必修一课后练习答案
人教版数学必修一课后习题答案
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈"或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}A B x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B .4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉"填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}AB x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ,()R A B ,()R A B ,()R A B . 10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}AB =,则集合B 有 个. 1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,AB A B . 3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅. 4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()131f x x x =-++. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦",与A 4.设素60相对应中元B 中的元素是什么?与B 中的元素22相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离时间(D )1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来. 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么? (3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上? (2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )? 4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多。
高中物理必修一各章节课后练习题(附答案解析)
高中物理必修一各章节课后练习题(附答案解析)1.在研究下述运动时,可以把物体看作质点的是()A.研究地球的自转问题B.研究体操运动员参赛时的姿势C.研究乒乓球的旋转效应D.研究火车从北京到上海所用时间【解析】在研究火车从北京到上海的运动时,火车的长度、形状与北京到上海的距离相比可以忽略,可以把火车视为质点,而对地球的自转、运动员的姿势、乒乓球旋转等现象中的物体,其大小或形状不能忽略,不能视为质点.【答案】D2.关于参考系,下列说法正确的是()A.参考系必须是静止不动的物体B.参考系必须是静止不动或正在做直线运动的物体C.研究物体的运动,可选择不同的参考系,但选择不同的参考系观察结果是一样的D.研究物体的运动,可选择不同的参考系,但选择不同的参考系对于研究同一物体的运动而言,一般会出现不同的结果【解析】参考系的选取是任意的,A、B错误;选择不同的参考系,对同一物体运动的描述一般是不同的,C错误、D正确.【答案】D3.下列关于运动的说法中,正确的是()A.物体的位置没有变化就是不运动B.两物体间的距离没有变化,两物体一定都是静止的C.自然界中没有不运动的物体,运动是绝对的,静止是相对的D.为了研究物体的运动,必须先选参考系,平常说的运动或静止是相对于地球而言【解析】物体的位置对某一参考系不变,但对另一参考系位置可能变化,物体在运动,故A错误;两物体间距离没有变化,两者可能静止,也可能以相同的速度运动,故B错误;对于不同的参考系,同一物体可能静止,也可能运动,由于参考系的选择是任意的,故C、D正确.【答案】CD4.(2012·杭州二中高一检测)明代诗人曾写下这样一首诗:“空手把锄头,步行骑水牛;人在桥上走,桥流水不流.”