不等式解与解集
不等式的解与解集有何区别
不等式的解与解集是两个既有联系又有区别的不同概念,两者的含义容易混淆,在学习中要注意加以比较.一、不等式的解与方程的解含义相同我们知道,能使方程成立的未知数的值叫做方程的解;能使不等式成立的未知数的值叫做不等式的解.可见,不等式的解与方程的解的含义是相同的.如果某个数是不等式的解,那么该不等式中的未知数用它的解代替时,所得不等式成立.例如,已知x=1是不等式3x+2m<7的解,求m的取值范围.解析:根据不等式的解,得不等式3x+2m<7中的未知数x用1替换时,所得不等式3×1+2m<7成立,解此不等式,得m<2.二、不等式的解集与解之间的联系不等式所有解的集合叫做不等式的解集.可见,不等式的解与解集是不同的两个概念,解是解集的一部分,解集包括所有的解.一般地,不等式的解集中包含着不等式的无数多个解.因此,对于不等式的解是什么要用解集表示,不能列举几个解进行说明.例如,不等式2x+1<9的解应该用解集表示为x<4,不能说该不等式的解是x=3.9,3.8,3,2,0,-8等等.但可以说x=3.9,3.8,3,2,0,-8等等都是该不等式的解.三、不等式的解集与方程的解之间的关系不等式的解集一般表示为x<a(或x>a),我们把x=a叫做不等式解集的界点.例如不等式3-4x>15的解集是x<-3,其解集界点就是x=-3.显然,对于不含等号的不等式,其解集的界点不是该不等式的解,因为当x=-3时,不等式的左边=3-4×(-3)=15=右边,这说明了x=-3是方程3-4x=15的解.由此可见:不等式解集的界点是该不等式对应方程(将不等号换为等号)的解.利用这个关系可以解决已知不等式解集求字母系数问题.例如:已知关于x的不等式(a-1)x+1<2x+a的解集是x<2,求a的值.解析:由题意,x=2是方程(a-1)x+1=2x+a的解,所以2(a-1)+1=2×2+a,解得a=5.特别注意:"已知x=m是不等式ax<b的解"和"已知不等式ax<b(或ax>b)的解集是x<m (或x>m)"是两种截然不同的题型.练习:(1)已知x=1是关于x的不等式a(x-1)-3x>2(a+1)x+1的解,求a的取值范围;(2)已知关于x的不等式a(x-1)-3x>2(a+1)x+1的解集是x<1,求a的值.答案:(1)a<-3;(2)a=-3.。
9.1.1不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.
9.1.1不等式及其解集
填一填
像 2x = 6 这类,表
示左__右__两__边__相__等__关系 的式子,叫做等式
类比
像 2x>6 这类,表
示_大__小___关系的式子, 叫做不等式
方程 2x = 6 的解是 __x__=__3
不等式 2x>6 的解 集是_x__>___3
练一练
判断下列说法是否正确,正确的打“√”,错误的打“×”.
(2)“不小于”;__≥__;
(3)“至多”;___≤_____;
(4)“至少”;__≥___; (5)“高出”:___>_____; (6)“不足”__<____; (7)“不超过”;_≤_____; (8)“不低于”:__≥__; (9)“不相等”;__≠_____.
4.(1)x的5倍与2的差大于x与1的和的3倍,用不等式表示
改为:自然数? 0、1、2、3、4、5 3、不等式x-5<1的解集是( C )
A、x<4 B、x>5 C、x<6 D、x<7
知识点 3:在数轴上表示不等式的解集
问题 如何在数轴上表示出不等式 x>25 的解集呢?
先A则都的在大 点点因不数于表等此A轴示可式右 2上的5以的,边标数像解而所出都下集点有表小图的x示于A那点>左样22表25边5表5.示.的所示的点有数
把表示 25 的点上 画空心圆圈,表示 不包含这一点.
A
0
25
画一画:利用数轴来表示下列不等式的解集.
空心圆圈表 示不含此点
(1)
x>-1
;
(2)1 2
.x<
表示
1 2
的点
-1 0 表示-1的点 方向向右
01 1 2
方向向左
3.不等式的解和解集
数学运算
“粗心者”大都在这倒下的。你能做的,就是严格准守“游戏规则”。 1.搞清楚:运算对象,运算步骤,运算法则。 2.认真:态度决定一切。
情境
问题 1: 若不等式2-m< 1 3 (x-m)的解集为x>2,则m的值为(). 问题 2: 已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的 解,则实数a的取值范围是(). 讨论 (1)解等式2-m< 1 3 (x-m)可得x>6-2m,故6-2m=2,m=2. 【运算-已知解集求字母】已知不等式的解集,求不等式中字母的值时,应先用 字母表示出不等式的解集,再建立方程或不等式进行求解.
知识点 不等式的解和解集
数学抽象ቤተ መጻሕፍቲ ባይዱ
简单讲,数学抽象就是符号,概念,公理,定理,公式。这些就是数学的本质。 当你一直坚持在用学语文的方式“背数学”时,有一天你会背不动的,因为你不知道背后的“所 以然”。 学数学能够化繁为简,靠的就是对数学抽象的全面理解。
情境
在xx卫视上,神秘嘉宾“x-3>1”与它的解和解集隆重亮相.
讨论 (1)我们曾学过“能使方程两边相等的未知数的值就是方程的解”,结合情境想一 想什么是不等式的解? 【概念-解】能使不等式成立的未知数的值叫做不等式的解. (2)根据情境中的“介绍”,想一想什么是不等式的解集? 【概念-解集】不等式所有解的集合叫做不等式的解集. (3)思考不等式的解与不等式的解集一样吗?它们之间存在哪些区别与联系?
2 / 3
(2)x=2是不等式组(x-5)(ax-3a+2)≤0的解,故(2-5)(2a-3a+2)≤0;x=1不 是这个不等式的解,所以(1-5)(a-3a+2)>0,联立两个不等式进行求解,就可以 得出a的取值范围了. 【运算-已知解求字母】已知不等式的解,求不等式中字母的取值情况时,应先 根据不等式的解一定满足该不等式,建立不等式(或不等式组),再求解该不 等式(或不等式组),从而得出答案.注意若给出某一未知数不是题目中不等式 的解,那它一定是与该不等式相对立的那个不等式的解,“<”与“≥”相对 立,“>”与“≤”相对立. 实战演练 (导学号 导学号 S2658440)已知关于x的不等式(k-2)x+3<11-k(3-x)的解都是不等 式4x>3x-2的解,求k的取值范围. 点拨:分析题意,先根据 “不等式 (k-2)x+3< 11-k(3-x)的解都是不等式 4x> 3x-2的解 ”求出不等式 4x> 3x-2的解,再结合【运算 -已知解集求字母】进行解答 即可 .
