结构力学(二) ( 第2次 )

合集下载

结构力学课后习题答案(2)

结构力学课后习题答案(2)

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1〜2-14 试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,指出多余则应联系的数目。

题2-2图题2-3图题2-5图题2-6图题2-8图题2-9图题2-10图题2-11图题4-1图4-2 作图示刚架的M 图。

3-1 试作图示多跨静定梁的M 及Q 图。

习题(a)1.5m 1 2m I2.5m | 1.5m l 4.5m题3-1(b)3-2 试不计算反力而绘出梁的M 图。

4m40kN(a) 5kN/mM(b )4-1 作图示刚架的M 、Q 、N 图。

2kN /m2kN • m (a)2kN 题3-2习题4(b ) (c )4-3 4-4 4-54m(a)(d)作图示三铰刚架的M图。

M=4Pa2a(b)4kN4m 4m(c)珂10kN/m4m(e)题4-2图CE0.5m ]m2J 0.5m7mB7m(a)题4-3作图示刚架的M图。

(a)I 盒lUlUUW已知结构的M图,试绘出荷载。

10kN/m1.5m题4-4图urm*~ G3mC7.35m 7.35m(b)m6Nn m220kN40kN/m4m(b)C_PaPaPaa4-6 检查下列刚架的M图,并予以改正。

5-15-2 题4-5图(b)P(d)(e) (f)(c)题4-6图习题5图示抛物线三铰拱轴线方程4 f1kN/mx)x,(h)试求D截面的内力。

20kN10m题5-1图K15m j 5ml=30m带拉杆拱,拱轴线方程 y ,求截面的弯矩。

题5-3图习题66-1 判定图示桁架中的零杆。

6-2 6-3 6-4 6-5 用结点法计算图示桁架中各杆内力。

(b) (c)m题6-2用截面法计算图示桁架中指定各杆的内力。

3m [ 3m3m I 3m题6-3试求图示组合结构中各链杆的轴力并作受弯杆件的用适宜方法求桁架中指定杆内力。

《结构力学第2章》课件

《结构力学第2章》课件
《结构力学第2章》PPT 课件
结构力学是研究物体在外力作用下产生的应力和应变的学科。在建筑设计和 工程中,弹性力学有着广泛应用,本课件将带您深入了解弹性力学的基本理 论和应用。
弹性力学的基本概念
线弹性力学和平面弹性力学
介绍弹性力学研究的两个主要领域,涵盖了结 构力学的基础知识。
应力和应变的概念
引入应力和应变的概念,介绍了它们在弹性力 学中的重要性和计算方法。
应变-应力关系
介绍了弹性体中应变和应力之间的基本方 程,揭示了它们之间的关联。
平面弹性力学的基本理论
平面应力和平面应变 的基本方程
解释了平面弹性力学中应力和 应变的基本方程,为进一步的 研究提供基础。
平面问题的求解方法
介绍了平面问题的求解方法, 如解析法和数值计算方法,为 工程实践提供指导。
平面问题的应用
总结了弹性力学的核心概念和研究领域,强调 了它在物体力学研究中的重要性。
弹性力学在建筑设计和工程中有着广 泛应用
强调了弹性力学在建筑设计和工程实践中的重 要性,以及其对结构稳定性和变形控制的影响。
探讨了平面弹性力学在工程中 的应用,如桥梁设计和建筑物 承重分析。
建筑物中的弹性力学问题
弹性力学在建筑设计中的应用
探索了弹性力学在建筑物设计中的重要性,如结构 稳定性和变形控制。
建筑物的弹性问题和偏心受力
分析了建筑物中的弹性问题,以及由偏心受力引起 的应力分布和变形。
结论
弹性力学是研究物体在外力作用下ቤተ መጻሕፍቲ ባይዱ 生的应力和应变的学科
弹性行为的特征
深入探讨物体在受力作用下的弹性变形,解释 了弹性体的特点和规律。
本构关系的定义和表示
讲解了本构关系的概念,以及在弹性力学中如 何表示不同物体的本构关系。