其中“桥流水不流”中的“桥流”应理解成其选择的参考系是()A.水B.桥C.人D.河岸【解析】“水不流”是以水为参考系,而桥相对于水是运动的,故A正确.【答案】A图1-1-105.在我国东南部的某大城市,有一天下午,在该城市的中心广场行人拥挤,有人突然高喊“楼要倒了!”其他人猛然抬头观看,也发现楼在慢慢倾倒,便纷纷狂奔逃生,引起交通混乱,但过了好久,高楼并没有倒塌.人们再仔细观望时,楼依然稳稳地矗立在那里,如图1-1-10所示.下面有关探究分析这一现象原因的说法中正确的是()A.是一种错觉,不可能发生B.感觉楼要倾倒的原因是人在运动C.是因为选择了高空运动的云作为参考系D.是因为选择了旁边更高的楼作为参考系【解析】若人以旁边的楼作为参考系,两个楼之间是相对静止的,人会感觉楼是静止的,D错.若人以高空运动的云作为参考系,认为云是静止的,那么楼相对云是运动的,人就感觉楼在动,即感觉楼在慢慢倾倒,C对,A、B错.【答案】C6.(2012·郑州一中高一检测)公路上一辆卡车紧急刹车,由于惯性,卡车上的货物相对车厢向前滑行了x=5 cm,为了测出这个距离x,我们选取的最合理的参考系应该是()A.树木B.行人C.卡车D.公路【解析】参考系的选取是任意的,但当研究具体问题时,要以简单为准,本题中以卡车为参考系最方便,故选项C正确.【答案】C7.图1-1-11某空军红鹰飞行表演队驾驶我国自主研制的k-8高级教练机首次亮相,飞出特高难动作,如图1-1-11为六机低空拉烟通场表演,以非常一致的飞行姿态通过观礼台.飞机编队保持队形不变.下列关于飞机运动情况的说法正确的是() A.地面上的人看到飞机飞过,是以地面为参考系B.飞行员看到观礼台向后掠过,是以飞机为参考系C.以编队中某一飞机为参考系,其他飞机是静止的D.以编队中某一飞机为参考系,其他飞机是运动的【解析】飞机相对地面及地面上的建筑物向前飞行,而地面上的建筑物相对飞机向后运动.可见,地面上的人看到飞机飞过是以地面为参考系.飞行员看到观礼台向后掠过是以飞机为参考系,A、B正确,由于飞机编队保持队形不变,所以以某一飞机为参考系,其他飞机是静止的,C对、D错.【答案】ABC图1-1-128.(2012·石家庄一中高一期中)如图1-1-12是体育摄影中“追拍法”的成功之作,摄影师眼中清晰的滑板运动员是静止的,而模糊的背景是运动的,摄影师用自己的方式表达了运动的美.请问摄影师选择的参考系是()A.大地B.太阳C.滑板运动员D.步行的人【解析】由于摄影师眼中运动员是静止的,所以摄影师选择的参考系是滑板运动员,此时背景相对运动员是运动的,从而模糊不清,故C正确.【答案】C9.为了提高枪械射击时的准确率,制造时会在枪膛上刻上螺旋形的槽.这样,当子弹在枪管中运动时,会按照旋转的方式前进.离开枪管后,子弹的高速旋转会降低空气密度、侧风等外部环境对子弹的影响,从而提高子弹飞行的稳定性.下列关于子弹运动的说法中正确的是()A.当研究子弹的旋转对子弹飞行的影响时可以把子弹看做质点B.当研究子弹射击百米外的靶子所用的时间时可以把子弹看做质点C.无论研究什么问题都可以把子弹看做质点D.能否将子弹看做质点,取决于我们所研究的问题【解析】在研究子弹的旋转对子弹飞行的影响时不能忽略子弹的大小和形状,因而不可以把子弹看做质点;但研究子弹射击百米外的靶子所用的时间时,其大小和形状可以忽略,可以看做质点,故选项B、D正确.【答案】BD10.如图1-1-13所示,某人从学校门口A处开始散步,先向南走了50 m 到达B处,再向东走100 m到达C处,最后又向北走了150 m到达D处,则A、B、C、D各点位置如何表示?图1-1-13【解析】可以以A点为坐标原点,向东为x轴的正方向,向北为y轴的正方向,如图所示,则各点坐标为A(0,0)、B(0,-50 m)、C(100 m,-50 m)、D(100 m,100 m).【答案】见解析11.以某十字路口的交通岗亭为坐标原点,向东为x轴正方向,向南为y轴正方向,画出用坐标系描述坐标为(-60 m,80 m)的建筑物相对交通岗亭的位置,并求该建筑物距岗亭的距离.【解析】二维坐标系的坐标值顺序为x坐标、y坐标,故该建筑物的坐标x=-60 m、y=80 m,该建筑物位于交通岗亭西60 m、南80 m处,由勾股定理可知该建筑物距交通岗亭100 m.【答案】见下图100 m图1-1-1412.