第 九章 不等式9.1.1不等式及其解集
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.
8.2 不等式的解集
)
)
2.不等式x<5有多少个解?有多少个正整数解?
3.你能求出适合不等式-1≤x<4的整数 解吗?其中的x的最大整数值是多少呢?
-2 -1
0
1
2
3
4
5
6
4. 不等式-2<x<3是什么意思?它有 哪些整数解?
请你在数轴上表示出不等式-3<x≤3的 解集,并找出其中的整数解.
5.若x<a的解集中最大的整数解为3, 则a的取值范围为 .
集表示出来.
(2)用不等式表示图中所示的解集.
x<2 x≤2
x≥ -7.5
(3)下列表示怎样的不等式? x>3 x ≥a b<x<a b<x ≤ a
0
1
2
3
a
b
a
b
a
注意 :
• 将不等式的解集表示在数轴上时,要注意: 1)指示线的方向,“>”向右,“<”向左.
2)有“=”用实心点,没有“=”用空心圈.
拓展训练(二)
1.已知不等式x>a的最小整数解为2,那么 a的取值范围是_________ 2.已知不等式x≥a的最小整数解为2,那 么a的取值范围是_________ 3.已知不等式x<a的最大整数解为2,那么 a的取值范围是_________ 4.已知不等式x≤a的最大整数解为2,那 么a的取值范围是_________
如x≤a在数轴上表示为
1、在数轴上表示不等式3X>6 的解集,正确的是 ( )
0
2 1 (A) x<2 1 2
0
1
2 (B) x>2 2
0
0
1
(C) x≤2
(D) x≥2
2014..9.1.1.不等式及其解集
比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.
不等式的性质、解集与解法
不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变. c a b a +⇒> ca b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc . 二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体) 3.不等式解集的表示方法. 1-≤x ①用不等式表示。
如1-≤x 或x <-1等。
x <②用数轴表示.(注意实心圈与空心圈的区别) 4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。
典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1B 、x <-1C 、x <-2D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.思考题.设c b a ,,均为正数,若ac bc b a b a c +<+<+,试确定c b a ,,三个数的大小.y k 2x(第3题图)【经典练习】一、选择题(每小题2分,共36分)1、“x 的2倍与3的差不大于8”列出的不等式是( ) A 、2x -3≤8 B 、2x -3≥8 C 、2x -3<8 D 、2x -3>82、下列不等式一定成立的是( ) A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa 24> 3、如果x <-3,那么下列不等式成立的是( ) A 、x 2>-3x B 、x 2≥-3x C 、x 2<-3x D 、x 2≤-3x 4、不等式-3x +6>0的正整数解有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 *5、若m 满足|m |>m ,则m 一定是( ) A 、正数 B 、负数 C 、非负数 D 、任意有理数 6、在数轴上与到原点的距离小于8的点对应的x 满足( ) A 、-8<x <8 B 、x <-8或x >8 C 、x <8 D 、x >8**7、要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A 、m >23,n >-31B 、m >3,n >-3C 、m <23,n <-31D 、m <23,n >-31*8、 下列说法中,正确的有( ).① 若0ab <,则0,0;a b <<②若0,0a b <>,则0ab <;③若22,a b m m <则a b <;④若a b <,则22am bm <;⑤若0a b <<,则0a b +<;⑥若0a b +<,则0a b <<.A 、4个B 、3个C 、2个D 、1个 9、 下列说法正确的是( ). A 、5是不等式x+5>10的解集 B 、x <5是不等式x-5>0的解集 C 、x ≥5是不等式-x ≤-5的解集D 、x >3是不等式x-3≥0的解集10、 若a-b <0,则下列各式中一定正确的是( ).A 、a >bB 、ab >0C 、ab<0 D 、-a >-b11 不等式5x-1≤24的正整数解有( ).A 、4个B 、5个C 、6个D 、无限多个 **12 实数b 满足|b |<3,并且实数a 使得a <b 恒成立,则a 的取值范围是( ) A 、小于或等于3的实数 B 、 小于或等于-3的实数 C 、小于-3的实数 D 、 小于3的实数 13、 若4x <-,则下列不等式中正确的是( ). A .x 2≥-4x B 、x 2≤-4x C 、 x 2>-4x D 、 x 2<-4x*14、关于x 的方程2435x a x b++=的解不是负数,则a 与b 的关系是( ) A 、35a b > B 、 b ≥53aC 、5a =3bD 、5a ≥3b 15、在不等式100>5x 中,能使不等式成立的x 的最大正整数值为( ). A 、18 B 、19 C 、20 D 、21 16、下列不等式中,错误的是( ). A 、57-<-B 、5>3C 、0a 12>+D 、a a ->**17、已知5x -m ≤0只有两个正整数解,则m 的取值范围是( ) A 、10<m <15 B 、10≤m ≤15 C 、10<m ≤15 D 、10≤m <15 18、下列各式中,是一元一次不等式的是( ). A 、1y x 21<- B 、02x 3x 2>+- C 、2x141x 2+=+ D 、x 61x 31x 21>+二、填空题(每小题2分,共36分)1、不等式6-2x >0的解集是________.2、当x ________时,代数式523--x 的值是非正数. 3、当m ________时,不等式(2-m )x <8的解集为x >m-28. 4、若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________.5、已知三角形的两边为3和4,则第三边a 的取值范围是________.6、已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.*7、某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.8、5m-3是非负数,用不等式表示为______. 9、不等式238654x--<-<-的解集为______.10、当a b >,则2ab b <成立的条件是______.*11、明明的语文、外语两科的平均分为m 分,若使语文、外语、数学三科的平均分超过n 分,则数学分数a (分)应满足的关系式是_________.(m >n ) 12、设a <b ,用“<”或“>”|号填空:11(1)_____;(2)100_____100;22(3)1.5_____1.5;(4)_____.1212a b a b a ba b --++--13、不等式的性质:(1)如果a>b, 那么a+c b+c. (2)如果m>n, p>0, 那么mp np. (3) . 