中南大学《结构力学》课程作业二及参考答案

中南大学《结构力学》课程作业二及参考答案

(一) 单选题1. 图(a)所示结构,杆件刚度EI常数。

用力法求解时,取图(b)所示基本系,要使力法方程中的副系数全部为零,刚x、y应满足下列哪个条件()。

(A) x a/3,y b/3;(B) x a/2,y b/2;(C) x a/3,y b/2;(D) x a/2,y b/3;参考答案:(A)2.图示(a)、(b)两结构,当A支座顺时钟发生单位角位移时,(a)、(b)两图中,与的关系为()。

(A)(B)(C)(D)参考答案:(C)3. 图示结构,在给定荷载作用下,支座反力(向右为正)和(向上为正),轴力(以拉为正)分别为()。

(A)(B)(C)参考答案: (C)4.图示对称结构受荷载作用,则D支座反力为()。

(A),方向向上;(B) ,方向向下;(C) ,方向向上;(D) ,方向向下;参考答案:(A)5.图(a)所示组合结构,取图(b)为其力法计算基本系,则,分别为()。

(A)(B)(C)(D)参考答案:(D)6. 图A图D所示结构均可作为图(a)所示结构的力法基本结构,使得力法计算最为简便的基本结构是()。

(A) A (B) B (C) C (D) D参考答案:(C)7. 图示超静定结构及其M图,要校核其正确性可采用下述哪种做法()。

点位移(A)计算E(B)计算D点水平位移及E 点竖向位移点位移(C)计算E参考答案:(BB)8. 图示超静定梁,截面的高度为h,线膨胀系数为,,。

图(a)中梁的上、下面的温度均长高,图(b)中梁上面的温度为,而梁下面的温度为,下面结论正确的是()。

(A) 图(a)、图(b)中梁的内力是一样的,只有轴力(B) 图(a)所示梁中只有轴力,图(b)所示梁中只有弯矩(C) 图(a)所示梁中有轴力和弯矩,图(b)所示梁中只有弯矩(D) 图(a)所示梁中只有轴力,图(b)所示梁中有轴力和弯矩参考答案:(A)9. 图示为结构及其力法基本系,则力法典型方程的自由项为()。

(A)参考答案:(B)10. 图示对称结构,力法求解时,未知量最少为()。

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析
普通机械中使用的机构有一个自由度,即只有一种运 动方式;
一般工程结构都是几何不变体系,其自由度为零。 凡是自由度大于零的体系就是几何可变体系。
精品课件
8
2-1 几何构造分析的几个概念 四、约束 约束是指限制物体或体系运动的各种装置,可以分为外部约 束和内部约束两种。
外部约束:体系与基础之间的联系,也就是支座; 内部约束:体系内部各杆之间或结点之间的联系,比如铰结 点,刚结点和链杆等。
用铰和基础相连的运动情况完全相同。
从瞬时微小运动来看,两根链杆所起的约
束作用相当于在链杆交点处的一个铰所起
I C
的约束作用,这个铰称为 瞬铰
A
在体系运动的过程中,瞬铰的位置随之变
1
2 化。
B
D 用瞬铰替换对应的两个链杆约束,这种约
束的等效变换只适用于瞬时微小运动。
精品课件
20
2-1 几何构造分析的几个概念
精品课件
31
2-2 平面几何不变体系的组成规律 四、体系的装配
1 从基础出发进行装配-【例2-1】
① A
② ④
⑤ C
⑥ ⑧
⑩ E
③ B ⑦D⑨
① A
② ④
③B
⑤ C
⑥ ⑧
⑩ E
⑦D ⑨
精品课件
32
2-2 平面几何不变体系的组成规律 四、体系的装配 1 从基础出发进行装配-【例2-2】
A

B Ⅲ CⅣ D
A
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I

结构力学第二章

结构力学第二章

结构⼒学第⼆章第⼆章平⾯体系的机动分析主要讨论平⾯杆件结构的组成规律和合理形式§2-1 ⼏何构造分析的⼏个概念⼀、平⾯杆件结构和平⾯杆件体系[结构(从⼏何):⼀维杆件(平⾯+空间)、⼆维平⾯(板壳、薄壁)、三维空间(实体)。