如图1-1-14所示,一根长0.8 m的杆,竖直放置,今有一内径略大于杆直径的环,从杆的顶点A向下滑动,向下为正方向,(1)取杆的下端O为坐标原点,图中A、B两点的坐标各是多少?环从A到B的过程中,位置变化了多少(OB间距离为0.2 m)?(2)取A端为坐标原点,A、B点的坐标又是多少?环从A到B的过程中位置变化了多少?(3)由以上两问可以看出,坐标原点的不同是对位置坐标有影响还是对位置变化有影响?【解析】(1)由于杆长0.8 m,OB为0.2 m,题目给出坐标系向下为正方向,故以O点为坐标原点,A、B的坐标分别为x A=-0.8 m,x B=-0.2 m.由A到B位置变化为x B-x A=-0.2 m-(-0.8) m=0.6 m.(2)由题意知,AB长为0.6 m,以A为原点,A、B两点的坐标分别为x A=0,x B=0.6 m.A到B位置变化为x B-x A=0.6 m-0=0.6 m.(3)坐标原点选的不同,同一位置的坐标不同,但位置变化相同.【答案】(1)x A=-0.8 m x B=-0.2 mx B-x A=0.6 m(2)x A=0x B=0.6 mx B-x A=0.6 m(3)坐标不同位置变化相同1.关于矢量和标量,下列说法中正确的是()A.矢量是既有大小又有方向的物理量B.标量是既有大小又有方向的物理量C.位移-10 m比5 m小D.-10 ℃比5 ℃的温度低【解析】由矢量的定义可知,A正确,B错误;位移的正、负号只表示方向,不表示大小,其大小由数值和单位决定,所以-10 m的位移比5 m的位移大,故C错误;温度的正、负是相对温度为0 ℃时高出和低于的温度,所以-10 ℃比5 ℃的温度低,故D正确.【答案】AD2.关于路程和位移的关系,下列说法正确的是()A.物体沿直线向某一方向运动时,通过的路程就是位移B.物体沿直线向某一方向运动时,通过的路程等于位移的大小C.物体通过的路程不为零,位移也一定不为零D.物体的位移为零,路程也一定为零【解析】位移是有向线段,是矢量,而路程是标量,二者是不同概念,A 错.当物体做单向直线运动时,位移大小与路程相等,B正确.位移大小和路程无直接关系,路程不为零,但可能是运动物体又回到出发点,位移为零,即C、D均错.【答案】B3.(2012·西安一中检测)根据材料,结合已学的知识,判断下列说法正确的是()(甲)(乙)(丙)图1-2-5A.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是位移B.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是路程C.如图(乙)所示是奥运火炬手攀登珠峰的线路图,由起点到终点火炬手所走线路的总长度是火炬手的位移D.如图(丙)所示是高速公路指示牌,牌中“25 km”是指从此处到下一个出口的位移是25 km【解析】 4 500海里的总航程指路程,B正确,A错误;火炬手所走路线总长度指路程,C错误;25 km指从此处到下一出口的路程,D错误.【答案】B图1-2-64.如图1-2-6所示,“神舟八号”飞船于2011年11月1日5时58分10秒在酒泉卫星发射中心发射升空,583秒后精准进入轨道.从“神舟八号”飞船发射到与“天宫一号”对接,大约耗时2天.此后飞船绕地球稳定运行.下列说法正确的是()A.5时58分10秒表示时间间隔B.“神舟八号”绕地球运行过程中位移大小始终小于路程C.2天表示时刻D.研究“神舟八号”绕地球运行的轨迹时,可以将飞船看成质点【解析】5时58分10秒表示时刻,2天表示时间间隔,A、C错误;“神舟八号”绕地球运行过程中,轨迹为曲线,位移大小始终小于路程,B正确;研究“神舟八号”绕地球运行的轨迹时,飞船大小对轨迹影响不大,可以将飞船看成质点,D正确.【答案】BD图1-2-75.由天津去上海,可以乘火车,也可以乘轮船,如图1-2-7所示,曲线ACB和虚线ADB分别表示天津到上海的铁路线和海上航线,线段AB表示天津到上海的直线距离,则下列说法中正确的是()A.乘火车通过的路程等于其位移的大小B.乘轮船通过的路程等于其位移的大小C.乘火车与轮船通过的位移大小相等D.乘火车与轮船通过的位移大小不相等【解析】只有在单向直线运动中位移大小才等于路程,A、B错误;位移只与初末位置有关,与路径无关,C正确,D错误.