14、若-3x +4<-2x -5,则-x ______-9.15、已知直线y=kx+b 经过点(2,0),且k <0,则当x ______时,y <0. 16、不等式x <3的非负整数解是________.17、不等式|x |-2≤3的正整数解是____________.18、在2y 2-3y +1>0, y 2+2y +1=0,-6<-2, 27ab<2, 2312x x +- ,2103y y --<,7x +5≥5x +6中, 一元一次不等式有_____个,它们是_____________________.三、解答题1、解下列不等式,并把解集在数轴上表示出来:(每题4分共16分) (1)3(1-x )-2(x+8)<2; (2)3(x+3)-5(x-1) ≥7; (3)132+-x ≤42+x ;(4))69(6123--x x ≥7+x .3、(6分)在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛。
不等式的解法高中数学
不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。
例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。
不等式的解集
第三节不等式的解集—目标导引1.理解不等式的解与解集的意义.2.掌握不等式的解集的数轴表示.不等式的解集—内容全解1、不等式的解能使不等式成立的未知数的值叫做不等式的解.[例1]x=3,6,9中,哪一个是不等式2x-2.5≥15的解?解:把x=3代入不等式2x-2.5≥15中2×3-2.5≥15,6-2.5≥15,3.5≥15显然不成立.∴x=3就不是此不等式的解.把x=6代入得,2×6-2.5≥15,12-2.5≥15,9.5≥15 不成立.∴x=6也不是此不等式的解.把x=9代入得2×9-2.5≥15,18-2.5≥15,15.5≥15∴x=9是不等式2x-2.5≥15的一个解,就此问题继续探索一下,2x-2.5≥15的解是不是就是这一个x=9呢?答案显然不是,由此我们得到:2.不等式的解集定义一个含有未知数的不等式的所有解,组成这个不等式的解集.3.不等式的解与解集的区别解是一个或几个未知数的值,解集是所有的解组成的.第三课时●课题§1.3 不等式的解集●教学目标(一)教学知识点1.能够根据具体问题中的大小关系了解不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些概念的含义.3.会在数轴上表示不等式的解集.(二)能力训练要求1.培养学生从现实生活中发现并提出简单的数学问题的能力.2.经历求不等式的解集的过程,发展学生的创新意识.(三)情感与价值观要求从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.●教学重点1.理解不等式中的有关概念.2.探索不等式的解集并能在数轴上表示出来.●教学难点探索不等式的解集并能在数轴上表示出来.●教学方法引导学生探索学习法.●教具准备投影片一张记作(§1.3 A)●教学过程Ⅰ.创设问题情境,引入新课[师]上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.[生]不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.[师]很好.在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?[生]记得.能够使方程两边的值相等的未知数的值就是方程的解.求方程的解的过程,叫做解方程.[师]非常好.上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.Ⅱ.新课讲授1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?[师]分析:人转移到安全区域需要的时间最少为410秒,导火线燃烧的时间为10002.0⨯x 秒,要使人转移到安全地带,必须有:10002.0⨯x >410.解:设导火线的长度应为x cm ,根据题意,得10002.0⨯x >410∴x >5. 2.想一想(1)x =5,6,8能使不等式x >5成立吗?(2)你还能找出一些使不等式x >5成立的x 的值吗? [生](1)x =5不能使x >5成立,x =6,8能使不等式x >5成立. (2)x =9,10,11…等比5大的数都能使不等式x >5成立.[师]由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?[生]可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x >5的解.所以不等式的解不唯一,有无数个解.[师]正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solution set ).请大家再类推出解不等式的概念.[生]求不等式解集的过程叫解不等式. 3.议一议.请你用自己的方式将不等式x >5的解集和不等式x -5≤-1的解集分别表示在数轴上,并与同伴交流.[生]不等式x >5的解集可以用数轴上表示5的点的右边部分来表示(图1-3),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图1-3不等式x -5≤-1的解集x ≤4可以用数轴上表示4的点及其左边部分来表示(图1-4),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图1-4[师]请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明. [生]如x >3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.x <3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x ≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x ≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例题讲解投影片(§1.3 A )根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来. (1)x -2≥-4;(2)2x ≤8 (3)-2x -2>-10 解:(1)根据不等式的基本性质1,两边都加上2,得x ≥-2 在数轴上表示为:图1-5(2)根据不等式的基本性质2,两边都除以2,得x ≤4 在数轴上表示为:图1-6(3)根据不等式的基本性质1,两边都加上2,得-2x >-8 根据不等式的基本性质3,两边都除以-2,得x <4 在数轴上表示为:图1-7Ⅲ.课堂练习 1.判断正误:(1)不等式x -1>0有无数个解; (2)不等式2x -3≤0的解集为x ≥32. 2.将下列不等式的解集分别表示在数轴上: (1)x >4;(2)x ≤-1; (3)x ≥-2;(4)x ≤6. 1.解:(1)∵x -1>0,∴x >1 ∴x -1>0有无数个解.∴正确. (2)∵2x -3≤0,∴2x ≤3, ∴x ≤23,∴结论错误. 2.解:图1-8Ⅳ.课时小结本节课学习了以下内容1.理解不等式的解,不等式的解集,解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.