狭义研究: ]平⾯杆件结构:两个特点(构筑物、建筑物)简⽀梁(桥)1)所有杆件的轴线在⼀个平⾯内2)承担荷载(作⽤在该平⾯内)、⾻架作⽤:位置、⼏何形状不随时间变(不考虑材料应变)平⾯杆件体系⼏种形式:结合例⼦1)⼏何不变体系:有斜撑的桁架(⽔平、竖向、⼒矩)体系受到任意荷载作⽤后,若不考虑材料的应变,⽽能保持其⼏何形状不变,位置不变。

静定+超静定:多余联系+全部反⼒及内⼒的确定2)⼏何可变体系:四连杆机构(筛⼦)体系受到任意荷载作⽤后,即使不考虑材料的应变,其⼏何形状、位置可变。

⼜有两种形式:⼏何常变体系:原为⼏何可变体系,经微⼩位移后仍能继续发⽣刚体运动的⼏何可变体系,为。

⼏何瞬变体系:原为⼏何可变体系,经微⼩位移即转化为⼏何不变体系,称为,它是可变体系的特殊情况。

如图:施加任意荷载P,变形任意⼩的θ⾓,由结点2的平衡条件:2Nsinθ=P N=P/2sinθ→∞、⽀座反⼒→∞⼏何体系划分:⼏何不变体系⼏何可变体系:⼏何常变体系瞬变体系(从不能平衡到平衡的过程中,会产⽣巨⼤的内⼒或⽀座反⼒,使结构破坏,绝对不能应⽤于⼯程中)引出本章三个主要⽬的:(要解决问题)1)给定⼀个体系:不变、可变、瞬变,判定,只有2)杆件如何拼接成为结构,创造新的合理的结构形式3)最合理的组成⽅式,最优⼏何组成分析:结构应当承受外荷载,起⾻架作⽤,要求结构的⼏何组成应当合理,受载后应保持其⼏何形状和位置不变(排除材料应变引起的变形)。

杆件结构是由许多杆件组成,⽽许多杆件组成的体系并不⼀定是结构。

杆件组成结构应该满⾜⼀定的规则。

⽬的:1)杆件体系能否作为结构2)组成结构的规则,杆件如何组合才能成为结构。

结构力学 第二章 几何组成分析(典型例题)

结构力学 第二章 几何组成分析(典型例题)

[例题2-1-1]计算图示体系的自由度。

,可变体系.(a) (b)解:(a)几何不变体系,无多余约束(b )几何可变体系[例题2-1—2]计算图示体系的自由度。

桁架几何不变体系,有多余约束. 解:几何不变体系,有两个多余约束[例题2-1-3]计算图示体系的自由度。

桁架自由体。

解:几何不变体系,无多余约束[例题2-1—4]计算图示体系的自由度。

,几何可变体系。

解:几何可变体系[例题2-1—5]计算图示体系的自由度。

刚架自由体。

解:几何不变体系,有6个多余约束[例题2-2—1]对图示体系进行几何组成分析。

两刚片规则.几何不变体系,且无多余约束[例题2-2-2]对图示体系进行几何组成分析。

两刚片规则。

几何不变体系,且无多余约束[例题2-2-3]对图示体系进行几何组成分析。

两刚片规则。

几何不变体系,且无多余约束[例题2-2—4]对图示体系进行几何组成分析。

两刚片规则。

几何不变体系,有一个多余约束[例题2—2—5]对图示体系进行几何组成分析.二元体规则.几何不变体系,且无多余约束[例题2-2—6]对图示体系进行几何组成分析.两刚片规则,三刚片规则.几何不变体系,且无多余约束[例题2-2-7]对图示体系进行几何组成分析。

三刚片规则。

几何不变体系,且无多余约束[例题2-2-8]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3-1]对图示体系进行几何组成分析.两刚片规则。

几何瞬变体系[例题2—3—2]对图示体系进行几何组成分析。

两刚片规则。

几何瞬变体系[例题2-3-3]对图示体系进行几何组成分析。

三刚片规则。

几何瞬变体系[例题2—3-4]对图示体系进行几何组成分析。

三刚片规则。

几何不变体系,且无多余约束[例题2-3-5]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3—6]对图示体系进行几何组成分析。

二元体规则,三刚片规则.几何瞬变体系[例题2-3-7]对图示体系进行几何组成分析。

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析
结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析