【答案】C6.一个物体从A点运动到B点,下列结论正确的是()A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向BC.物体位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线【解析】位移是矢量,路程是标量,A、B错误;物体做单向直线运动时,位移的大小等于路程,做其他类型运动时,位移的大小小于路程,C正确;位移和路程都是描述物体运动的物理量,位移与初、末位置有关,路程与运动轨迹有关,不一定是曲线,D错误.【答案】C7.在2012年国际田联室内世锦赛男子800 m决赛中,埃塞俄比亚选手阿曼以1分48秒36夺冠.对于材料中800 m比赛的说法正确的是() A.位移相同比较运动的时刻B.位移相同比较运动的时间间隔C.路程相同比较运动的时刻D.路程相同比较运动的时间间隔【解析】800米比赛时,选手的起点位置是不同的,但跑过的路程相同.比赛比较的是完成全程所用的时间,指的是时间间隔.故D项正确.【答案】D8.北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第16颗北斗导航卫星发射升空并送入太空预定轨道.这标志着中国北斗卫星导航系统工程建设又迈出重要一步,北斗卫星导航系统将免费提供定位、测速和授时服务,定位精度10 m,测速精度0.2 m/s.以下说法正确的是()A.北斗导航卫星定位提供的是被测物体的位移B.北斗导航卫星定位提供的是被测物体的位置C.北斗导航卫星授时服务提供的是时间间隔D.北斗导航卫星授时服务提供的是时刻【解析】由位置、位移、时间间隔、时刻的定义可知,北斗导航卫星定位提供的是一个点,是位置,不是位置的变化,A错、B对.北斗导航卫星授时服务提供的是时刻,C错,D对.【答案】BD图1-2-89.(2012·保定一中高一检测)如图1-2-8所示,自行车的车轮半径为R,车轮沿直线无滑动地滚动,当气门芯由轮子的正上方第一次运动到轮子的正下方时,气门芯位移的大小为()A.πR B.2RC.2πR D.R4+π2【解析】如图所示,气门芯由轮子的正上方第一次运动到轮子的正下方的过程中,初末位置之间的距离,也就是位移大小为x=(2R)2+(πR)2=R4+π2,因此选项D正确,其他选项均错误.【答案】D10.在图1-2-9中,汽车初位置的坐标是-2 km,末位置的坐标是1 km.求汽车的位移的大小和方向.图1-2-9【解析】由题意知,汽车在初、末位置的坐标分别为x1=-2 km,x2=1 km.所以汽车的位移为Δx=x2-x1=1 km-(-2) km=3 km,位移的方向与x轴正方向相同.【答案】 3 km与x轴正方向相同11.某测绘规划技术人员在一次对某学校进行测量时,他从操场上某点A处开始,先向南走了30 m到达B处,再向东走了40 m到达C处,最后又向北走了60 m到达D处,则:(1)这人步行的总路程和位移的大小各是多少?(2)要比较确切地表示此人的位置变化,应该用位移还是路程?【解析】(1)如图,三角形AED为直角三角形,AE=40 m,DE=30 m,所以AD=AE2+DE2=50 m,A、D分别为起点和终点,所以位移的大小是50 m.他走过的路程为:30 m+40 m+60 m=130 m.(2)为了确切描述此人的位置变化,应该用位移,这样既能表示他相对出发点的距离,又能表示他相对出发点的方位.【答案】(1)130 m50 m(2)位移图1-2-1012.(2012·杭州一中高一检测)图1-2-10为400 m的标准跑道,直道部分AB、CD的长度均为100 m,弯道部分BC、DA是半圆弧,其长度也为100 m.A 点为200 m赛跑的起点,经B点到终点C.求:(1)200 m赛跑的路程和位移;(2)跑至弯道BC的中点P时的路程和位移.(结果保留一位小数)【解析】(1)在200 m赛跑中,200 m指路径的长度,即路程是200 m;位移是从起点A指向终点C的有向线段,因BC是半圆弧,则直径d=2×100πm≈63.7 m,故位移的大小AC=AB2+d2≈118.6 m,方向由A指向C.(2)跑至弯道BC的中点P时,路程是s=AB+BP=100 m+50 m=150 m;位移的大小AP=(AB+d2)2+(d2)2≈135.6 m方向由A指向P.