距的位移量?22.振弦式传感器的工作原理。
第七章热电式传感器23.热电偶的热电势由那几部分组成?24.热电偶的三定律的理解。
25.掌握热电偶的热电效应。
26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。
27.铂电阻采用三线制接线方式的原理和特点?28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原理。
29.集成温度传感器AD590的主要特点。
传感器原理及实用技术期末复习1
传感器原理及实用技术期末复习1第一篇:传感器原理及实用技术期末复习13.简要说明电容式传感器的原理电容式传感器能将被测量转换为传感器电容变化,传感器有动静两个极板,极板间的电容为C=ε0εrA/δ0式中:ε0真空介电常数8.854×10-12F/mεr介质的相对介电常数δ0两极板间的距离A极板的有效面积当动极板运动或几班见的介质变化就会引起传感器电容值的变化,从而构成变极距式,变面积式和变介质型的电容式传感器。
4.简述电涡流传感器工作原理及其主要用途。
电涡流式传感器就是基于涡流效应工作的。
电涡流式传感器具有结构简单、频率响应快、灵敏度高、抗干扰能力强、体积小、能进行非接触测量等特点,因此被广泛用于测量位移、振动、厚度、转速、表面温度等参数,以及用于无损探伤或作为接近开关,是一种很有发展前途的传感器。
6.简述光敏电阻的工作原理。
光敏电阻是一种基于光电导效应(内光电效应)工作的元件,即在光的照射下,半导体电导率发生变化的现象。
光照时使半导体中载流子浓度增加,从而增大了导电性,电阻值减小。
照射光线愈强,电阻值下降愈多,光照停止,自由电子与空穴逐渐复合,电阻又恢复原值。
7.什么叫零点残余电压?产生的原因有哪些?当衔铁处于差动电感的中间位置时,无论怎样调节衔铁的位置,均无法使测量转换电路输出为零,总有一个很小的输出电压,这种微小误差电压称为零点残余电压。
产生零点残余电压的具体原因有:① 差动电感两个线圈的电气参数、几何尺寸或磁路参数不完全对称;② 存在寄生参数,如线圈间的寄生电容及线圈、引线与外壳间的分布电容;③ 电源电压含有高次谐波;④ 磁路的磁化曲线存在非线性。
8.简述霍尔传感器的工作原理。
金属或半导体薄片两端通控制电流,并在薄片的垂直方向上施加磁感应强度为的磁场,那么,在垂直于电流和磁场的方向上将产生电势(称为霍尔电势电压),这种现象称为霍尔效应。
霍尔电势的大小正比于控制电流和磁感应强度,称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。
传感器原理及应用期末考试试题库含答案
一:填空题(每空1分)1.依据传感器的工作原理,传感器分敏感元件,转换元件,测量电路三个部分组成。
2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。
3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为外光电效应,内光电效应,热释电效应三种。
4.光电流与暗电流之差称为光电流。
5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。
6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计和箔式应变计结构。
7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与距离的平方成反比关系。
8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器。
9.画出达林顿光电三极管内部接线方式:U C E10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。
其定义为:传感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。
11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一种度量。
按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。
最常用的是最小二乘法线性度。
12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。
13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。
14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。
15. 应变式传感器一般是由 电阻应变片 和 测量电路 两部分组成。
16. 传感器的静态特性有 灵敏度 、线性度、灵敏度界限、迟滞差 和稳定性。
17. 在光照射下,电子逸出物体表面向外发射的现象称为 外光电效应 ,入射光强改变物质导电率的物理现象称为 内光电效应 。
18. 光电管是一个装有光电 阴极 和 阳极 的真空玻璃管。
19. 光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文案
精彩文档 3.简要说明电容式传感器的原理
电容式传感器能将被测量转换为传感器电容变化,传感器有动静两个极板,极板间的电容为C=ε0εr A/δ0
式中:
ε0 真空介电常数8.854×10-12F/m εr 介质的相对介电常数 δ0 两极板间的距离 A 极板的有效面积
当动极板运动或几班见的介质变化就会引起传感器电容值的变化,从而构成变极距式,变面积式和变介质型的电容式传感器。
4.简述电涡流传感器工作原理及其主要用途。
电涡流式传感器就是基于涡流效应工作的。
电涡流式传感器具有结构简单、频率响应快、灵敏度高、抗干扰能力强、体积小、能进行非接触测量等特点,因此被广泛用于测量位移、振动、厚度、转速、表面温度等参数,以及用于无损探伤或作为接近开关,是一种很有发展前途的传感器。
6.简述光敏电阻的工作原理。
光敏电阻是一种基于光电导效应(内光电效应)工作的元件,即在光的照射下,半导体电导率发生变化的现象。
光照时使半导体中载流子浓度增加,从而增大了导电性,电阻值减小。
照射光线愈强,电阻值下降愈多,光照停止,自由电子与空穴逐渐复合,电阻又恢复原值。
7.什么叫零点残余电压?产生的原因有哪些?