链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。

结构力学(2)(专升本)阶段性作业2

结构力学(2)(专升本)阶段性作业2

结构力学(2)(专升本)阶段性作业2总分: 100分考试时间:分钟单选题1. 位移法方程的实质是_____。

(7分)(A) 平衡方程(B) 位移方程(C) 物理方程(D) 平衡方程与位移方程。

参考答案:A2. 图示超静定结构,如果用位移法求解,则基本未知量个数为_____。

(7分)(A) 1(B) 2(C) 3(D) 5参考答案:B3. 图示结构位移法最少未知量个数为_____。

(7分)(A) 1;(B) 2;(C) 3;(D) 4。

参考答案:C4. 在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量_____。

(7分)(A) 绝对不可;(B) 一定条件下可以;(C) 可以,但不必;(D) 必须。

参考答案:C5. 图示刚架用位移法计算时,自由项的值是_____。

(6分)(A) -10(B) -14(C) 10(D) 14参考答案:A6. 用位移法求解图示结构时,独立的结点角位移和线位移未知数数目分别是_____。

(6分)(A) 3,3(B) 4,3(C) 4,2(D) 3,2参考答案:C判断题7. 图示结构用位移法求解时,基本未知量数目为3,用力法求解,则基本未知量数目为5。

(6分)正确错误参考答案:错误解题思路:8. 位移法典型方程的右端项一定为零。

(6分)正确错误参考答案:正确解题思路:9. 位移法以结点力为基本未知量。

(6分)正确错误参考答案:错误解题思路:10. 位移法的典型方程与力法的典型方程一样,都是变形协调方程。

(6分)正确错误参考答案:错误解题思路:11. 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。

(6分)正确错误参考答案:正确解题思路:12. 位移法未知量的数目与结构的超静定次数有关。

(6分)正确错误参考答案:错误解题思路:13. 结构按位移法计算时,其典型方程的数目与结点位移数目相等。

(6分)正确错误参考答案:错误解题思路:14. 位移法的基本结构可以是静定的,也可以是超静定的。

结构力学(第二章)

结构力学(第二章)
1)组装几何不变体系 (1)从基础出发进行组装 把基础作为一个刚片,然后运用各条规律把基础和其它构 件组装成一个不变体系。 例2-4: 搭上了5个
刚片1
二元体
第二章
例2-5: 1 2
平面体系的机动分析
刚片1 二元体
二元体
§2-2 几何不变体系的组成规律
3
二元体
地基作为刚片2
没有多余约束的几何不变体系
连接n个刚片的复铰,
相当于n-1个单铰。
还有5个自由度
第二章
(4)刚结点
平面体系的机动分析
一个刚结点能减 少三个自由度,相 当于三个约束。
用刚节点连接
还有3个自由度 相当于2个刚节点
连接n个刚片的刚结点?
第二章
平面体系的机动分析
=3m-(2h+r)=2j-(b+r)
第二章
平面体系的机动分析
第二章
规律1:一个刚片与一个点用两根链杆相连,且三 个铰不在一条直线上,则组成几何不变体 系,并且没有多余约束。
第二章
平面体系的机动分析
§2-2 几何不变体系的组成规律
二元体 两根不在一条直线上的 链杆用一个铰连接后,称 为二元体。 规律1还可以这样叙述: 在一个体系上加上或去掉一个二元体,是不会
改变体系原来性质的。
第二章
(1)点的自由度
Y
平面体系的机动分析
x A
y
X
点在平面内的自由度为: 2
第二章
(2)刚片的自由度
平面体系的机动分析
刚片——就是几何尺寸和形状都不变的平面刚体
由于我们在讨论体系的几何构造时是不考虑材料变形的, 因此我们可以把一根梁、一根柱、一根链杆甚至体系中已被确定 为几何不变的部分看作是一个刚片。 Y