Ⅴ.课后作业习题1.3Ⅵ.活动与探究小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?解:不正确.从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3.所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.因此说x<2是不等式x+3<6的解是错误的.●板书设计§1.3 不等式的解集一、1.现实生活中的不等式(水费问题);2.想一想(类推不等式中的有关概念);3.议一议(如何把不等式的解集在数轴上表示出来);4.例题讲解.二、课堂练习三、课时小结四、课后作业●备课资料参考练习1.用不等式表示:(1)x的3倍大于或等于1;(2)x与5的和不小于0;(3)y与1的差不大于6;(4)x 的41小于或等于2. 2.不等式的解集x <3与x ≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.3.不等式x +3≥6的解集是什么? 参考答案1.(1)3x ≥1;(2)x +5≥0;(3)y -1≤6;(4)41x ≤2. 2.x <3指小于3的所有数,x ≤3指小于3的所有数和3;在数轴上表示它们时,x <3不包括3,只是3左边的部分,x ≤3不仅包括3左边的部分,而且还包括3.在数轴上表示略. 3.x ≥3.●迁移发散 迁移1.根据下列数量关系列出不等式:(1)x 的3倍大于1;(2)x 与5的和是负数; (3)y 与1的差是正数;(4)x 的一半不大于8.解:(1)3x >1;(2)x +5<0;(3)y -1>0;(4)21x ≤8. 2.在-4,-2,-1,0,1,2,3中找出使不等式成立的x 的值. (1)2x +5>3;(2)5-x ≥3;(3)6≤3x +3. 解:(1)0,1,2,3;(2)-4,-2,-1,0,1; (3)1,2,3.3.在数轴上表示下列不等式的解集: (1)x >3;(2)x ≥0;(3)x <-4. 解:(1)图1-9(2)图1-10(3)图1-114.不等式x ≤5有多少个解?有多少个正整数解. 答:有无数个解.正整数解只有1、2、3、4、5.5.某种商品的进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%.那么商店要降多少元出售此商品?请列出不等式.点拨:利润率=进价进价售价-.解:设要降价x 元. 由题意列出不等式得:150150225--x ≥10%.发散本节我们用到了以前学过的数轴.你还记得这些吗?1.数轴定义:规定了正方向、原点、单位长度的直线叫做数轴.2.数轴上的点与实数的关系:一一对应.3.数轴上数的特点:右边的总比左边的大. ●方法点拨[例2]写出不等式x -5<-1的3个解,并写出这个不等式的解集. 解:3个解x =0,x =-1,x =1. 解集是x <4.4.求不等式解集的过程叫做解不等式.5.不等式的解集在数轴上的表示.①当不等式的解集是x >a 时.(如图1-1)图1-1在数轴上把表示a 的这个点用空心圆圈(表示不等于a )向右画一折线.表示数轴上a 右边的数字,都比a 大.②不等式的解集是x ≥a 时.(如图1-2)图1-2在数轴上把表示a 的这个点用实心圆点向右画一折线. ③当不等式的解集是x <a 时.(如图1-3)图1-3在数轴上把表示a的这个点用空心圆圈向左画一条折线.④当不等式的解集是x≤a时.(如图1-4)图1-4在数轴上把表示a的点用实心圆点向左画一折线.[例3]用数轴表示下列不等式的解集.(1)x≥-3 (2)x<-3.5解:(1)如图1-5图1-5(2)如图1-6图1-6[例4]根据数轴判断不等式的解集.(1)图1-7(2)图1-8解:(1)不等式的解集为x>-1.(2)不等式的解集为x≤2.3.不等式的解集作业导航理解不等式的解和不等式的解集的含义,会在数轴上表示不等式的解集.一、选择题1.下列说法中,正确的是( ) A.x =2是不等式3x >5的一个解 B.x =2是不等式3x >5的唯一解 C.x =2是不等式3x >5的解集 D.x =2不是不等式3x >5的解2.不等式-4≤x <2的所有整数解的和是( ) A.-4 B.-6 C.-8 D.-93.用不等式表示图中的解集,其中正确的是( )图1A.x >-3B.x <-3C.x ≥-3D.x ≤-34.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( ) A.a <0 B.a ≤-1 C.a >-1 D.a <-15.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A.x <2 B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >2 二、填空题6.当a ________时,x >ab表示ax >b 的解集. 7.不等式2x -1≥5的最小整数解为________. 8.如图2,表示的不等式的解集是________.图29.大于________的每一个数都是不等式5x >15的解. 10.如果不等式(a -3)x <b 的解集是x <3a b,那么a 的取值范围是________. 三、解答题11.在数轴上表示下列不等式的解集: (1)x >3 (2)x ≥-2 (3)x ≤4(4)x <-21 12.利用不等式的性质求出下列不等式的解集,并把它们的解集在数轴上表示出来: (1)-2x ≥3 (2)-4x +12<013.不等式的解集中是否一定有无限多个数?不等式|x |≤0、x 2<0的解集是什么?不等式x 2>0和x 2+4>0的解集分别又是什么? 14.已知-4是不等式ax >9的解集中的一个值,试求a 的取值范围. 15.已知不等式2x-1>x 与ax -6>5x 同解,试求a 的值.参考答案一、1.A 2.D 3.C 4.C 5.D二、6.>0 7.3 8.x <2 9.3 10.a >3 三、11.略 12.(1)x ≤-23(2)x >3 13.不等式的解集中不一定有无数多个数. |x |≤0的解集是x =0,x 2<0无解.x 2>0的解集为x >0或x <0,x 2+4>0的解集为一切实数. 14.a <-4915.2●作业指导 随堂练习1.解:(1)√ (2)×2.解:(1)x >4图1-12(2)x ≤-1图1-13(3)x ≥-2图1-14(4)x≤6图1-15习题1.31.解:有无数个解.如x=15,14,13,…,0,-1.都是它的解2.解:(1)x≤0图1-16(2)x>-2.5图1-172(3)x<3图1-18(4)x≥4图1-19§1.3 不等式的解集●温故知新想一想,做一做填空1.不等式的两边都加上(或减去)同一个整式,不等号的__________.2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________.3.不等式的两边都乘以(或除以)同一个负数,不等号的方向__________.4.规定了__________、__________、__________的直线叫做数轴.5.数轴上的点与实数之间是__________的关系.你做对了吗?我们一起来对对答案:1.方向不变2.不变3.变向4.正方向原点单位长度5.一一对应看看书,动动脑1.x=3能满足2x-1.5≥15吗?2.填空①__________叫做不等式的解.②__________组成不等式的解集.③__________叫做解不等式.§1.3 不等式的解集班级:_______ 姓名:_______一、认真选一选1.下列说法错误的是()A.-3x>9的解集为x<-3B.不等式2x>-1的整数解有无数多个C.