【答案】(1)200 m118.6 m,方向由A指向C(2)150 m135.6 m,方向由A指向P.1.关于矢量和标量,下列说法中正确的是()A.矢量是既有大小又有方向的物理量B.标量是既有大小又有方向的物理量C.位移-10 m比5 m小D.-10 ℃比5 ℃的温度低【解析】由矢量的定义可知,A正确,B错误;位移的正、负号只表示方向,不表示大小,其大小由数值和单位决定,所以-10 m的位移比5 m的位移大,故C错误;温度的正、负是相对温度为0 ℃时高出和低于的温度,所以-10 ℃比5 ℃的温度低,故D正确.【答案】AD2.关于路程和位移的关系,下列说法正确的是()A.物体沿直线向某一方向运动时,通过的路程就是位移B.物体沿直线向某一方向运动时,通过的路程等于位移的大小C.物体通过的路程不为零,位移也一定不为零D.物体的位移为零,路程也一定为零【解析】位移是有向线段,是矢量,而路程是标量,二者是不同概念,A 错.当物体做单向直线运动时,位移大小与路程相等,B正确.位移大小和路程无直接关系,路程不为零,但可能是运动物体又回到出发点,位移为零,即C、D均错.【答案】B3.(2012·西安一中检测)根据材料,结合已学的知识,判断下列说法正确的是()(甲)(乙)(丙)图1-2-5A.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是位移B.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是路程C.如图(乙)所示是奥运火炬手攀登珠峰的线路图,由起点到终点火炬手所走线路的总长度是火炬手的位移D.如图(丙)所示是高速公路指示牌,牌中“25 km”是指从此处到下一个出口的位移是25 km【解析】 4 500海里的总航程指路程,B正确,A错误;火炬手所走路线总长度指路程,C错误;25 km指从此处到下一出口的路程,D错误.【答案】B图1-2-64.如图1-2-6所示,“神舟八号”飞船于2011年11月1日5时58分10秒在酒泉卫星发射中心发射升空,583秒后精准进入轨道.从“神舟八号”飞船发射到与“天宫一号”对接,大约耗时2天.此后飞船绕地球稳定运行.下列说法正确的是()A.5时58分10秒表示时间间隔B.“神舟八号”绕地球运行过程中位移大小始终小于路程C.2天表示时刻D.研究“神舟八号”绕地球运行的轨迹时,可以将飞船看成质点【解析】5时58分10秒表示时刻,2天表示时间间隔,A、C错误;“神舟八号”绕地球运行过程中,轨迹为曲线,位移大小始终小于路程,B正确;研究“神舟八号”绕地球运行的轨迹时,飞船大小对轨迹影响不大,可以将飞船看成质点,D正确.【答案】BD图1-2-75.由天津去上海,可以乘火车,也可以乘轮船,如图1-2-7所示,曲线ACB和虚线ADB分别表示天津到上海的铁路线和海上航线,线段AB表示天津到上海的直线距离,则下列说法中正确的是()A.乘火车通过的路程等于其位移的大小B.乘轮船通过的路程等于其位移的大小C.乘火车与轮船通过的位移大小相等D.乘火车与轮船通过的位移大小不相等【解析】只有在单向直线运动中位移大小才等于路程,A、B错误;位移只与初末位置有关,与路径无关,C正确,D错误.【答案】C6.一个物体从A点运动到B点,下列结论正确的是()A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向BC.物体位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线【解析】位移是矢量,路程是标量,A、B错误;物体做单向直线运动时,位移的大小等于路程,做其他类型运动时,位移的大小小于路程,C正确;位移和路程都是描述物体运动的物理量,位移与初、末位置有关,路程与运动轨迹有关,不一定是曲线,D错误.【答案】C7.在2012年国际田联室内世锦赛男子800 m决赛中,埃塞俄比亚选手阿曼以1分48秒36夺冠.对于材料中800 m比赛的说法正确的是() A.位移相同比较运动的时刻B.位移相同比较运动的时间间隔C.路程相同比较运动的时刻D.路程相同比较运动的时间间隔【解析】800米比赛时,选手的起点位置是不同的,但跑过的路程相同.比赛比较的是完成全程所用的时间,指的是时间间隔.故D项正确.【答案】D8.