结构力学第二章

结构力学第二章
第2章 平面体系的几何组成分析
1
本章导读
学习内容: 1.掌握几何不变体系、几何可变体系、瞬变体系的概念, 2.掌握刚片、自由度、约束、实铰与虚铰的概念; 3.了解平面体系的计算自由度及其计算方法; 4.掌握平面几何不变体系的基本组成规则及其运用; 5.了解体系的几何组成与静力特性之间的关系。
学习目的:体系的 几何组成分析是判定体系能否作为建筑结构 使用的依据,可以确定静定结构计算途径,可以确定超静定结 构的多余约束的数目等。
固定一点
固定两刚片
固定一刚片
36
(2)从内部刚片出发构造 从刚片出发,由内及外,内外联合形成整体体系。
若上部体系与基础由不交于一点的三 杆相连,可去掉基础只分析上部体系
37
(3)从规律出发,由内及外,内外联合形成整体体系。
利用虚铰
铰杆代替
例如三铰拱
大无地多、余A几C何、不BC变为刚片;A、B、C为单铰
II
A II
I
I
A(∞) II I
表述二:平面上的两个刚片通过三根链杆相连,如果这些链杆不全平
行且所在直线不全交于一点,则组成内部几何不变且无多余约束的体
系。
31
3. 三刚片规则
三个刚片用三个不共线的绞两两相连,所得的体系为无多余约束几何不 变体系。
II
II
I
I
32
规律1. 规律2. 规律3. 规律4.
3
c.几何瞬变体系:不考虑材料的变形,在任何荷载作用下, 几何形状和位置可能产生微小的改变,随之即变成几何不 变体系的体系。
FP
FP
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
4
d.几何常变体系:体系缺少约束或约束布置不恰当,没有确定的几 何形状与空间位置的体系(可发生持续大量的刚体位移)。

全国自考结构力学(二)真题及参考答案

全国自考结构力学(二)真题及参考答案

精心整理全国2010年4月高等教育自学考试结构力学(二)试题及其答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.图示结构,K 截面弯矩值为(内侧受拉为正)( )A .0B .41F P lC .21F P l D .F P l2 )A B C .折线D 3A .55kN B .15kN C .-D .-4A .0B .2P F C .22F P D .F P5.用位移法计算图示结构(EI =常数)时,基本未知量的个数最少为( )A .9B .8C .7D .66.在线弹性体系的四个互等定理中,最基本的是( )A .位移互等定理B .反力互等定理C .位移反力互等定理D .虚功互等定理 7.图示结构中,BD 杆B 端截面弯矩值为( )A .0.3MB .0.4MC .0.5MD .0.6M8.F P =1在图示梁AE 上移动,K 截面弯矩影响线上竖标等于零的部分为( )A B C D 9为常数,结构刚度矩阵元素K 33等于( )A B C D 10)A B .36ml EI C D .3ml EI小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.图示桁架中1杆的轴力为__________。

12.支座位移引起的位移计算公式i i C R ·∑-=∆中i R 为__________。

13.图示梁B 截面的转角为__________。

14.图示结构,A 支座反力F Ay 的影响线方程为__________。

15.当远端为定向支座时,弯矩传递系数为__________。

16.根据__________定理,结构刚度矩阵为对称矩阵。

17.图(b)为图(a)所示梁B支座反力影响线,其竖标y C=__________。

18.用矩阵位移法求解图示结构时,结构刚度矩阵的阶数为__________。

结构力学第二章

结构力学第二章
Ⅱ Ⅱ
Ⅰ (a) 几何常变体系 [Ⅰ, Ⅱ] Ⅱ
Ⅰ (b) 几何常变体系

2 1 3
Ⅰ (c) 几何瞬变体系
Ⅰ (d) 几何瞬变体系
图2.26 不满足二刚片规则表述二的几何可变体系
42
3)不满足三刚片规则的约束条件
如果三铰共线,且全是有限远铰,则体系几何瞬变,如
图2.27所示。
Ⅱ Ⅰ