-2是不等式3x<-4的解D.不等式x>-5的负整数解有无数多个2.如图1—3—1表示的是以下哪个不等式的解集()图1—3—1A.x>-1B.x<-1C.x≥-1D.x≤-13.把不等式x>2的解集表示在数轴上,以下表示正确的是()4.不等式-3≤x<2的整数解的个数是()A.4个B.5个C.6个D.无数个二、请你填一填1.如果3+2x 是正数,则x 的取值范围是________,如果3+2x 是非负数,则x 的取值范围是________.2.不等式|x |<37的整数解是________. 3.x 的3倍不大于-8,用不等式表示为________,其解集是________. 4.使不等式x >-47且x <2同时成立的整数x 的值是________ .三、请在数轴上表示下列不等式的解集(1)x ≥0 (2)x <-2.5 (3)-2<x ≤3四、请写出满足下列条件的一个不等式(1)0是这个不等式的一个解.(2)-2,-1,0,1都是不等式的解.(3)0不是这个不等式的解.(4)与x ≤-1的解集相同的不等式. (5)不等式的整数解只有-1,0,1,2.参 考 答 案一、1.D 2.D 3.C 4.B 二、1.x >-23 x ≥-23 2.-2,-1,0,1,2 3.3x ≤-8 x ≤-384.-1,0,1 三、(1)(2)(3)四、(1)x >-1(或x ≥0,x >-2等都可以)(2)x <2(或x ≤1,x ≥-2,x >-5等均可) (3)x >1(或x <-1等均可)(4)2x ≤-2(或x +1≤0,2x +2≤0等均可) (5)-1≤x ≤2(或-1.5<x <2.1等)。
不等式及其解集(学生)
不等式复习一一、双基回忆1、不等式:用等号〔<、≤、>、≥〕连接起来的式子,叫做不等式。
〔1〕用不等式表示:①x与1的差是负数:;②a的1/2与b的3倍大于2 ;③x、y的平方和是非负数。
2、不等式的解和解集使不等式成立的未知数的值叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
注意:解集包括解,所有的解组成解集;解是一个数,解集是一个范围。
〔2〕判断以下说法是否正确:①4是不等式x+3>6的解;②不等式x+2>1的解是x>-1;③3是不等式x+2>5的一个解;④不等式x+1<4的解集是x<2.3、一元一次不等式:含有一个未知数并且未知数的次数是1的不等式叫做一元一次不等式。
〔3〕以下不等式是一元一次不等式的是.①3x+5=1;②2y-1≤5;③2/x+1>3;④5+2<8;⑤3+x2≥x.4、不等式的性质:〔1〕不等式两边加〔或减〕同一个数〔或式子〕,不等号的方向不变.即如果a>b,那么a±c>b±c.〔2〕不等式两边乘〔或除以〕同一个正数,不等号的方向不变.即如果a>b,c>0,那么ac >bc(或a/c>b/c).〔3〕不等式两边乘〔或除以〕同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac <bc(或a/c<b/c).注意:①不等式的性质与等式的性质有相通之处,又有不同之点;②不等式的性质是解不等式的依据。
〔4〕a>b,填空:①a+3 b+3,②2a 2b,③- a/3 -b/3,④a-b 0.5、解一元一次不等式〔5〕解一元一次不等式: 2x≥5x+6,并在数轴上表示解集。
二例题导引例1 判断正误:①假设a>b,那么 ac2>bc2;②假设ac2>bc2,那么a>b;③假设2 a+1>2b+1,那么a>b;④假设a>b,那么1-2 a>1-2b.例2 解以下不等式,并把它们的解集在数轴上表示出来。
〔1〕3〔1-x〕<2(x+9); (2)112132x x ---≤.例3 a取什么自然数时,关于x的方程2-3x= a解是非负数?例4 小明和小丽决定把省下来的零用钱存起来,这个月小明顾虑了168元,小丽顾虑了85元,从下个月开始小明每月顾虑16元,而小丽每月存25元,问几个月后小丽的存款数能超过小明?三、练习提高夯实根底1、x的1/2与5的差不小于3,用不等式表示为。
2 不等式的解集与解法
第2讲、不等式的解集与解法(A)姓名:____________一、知识梳理(一)不等式的解及解集:1、不等式的解:使不等式成立的每一个未知数的值,叫做不等式的解。
2、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
它包含两层意思: 第一、解集中的任何一个数值,都能使不等式成立; 第二,解集外任何一个数值,都不能使该不等式成立。
因此,解集要达到不多不漏的严格要求。
3、不等式的解与解集的区别是:解是一个或几个未知数的值,解集是所有的解组成的集合,4、解不等式:求不等式解集的过程叫做解不等式 例1:判断下列说法是否正确?为什么?(1)x=1是不等式2x+1<7的解; (2)x=1是不等式2x+1<7的解集;(3)不等式2x+1<7的解集为x<1; (4)不等式2x+1<7的解集为x<3.即学即练:1、下列说法错误的是( )A 、-4不是不等式-2x<8 解B 、不等式-2x<8的解集是x<-4C 、不等式x>-4的负数解有无数个D 、不等式x>-4的正数解有无数个 2、下列各数中,哪些是不等式x+5<9的解?这个不等式有多少个解?-2,-1,0,1,2.5,5,4例2.下列说法①0=x 是012<-x 的解, ②31=x 不是013>-x 的解,③012<+-x 的解集是2>x ,其中正确的个数是( )A .0个B .1个C .2个D .3个 5、不等式的解集在数轴上的表示方法:“大向右,小向左,有等号是圆点,无等号是圆圈”.不等式的解集在数轴上的表示如下: ① 当不等式的解集是x >a 时。
(如图1-1)② 当不等式的解集是x ≥a 时。
(如图1-1)③ 当不等式的解集是x <a 时。
(如图1-1)④ 当不等式的解集是x ≤a 时。
(如图1-1) a0(图1-1)a(图1-3)a(图1-4)a 0(图1-2)例3.用不等式表示下图中的解.(1) ;(2) ;(3) .(二)一元一次不等式的概念:只含有一个未知数,并且未知数的最高次数是1,系数不为零,这样的不等式叫做一元一次不等式;其最简形式为ax>b ,或ax<b(a ≠0)。
(七年级数学教案)“不等式及其解集”教学案例
“不等式及其解集”教学案例七年级数学教案教学目标①感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;②经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;③通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
教学重点与难点重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
难点:正确理解不等式解集的意义。
教学准备教师:圆规、三角尺、CAI课件。
学生:圆规、三角尺。
教学设计教学过程设计意思说明提出问题多媒体演示:①两个体重相同的孩子正在跷跷板上做游戏。
现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了。
这是什么原因呢?②一辆匀速行驶的汽车在11:20时距离A地50千米。
要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣。
探究新知(一)不等式、一元一次不等式的概念②下列式子中哪些是不等式?(1)a+b=b+a (2)-3>-5 (3)x≠1(4)x+3>6 (5)2m<n(6)2x-3上述不等式中,有些不含未知数,有些含有未知数。
我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式。