当衔铁处于差动电感的中间位置时,无论怎样调节衔铁的位置,均无法使测量转换电路输出为零,总有一个很小的输出电压,这种微小误差电压称为零点残余电压。
产生零点残余电压的具体原因有:① 差动电感两个线圈的电气参数、几何尺寸或磁路参数不完全对称;② 存在寄生参数,如线圈间的寄生电容及线圈、引线与外壳间的分布电容;③ 电源电压含有高次谐波;④ 磁路的磁化曲线存在非线性。
8.简述霍尔传感器的工作原理。
金属或半导体薄片两端通控制电流 ,并在薄片的垂直方向上施加磁感应强度为 的磁场,那么,在垂直于电流和磁场的方向上将产生电势 (称为霍尔电势电压),这种现象称为霍尔效应。
霍尔电势的大小正比于控制电流和磁感应强度, 称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。
9.什么叫纵向应变效应?什么叫横向应变效应?
应变片在受到外力变形时,其截面积变化引起的电阻变化,称为横向效应。
应变片在收到外力变形时,其长度变化引起的电阻变化,称为纵向效应。
也就是说,导体在长度上发生变化时,截面积也会随之变化,所以应变效应包含纵向效应和横向效应。
10.简述利用面型CCD 摄像传感器实现二位图像识别的基本原理。
物体成像聚焦在CCD 图像传感器上,视频处理器对输出信号进行存储和数据处理,整个过程由微机控制完成,根据几何光学原理,可推导出被测物体尺寸计算公式:
式中:n 为物体成像覆盖的光敏像素数;p 为像素间距;M 为成像倍率。
微机可对多次测量求平均值,精确的到被测物体的尺寸。
任何能够用光学成像的零件都可以用这种方法实现不接触的在线自动检测的目的。
11.变压器电桥电路和带相敏检波电桥电路哪个能更好的起到测量转换电路?为什么?
采用相敏整流电路,得到的输出信号既能反映位移的大小,又能反映位移的方向;而变压器电桥电路的输出电压随位移方向不同而反相1800,由于桥路电源是交流电,若在转换电路的输出端接上普通仪表时,无法判别输出的极性和衔铁位移的方向。
此外,当衔铁处于差动电感的中间位置时,还存在零点残余电压。
所以相敏整流的电桥电路能更好地起到测量转换作用。
12.常见的压电材料有哪些?各有什么特点?
常见的压电材料可分为三大类:压电晶体、压电陶瓷与高分子压电材料。
石英晶体还具有机械强度高、绝缘性能好、动态响应快、线性范围宽、迟滞小等优点。
但石英晶体压电系数较小,灵敏度较低,且价格较贵。
压电陶瓷是人工制造的多晶体压电材料。
与石英晶体相比,压电陶瓷的压电系数很高,制造成本很低。
因此,在实际中使用的压电传感器,大都采用压电陶瓷材料。