Ⅱ Ⅰ

Ⅱ Ⅰ
(a) W<0且几何不变
(b) W<0且几何可变
W<0,表明体系具备多余的约束装置,但若约束布置不合理,有可能为几何可变
27
4. 平面几何不变体系的基本组成规则
A ② B Ⅰ ≠ ③ C Ⅱ B Ⅰ A ③ C
(b) 二元体规则 ②
A ③ ① B C (a) 总规则
(c) 两刚片规则表述一
A Ⅱ ③ B ④ ⑤ Ⅰ C
在体系中添加或去掉二元体,不会改变体系的几何性质和多余约 束数。
2. 两刚片规则
I
表述一:平面上的两个刚片通过一铰和一链杆相连,如果链杆所在
直线不通过铰心,则组成内部几何不变且无多余约束的体系
A(∞) II
II I
A
II
I
I
表述二:平面上的两个刚片通过三根链杆相连,如果这些链杆不全平 行且所在直线不全交于一点,则组成内部几何不变且无多余约束的体 系。 30
Ⅰ A B ① C
图2.25 不满足二刚片规则表述一的几何瞬变体系
41
对表述二,可分为图2.26所示的两类四种情况来讨论: (1)三根链杆常交一点,则体系几何常变,如图2.26 (a)、 (b),其中图2.26(b)中三根链杆全部平行且等长。 (2)三根链杆瞬交一点,则体系几何瞬变,如图2.26 (c)、 (d),其中图2.26 (d)中三根链杆全部平行但不全等长

结构力学第2章习题及参考答案

结构力学第2章习题及参考答案
: ; :
(2)BC部分(图(c-2)):
: ; :

(3)可以很方便地画出整个结构的弯矩图。
2-19(d)
解D结点(图(d-1)):
(考虑对称性):
AD杆(图(d-2)):
(考虑对称性):
取整体为隔离体

这样,ECF部分为一个顶铰作用集中荷载2FP的三铰刚架。整个结构的弯矩图就可以画了。
2-20试作图示结构的弯矩图。
第2章习题
2-1试判断图示桁架中的零杆。
2-1(a)
解静定结构受局部平衡力作用,平衡力作用区域以外的构件均不受力。所有零杆如图(a-1)所示。
2-1 (b)
解从A点开始,可以依次判断AB杆、BC杆、CD杆均为无结点荷载作用的结点单杆,都是零杆。同理,从H点开始,也可以依次判断HI杆、IF杆、FD杆为零杆。最后,DE杆也变成了无结点荷载作用的结点D的单杆,也是零杆。所有零杆如图(b-1)所示。


2-12图示圆弧三饺拱,求支座反力及截面D的M、FQ、FN值。
解(1)求支座反力。
, ,
(2)求等代梁D截面内力
(3)求三铰拱D截面内力

2-13求图示三铰拱结构的支座反力,链杆轴力,并求指定截面K的弯矩。
解(1)求支座反力
, ,
(2)链杆轴力
取CEB部分为隔离体
(3)求K截面的弯矩
取KAD部分为隔离体
由式(a)、(b)和(c)得
FNOG=FNGH=FNOH=0
同理,可判断在TRE三角形中
FNSK=FNKL=FNSL=0
D结点也是“K”结点,且处于对称荷载作用下的对称轴上,故ID、JD杆都是零杆。所有零杆如图(c-1)所示。

结构力学(第二章)-三铰拱课件

结构力学(第二章)-三铰拱课件
稳定性分析对于结构的整体稳定性和安全性具有 重要意义。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。

结构力学二知识点

结构力学二知识点

结构力学二知识点
结构力学二的知识点包括以下几种:
1.超静定结构:超静定结构是指静定结构在小变形下仍然保持稳定的结构。

超静定结构的特点是结构的整体相对于其中某一部分是超静定的。

2.力法:力法是求解超静定结构位移的一种方法。

力法的基本原理是采用力
矩分配法,将超静定结构转化为静定结构,从而求解位移。

3.位移法:位移法是求解超静定结构位移的另一种方法。

位移法的基本原理
是采用等截面直杆的杆端力方程,根据位移函数求解结构的位移。

4.渐近法:渐近法是求解超静定结构位移的一种近似方法。

渐近法的基本思
想是采用折线法,将位移函数折成直线,从而求解结构的位移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2次作业
一、单项选择题(本大题共60分,共 20 小题,每小题 3 分)
1. 单自由度体系在简谐荷载作用下如果频率比大于1,则要减小振动幅值需采取措施(D )
D. 减少刚度,增加质量
2. 图示体系是(A )
A. 几何瞬变有多余约束
3. 图示体系的动力自由度为 ( B)
B. 3
4. 位移法典型方程中的K ij的含义是(B)
B. 基本结构附加约束j单独发成单位位移Δj=1时,在附加约束i处产生的约束力
5. 单位荷载作用在简支结间梁上,通过结点传递的主梁影响线,在各结点之间:(C)
C. 均为直线
6. 若考虑剪力和轴力的影响.截面极限弯矩的数值将( B)
B. 减小
7. 下面那一种体系可以用来作为结构(A )
A. 几何不变体系
8. 平面杆件结构在等效结点荷载作用下与原非结点荷载作用下产生相同的(A )。