③小组交流:说说生活中的不等关系。
分组活动。
先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”。
补充说明:用“≥”和“≤”表示不等关系的式子也是不等式。
(二)不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解。
不等式基本性质及其解集
不等式的基本性质及其解集【知识要点一】等式与不等式的基本知识对照表:等式不等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式 两边都乘以(或除以)同一个正数,不等号的方向不变两边都乘以(或除以)同一个负数,不等号方向改变【知识要点二】1.不等式的解:能使不等式成立的未知数的值.2.不等式的解集:一个含有未知数的不等式的所有解.3.解不等式:求不等式的解集的过程叫做解不等式.4.不等式解集的表示方法:a.用不等式表示:如32≥+x 的解集表示为:1≥xb.在数轴上直观表示如图: 如:a x >b x ≤b x a <≤ 【经典例题】例1.将下列不等式化为""a x >或""a x <形式(1)97<-x(2)145->x x (3)231>x (4)155<-xabba例2.在数轴上表示下列不等式的解集 (1)3-≥x (2)211<x (3)212321<≤-x (4)2||<x例3.求不等式212-≥-x 的非负整数解.练习:求出不等式431≤-≤-x 的解集,并求出其整数解.例4.已知02≤+x ,化简13222+-++x x例5.指出下列不等式成立的条件1.当0>a 时,0>ab 2.当0>a 时,0<ab3.当0<a 时,0<ab 4.当0<a 时,0>ab例6.如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围. 练习:1. ①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.2. 如果关于x 的方程323bx a x +=-的解是正整,求a 与b 的关系.例7.已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.☆基础探究☆1.由y x >得到ay ax <的条件是( ) A 、0>aB 、0≥aC 、0<aD 、0≤a2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.已知b a ,两数在数轴上对应的点如图所示,下列结论正确的是( ) A 、b a > B 、0<ab C 、0>-a b D 、0>+b a4.下列各数0,3,2.5,,4,21π-中,能使不等式12>-x 成立的是( ) A 、-4,π,5,2 B 、π,5,2 C 、π,5,2,3 D 、21,0,3 5.不等式143<x 的非负整数解是( ) A 、无数个B 、1C 、0,1D 、1,26.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集; (3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( ) A 、1个B 、2个C 、3个D 、4个7.如果b a >,用"">或""<填空 (1)a 2 b 2 (2)a 3- b 3- (3)a - b - (4)2a 2b(5)35a -b 35- (6)3+a 3+b8.如果b ax >,02<ac ,则xab 9.不等式21131<-x 的解集是 ,12≤-x 的正整数解为 . 10.若不等式a x <6的解集为3<x ,则a 的值为 .11.如果不等式1)1(+>+a x a 的解集为1<x ,那么a 必须满足 . 12.根据不等式性质,把下列不等式化成a x >或a x <的形式 (1)534+>x x(2)3132-<x (3)172<-x (4)123->-x xba 0☆综合能力提升☆ 13.在数轴上表示下列解集(1)大于-3而小于4的数 (2)所有不小于-4的数(3)所有不大于3的数 (4)绝对值小于3的数14.已知关于4152435+=-m m x 的解是非负数,求m 的取值范围,并在数轴上表示出来.15.已知不等式12≤-m x 的正整数解恰是1,2,求m 的取值范围.课后巩固1.设0<a ,则下列各式中不成立的是( ) A 、43+<+a aB 、a a 43<C 、a a -<-43D 、43aa ->-2.若4-<x ,则下列不等式成立的是( )A 、x x 42->B 、x x 42-≥C 、x x 42-<D 、x x 42-≤3.下列按要求列出的不等式中,不正确的是( )A 、m 不是负数,则0≥mB 、m 是非大于0的数,则0≤mC 、m 不小于-1,则1-≥mD 、m 是非正数,则0<m4.与063<-x 不同解的不等式为( ) A 、713<+xB 、63->-xC 、126<xD 、63-<-x5.下列说法中,错误的是( )A 、不等式13<x 的整数解有无限多个B 、不等式52<x 的整数解有有限个C 、不等式82<-x 的解集为4->xD 、不等式153<x 的正整数解有有限个 6.不等式1)2(>-x m 的解集为21-<m x ,则有( ) A 、2>mB 、2<mC 、3>mD 、3<m7.下列不等式中,解集为全体实数的是( ) A 、122+-x x >0 B 、02>x C 、x x 131<- D 、111<+-x x 8.若n m >时,m a 2n a 29.若22bc ac >,则a 3- b 3-10.若24ba ->-,则a b 2 11.不等式13<-x 的正整数解是 . 12.不等式5.5-≥x 的负整数解是 .13.如果关于x 的方程02=+kx 的根是3,那么不等式8)2(->+x k 的解集是什么?请你在数轴上表示出来.14.如果不等式x m x 253-<+没有正数解,求m 的值.15.关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.16.不等式a x <+32的正整数解恰为1,2,求m 的取值范围.。
不等式的解集-八年级数学下册课件(北师大版)
导引:当x=-3时,x+4=-3+4=1,所以A错;取一个能使不等式x> 3
2
成立的值,如x=2,代入不等式-2x>-3,发现不等式-2x>-3
不成立,故x=2不是-2x>-3的解,所以x>
3 2
不是不等式-2x>
-3的解集,故B错;不等式x>-5的负整数解只有-1,-2,-3,
-4,共4个,所以C错.
总结
判断一个数值是否是不等式的一个解只需代入验证即可.由于不 等式的解集必须符合两个条件: (1)解集中的每一个数值都能使不等式成立; (2)能够使不等式成立的所有数值都在解集中,因此如果解集内 有一个数能够使不等式不成立或解集外有一个数能够使不等式成 立,那么这个解集就不是这个不等式的解集.
1 判断正误:
(2)如果每根B型号钢丝有以下几种选择:39 cm,42 cm,43 cm, 45 cm,那么哪些合适?哪些不合适?
解:(1)2(2x+1)+2x ≥ 260. (2)分别将x=39,42,43,45代入2(2x+1)+2x ≥260,
可得39 cm,42 cm不合适,43 cm和45 cm这两种 都合适.
3 不等式的解集
(1)不等式x-3>0的解各有多少个?
(2)不等式的解与方程的解有什么不同?
知识点 1 不等式的解与解集
想一想
(1) x=4,5,6,7.2能使不等式x>5成立吗? (2)你还能找出一些使不等式x>5成立的x 的值吗?
1.不等式的解:能使不等式成立的未知数的值,叫做不 等式的解.
解: (1)x-4≥6,x ≥10,解集在数轴上的表示如图: (2)3x-1≤8,x ≤3,解集在数轴上的表示如图:
1 将下列不等式的解集分别表示在数轴上:
(1) x>4;
不等式及其解集教案
不等式及其解集教案第一章:不等式的概念与基本性质1.1 不等式的定义解释不等式的概念,强调不等号(>、<、≥、≤)的意义。
举例说明简单的不等式,如3 > 2。
1.2 不等式的基本性质介绍不等式的四条基本性质,包括:1. 两边加(减)同一个数(或式子),不等号方向不变。
2. 两边乘(除)同一个正数,不等号方向不变。
3. 两边乘(除)同一个负数,不等号方向改变。
4. 不等式两边乘以或除以同一个正数,不等号方向不变。
1.3 解不等式的基本步骤讲解解不等式的三个基本步骤:1. 去分母2. 去括号3. 移项并合并同类项第二章:一元一次不等式2.1 一元一次不等式的定义解释一元一次不等式的概念,强调未知数只有一个,且最高次数为1。
举例说明一元一次不等式,如2x 1 > 3。
2.2 解一元一次不等式讲解解一元一次不等式的步骤,包括:1. 去分母(若有)2. 去括号(若有)3. 移项并合并同类项4. 化简不等式5. 确定解集(不等式的解为解集内的所有实数)2.3 解集的表示方法介绍解集的两种表示方法:1. 区间表示法:使用开区间(>)、闭区间(≥)、半开半闭区间(<=)等符号表示解集。
2. 集合表示法:使用大括号{}包含解集中的所有解,如{x | x > 2}。
第三章:不等式的应用3.1 实际问题转化为不等式讲解如何将实际问题转化为不等式,强调找出关键信息并正确表示不等关系。
举例说明如何将实际问题转化为不等式,如“小明比小红高”可以表示为2 > 1。
3.2 解不等式解决问题讲解如何利用不等式解决实际问题,包括:1. 确定不等式的解集2. 根据实际情况筛选解集3. 得出最终答案3.3 不等式在生活中的应用实例提供一些生活中的实例,如购物优惠、比赛评分等,引导学生理解不等式在日常生活中的应用。
第四章:不等式的组合与解集的运算4.1 不等式的组合讲解如何将多个不等式组合起来,包括:1. 相加或相减2. 相乘或相除3. 组合不等式的解集4.2 解集的运算讲解如何对解集进行运算,包括:1. 并集:将两个解集合并,包含所有解。
不等式及其解集
不等式及不等式基本性质 一.不等式 定义:用不等号连接起来的式子叫做不等式. (1)常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. (2)列不等式注意找到问题中不等关系的词,如: 正数(>0) 负数(<0) 非正数(≤0) 非负数(≥0) 超过(>0) 不足(<0) 至少(≥0) 至多(≤0) 不大于(≤0) 不小于(≥0) (3)不等号具有方向性,其左右两边不能随意交换;但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1、用不等式表示 (1)a 与1的和是正数; (2)y 的2倍与1的和大于3; (3)x 的一半与x 的2倍的和是非正数; (4)c 与4的和的30%不大于-2; (5)x 除以2的商加上2,至多为5;(6)a 与b 两数的和的平方不可能大于3.例2:判断下列哪些式子是不等式,哪些不是不等式。
①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
练习:用不等式表示:①x 的平方是非负数: ②a 不大于b : ③x 的3倍与-2的差是负数: ;④长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 二.不等式的解与解集(1)不等式的解:使不等式成立的未知数的值,叫做不等式的解. 解析:不等式的解可能不止一个.例3、下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5(2)不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 不等式的解集。
不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。
解集包含边界点,是实心圆点; 不包含边界点,则是空心圆圈; ②确定方向:大向右,小向左。
求解不等式的解集
求解不等式的解集不等式在数学中是一个非常重要的概念,它描述了数值之间的大小关系。
解不等式的过程就是找出使不等式成立的数值范围,也就是解集。
在初中数学中,我们经常会遇到各种形式的不等式,如一元一次不等式、一元二次不等式等。
本文将针对不同类型的不等式进行举例、分析和说明,帮助中学生和他们的父母更好地理解和解决不等式问题。
一、一元一次不等式一元一次不等式是最简单的不等式形式,它的解集通常是一个数轴上的一段区间。
例如,我们来解一元一次不等式2x+3>5。
首先,我们可以将不等式转化为等价的形式2x+3-5>0,即2x-2>0。
接下来,我们可以通过变换不等式的形式来求解。
首先,我们将2x-2=0,得到x=1。
然后,我们在数轴上标出x=1的位置,并选择一个测试点,如x=0。
将x=0代入2x-2>0,得到2(0)-2=-2<0,不满足不等式。
因此,解集为x>1。
二、一元二次不等式一元二次不等式是稍微复杂一些的不等式形式,它的解集通常是一个数轴上的两个区间。
例如,我们来解一元二次不等式x^2-4x+3>0。
首先,我们可以通过因式分解或配方法将不等式转化为等价的形式(x-1)(x-3)>0。
然后,我们可以通过绘制函数图像或使用符号法来求解。
我们可以将函数y=(x-1)(x-3)的图像绘制在坐标系中,找出使函数大于零的区间。
根据图像,我们可以得到解集为x<1或x>3。
三、绝对值不等式绝对值不等式是一种特殊的不等式形式,它的解集通常是一个数轴上的多个区间。
例如,我们来解绝对值不等式|2x-1|<3。
首先,我们可以将不等式拆分为两个不等式,即2x-1<3和2x-1>-3。
然后,我们分别求解这两个不等式。
对于2x-1<3,我们得到解集为x<2;对于2x-1>-3,我们得到解集为x>-1。
最后,我们将两个解集合并,得到解集为-1<x<2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题: 1. 使不等式 x -5>4x -1 成立的最大整数是( ) A. -1B.-2C.2D.0x + y = 32.若方程组的解是正数,那么( )x -2y = a -3“>”填空) 3.若a +b2b +1,则a b (用“<”、“=”或“>”填空) 4.若不等式- 3x + n0的解集是x2 ,则不等式- 3x + n 0的解集是 .5.如果关于x 的不等式(a -1)xa +5和2x 4的解集相同,则a 的值为. 6. ____________________________________ 不等式 3(x +2)≥4+2x 的负整数解为.7. _________________________________________________________________ 若代数式3(2k + 5)的值不大于代数式5k -1的值,则k 的取值范围是 ____________________ .28. ________________________________________________________________________ 如果三角形的三边长分别是 3 cm 、( 1-2a ) cm 、8 cm ,那么 a 的取值范围是 __________ . 