A. 结点位移
9.
单自由度体系的自由振动主要计算 ( A )
A.
频率与周期
10. 在竖直向下荷载作用下,等截面连续梁的破坏机构是(A )
A. 各跨独立形成
11. 力法方程中的δij的意义是(A)
A. 基本结构在X j=1单独作用下,沿X i方向的位移
12. 图示两结构及其受载状态,它们的内力符合。

(B)
B. 弯矩相同,轴力不同
13. 平面杆件结构一般情况下的单元刚度矩阵[K]6×6,就其性质而言,是:(B )
B. 对称、奇异矩阵
14. 己知某单元的定位向量为 [0 3 5 7 8]T,则单元刚度系数K24应叠加到结构刚度矩阵的元素(B)
B.
15. 已知图示梁在P=5kN作用下的弯矩图,则当P=1的移动荷载位于C点时K截面的弯矩影响线纵标为:(B)
B. -1m
16. 力法基本方程的建立表明基本体系与原结构具有相同的(C)
C. 受力和变形形态
17. 图示两自由度体系中,弹簧刚度为C,梁的EI=常数,其刚度系数为:(B)
B. K11=48EI/ (L*L*L)+C,K22=C,K12=K21=-C
18. 据影响线的定义,图示悬臂梁C截面的弯矩影响线在C点的纵标为:(A )
A. 0
19. 图为两个自由度振动体系,其自振频率是指质点按下列方式振动时的频率(D )
D. 按主振型形式振动
20. 矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系:(C )
C. 结点力与结点位移
二、判断题(本大题共40分,共 20 小题,每小题 2 分)
1. 图示结构,若增大拉杆的刚度EA,则A截面弯矩绝对值的变化趋势是增大。

(X)
2. 结构刚度方程[K]{Δ}={P}表示结点的变形条件。

(X )
3. 如图所示结构不能用力矩分配法求解,也不能用剪力分配法求解。

(V)
4. 变形体虚功原理仅适用于线性弹性体系,不适用于非线性非弹性体系(X )
5. 用单位荷载法计算结构位移时,用于计算外力虚功的广义力是虚设的广义单位力,而相应的广义虚位移是拟求的实际位移(V )
6.
如图所示结构中的支反力R1=0,R2≠0(X)
7. n个自由度体系有n 个自振周期,其中第一周期是最长的。

(V )
8. 对于多跨静定结构,基本结构产生变形则附属结构也产生变形。

(X )
9. 静定结构的反力、内力影响线,均由一段或数段直线所组成。

(V )
10. 位移反力互等定理对线弹性的静定结构和超静定结构均适用( V)
11. 支座移动和温度改变会影响连续梁极限荷载的数值。

(X )
12.
用矩阵位移法计算时不需要区分是静定或超静定结构。

( V )
13. 几何可变体系在任何荷载作用下都不能平衡。

(X )
14. 动力位移总是要比静力位移大一些。

(V )
15. 简支梁的弯矩包络图为活载加恒载作用下各截面最大弯矩的连线。

( V)
16. 伸臂梁的内力及反力影响线可以在对应的简支梁影响线的基础上将图形线段延长到杆件的伸臂端即可得出正确的结果( V)
17. 功的互等定理仅适用于线性弹性体系,不适用于非线性非弹性体系( V)
18.
如图所示,结构EI1 =∞,EI=常数,则两柱的弯矩和剪力均为0。

(V)
19.
如图所示杆件的转动刚度SAB=3EIl。

(V)
20. 图示两杆 AB 与 CD 的EI和l相等,A 端的转动刚度S AB大于 C 端的转动刚度S CD (V)。

相关文档
最新文档