三、解答题: 1.如果不等式4x -3a >-1 与不等式 2(x -1)+3>5 的解集相同,请确定 a 的值A.a >3B.a ≥6C.-3<a <6 3.不等式 3(x -2)≤x +4的非负整数解有几个.( )A.4B.54.不等式 ax +b >0(a <0)的解集是(bbA.x >-B.x <-aaD.-5<a <3C.6 )D.无数个5.如果不等式(m -2)x >2-m 的解集是 x <- A.m >2 B.m <2C 6.若关于 x 的方程 3x +2m =2 的解是正数,则 A.m >1 B.m <1 7.已知(y -3)2+|2y -4x -a |=0,若 x 为负数 A.a >3 B.a >4二、填空题:21.当 2m 1时,点 P (3m - 2,m -1)在第 3C.x >D.x <aa1,则有()C.m =2D.m ≠2则m 的取值范围是( ) C.m ≥1 D.m ≤1 ,则a 的取值范围是( ) C. a >5 D.a >6象限.2.(1)若ab 0,则1(b -a )0;(2) a 2 - a + 2 -a +1(用“<”或b b2.已知方程ax +12 = 0的解是x = 3 ,求不等式(a + 2)x -6的解集。
3.如果关于x、y 的方程组2x - y = 10的解满足x>0且y<0,请确定实数a的取值范围. 3x + y =5a4.已知不等式5(x - 2)+ 8 6(x -1) + 7的最小整数解是方程2x - ax = 4的解,求a的值.一选择题1.下列不等式的解集,不包括-4 的是( )A.X≤-4B.X≥-4C.X<-6D.X>-62.下列说法正确的是( )A.X=1 是不等式-2X<1 的解集C.X>-2 是不等式-2X<1 的解集3.不等式X-3>1 的解集是( )A.X>2B. X>4C.X-2>4.不等式 2X<6 的非负整数解为( )B.X=3 是不等式 -X<1 的解集D. 不等式 -X<1 的解集是 X<-1A.X≥-2B. X>-2C. X<-26.下列说法中,错误的是( )A.不等式 X<5 的整数解有无数多个C.不等式-2X<8 的解集是 X<-47.-3X≤9 解集在数轴上可表示为( )D. X≤-2B.不等式X>-5 的负数解集有有限个A.0,1,2B.1,2C.0,-1,-2D.无数个5.用不等式表示图中的解集,其中正确的是( )8.-3x≤6 的解集是(9.用不等式表示图中的解集,其中正确的是(C 、x≠011.-3x≤6 的解集是13.下列说法正确的是(14.不等式x -3>1的解集是(15.不等式2x<6 的非负整数解为(16.下列 4 种说法:① x=45 是不等式 4x -5>0 的解;② x=52 是不等式 4x -5>0 的一 个解;③ x>54 是不等式4x -5>0的解集;④ x>2中任何一个数都可以使不等式4x -5 >0 成立,所以 x>2 也是它的解集,其中正确的有( )17.若(a -1)x a -1的解集为 x>1,那么a 的取值范围是(-2 -1 0-2 -1 01201A 、B 、C 、D 、A. x≥-2 C. x<-2 D. x≤-210.图中表示的是不等式的解集, 其中错误的是( A 、x≥-2B 、 x<1 01D 、x<0A 、 0 10 1 C 2、 12.下列说法中,错误的是(-2 ) D 、-1 0 -2 -1 0A.不等式 x<5 的整数解有无数多个B. 不等式 x>-5的负数解集有有限个C. 不等式-2x<8 的解集是 x<-4D. -40 是不等式 2x<-8 的一个解A.x =1 是不等式-2x<1 的解集B. x =3 是不等式-x<1 的解集C. x>-2是不等式-2x<1 的解集D. 不等式-x<1 的解集是 x<-1 A.x>2B. x>4C.x -2>D. x>-4A.0,1,2B.1,2C.0,-1,-2D.无数个A 、1个B 、2 个C 、3 个D 、4 个A 、a>0B 、a<0C 、a<1D 、a>1B. x>-2二填空题1.不等式X-3<1 的解集是____________ .2. _________________________________ 如图所示的不等式的解集是.3. _________ 当 X ____________________________ 时,代数式 2X-5 的值为0,当 X 时,代数式2X-5 的值不大于 0.4.不等式的解集在数轴上表示如图所示,则该不等式可能是_______________ .5.当 x _____ 时,代数式 2x-5 的值为 0,当 x _____ 时,代数式 2x-5 的值不大于 0.6.不等式-5x≥-13的解集中,最大的整数解是 ___________ .7.不等式x+3≤6 的正整数解为___________________ .8.不等式-2x<8 的负整数解的和是_______ .9.直接想出不等式的解集:(1) x+3>6 的解集;(2)2x<12 的解集;(3)x-5>0的解集;(4)0.5x>5 的解集;10.一个不等式的解集如图所示,则这个不等式的正整数解是___.-1 0 1 2 3 411.恩格尔系数 n 是指家庭日常饮食开支占家庭收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的 n值如下所示:如用含 n 的不等式表示,则贫困家庭为;小康家庭为;最富裕国家为;当某一家庭 n=0.6 时,表明该家庭的实际生活水平是.12.3x>-6的解集是,-1x <-8的解集是;413.14x-7(3x-8)<4(25+x)的负整数解是()三解答题1.在数轴上表示下列不等式的解集:1)x≥-3.52)x<-1.52 3 2 25.2+x 2x +16.x +5-13x +2-4 -3 -2 -1 0 1 2 3(3) x ≥2-4 -3 -2 -1 0 1 2 3( 4)- 1 ≤ x <2-4 -3 -2 -1 0 1 2 3-4 -3 -2 -1 0 1 2 32.在数轴上表示下列不等式的解集.(1) X>2.5; (2) X<-2.5; (3) X ≥ 33.试求不等式 X+3≤6 的正整数解.4.已知x 的1 与3的差小于x 的-1 与-6的和,根据这个条件列出不等式.你能估计出它 22 的解集吗?5.种饮料重约 300g ,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?6.求不等式 1+x>x -1 成立的 x 取值范围.一. 解下列不等式,并在数轴上表示出它们的解集. 1. 3x + 22 x - 82.3 - 2x 9 +4 x3. 2(2x + 3) 5(x +1)4. 19-3(x +7) 0-26 x -1 6 x - 115. - 2 x -216.- 2 x 1 - 2442x -1 5x + 1 x +2 2x -1 19.- 120.32231、已知3(5x +2)+54x -6(x +1),化简 3x +1-1-3x 。
7.3x + 2 2 x - 58.x -4 39. 3(y +2)-18-2(y -1)m m -110.- 13 211.3[ x - 2( x - 2)] x - 3( x - 2)12.3x - 2 9 - 2 x 5x + 1- 33213.3(x +1)8+23- 14.12[x -12(x +1)]52(x -1)17.5(x -2)+8 6(x -1)+718.5 - 2( x - 3) 6x - 4。