北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第16颗北斗导航卫星发射升空并送入太空预定轨道.这标志着中国北斗卫星导航系统工程建设又迈出重要一步,北斗卫星导航系统将免费提供定位、测速和授时服务,定位精度10 m,测速精度0.2 m/s.以下说法正确的是()A.北斗导航卫星定位提供的是被测物体的位移B.北斗导航卫星定位提供的是被测物体的位置C.北斗导航卫星授时服务提供的是时间间隔D.北斗导航卫星授时服务提供的是时刻【解析】由位置、位移、时间间隔、时刻的定义可知,北斗导航卫星定位提供的是一个点,是位置,不是位置的变化,A错、B对.北斗导航卫星授时服务提供的是时刻,C错,D对.【答案】BD图1-2-89.(2012·保定一中高一检测)如图1-2-8所示,自行车的车轮半径为R,车轮沿直线无滑动地滚动,当气门芯由轮子的正上方第一次运动到轮子的正下方时,气门芯位移的大小为()A.πR B.2RC.2πR D.R4+π2【解析】如图所示,气门芯由轮子的正上方第一次运动到轮子的正下方的过程中,初末位置之间的距离,也就是位移大小为x=(2R)2+(πR)2=R4+π2,因此选项D正确,其他选项均错误.【答案】D10.在图1-2-9中,汽车初位置的坐标是-2 km,末位置的坐标是1 km.求汽车的位移的大小和方向.图1-2-9【解析】由题意知,汽车在初、末位置的坐标分别为x1=-2 km,x2=1 km.所以汽车的位移为Δx=x2-x1=1 km-(-2) km=3 km,位移的方向与x轴正方向相同.【答案】 3 km与x轴正方向相同11.某测绘规划技术人员在一次对某学校进行测量时,他从操场上某点A处开始,先向南走了30 m到达B处,再向东走了40 m到达C处,最后又向北走了60 m到达D处,则:(1)这人步行的总路程和位移的大小各是多少?(2)要比较确切地表示此人的位置变化,应该用位移还是路程?【解析】(1)如图,三角形AED为直角三角形,AE=40 m,DE=30 m,所以AD=AE2+DE2=50 m,A、D分别为起点和终点,所以位移的大小是50 m.他走过的路程为:30 m+40 m+60 m=130 m.(2)为了确切描述此人的位置变化,应该用位移,这样既能表示他相对出发点的距离,又能表示他相对出发点的方位.【答案】(1)130 m50 m(2)位移图1-2-1012.(2012·杭州一中高一检测)图1-2-10为400 m的标准跑道,直道部分AB、CD的长度均为100 m,弯道部分BC、DA是半圆弧,其长度也为100 m.A 点为200 m赛跑的起点,经B点到终点C.求:(1)200 m赛跑的路程和位移;(2)跑至弯道BC的中点P时的路程和位移.(结果保留一位小数)【解析】(1)在200 m赛跑中,200 m指路径的长度,即路程是200 m;位移是从起点A指向终点C的有向线段,因BC是半圆弧,则直径d=2×100πm≈63.7 m,故位移的大小AC=AB2+d2≈118.6 m,方向由A指向C.(2)跑至弯道BC的中点P时,路程是s=AB+BP=100 m+50 m=150 m;位移的大小AP=(AB+d2)2+(d2)2≈135.6 m方向由A指向P.【答案】(1)200 m118.6 m,方向由A指向C(2)150 m135.6 m,方向由A指向P.1.下列所说的速度中,哪些是瞬时速度()A.百米赛跑的运动员以9.5 m/s的速度冲过终点线B. 2011年8月28日铁路调整列车运行后,部分高铁和客专的动车组速度悄然降低,如济南西—杭州的G51次列车,在沪杭高铁段时速由350 km降至300 kmC. 返回地面的太空舱以8 m/s的速度落入太平洋D. 由于堵车,在隧道内的车速仅为1.2 m/s【解析】9.5 m/s是运动员冲线瞬间的速度,8 m/s是太空舱落入太平洋瞬间的速度,对应的都是一个时刻,都是瞬时速度;350 km/h、300 km/h、1.2 m/s 说的都是行程中的平均速度,故应选A、C两项.【答案】AC2.(2012·海口一中高一检测)对于瞬时速度和平均速度的理解,下列说法正确的是()A.瞬时速度为0,平均速度一定为0B.瞬时速度为0,平均速度可以不为0C.瞬时速度不为0,平均速度一定不为0D.瞬时速度不为0,平均速度可以为0【解析】车辆中途刹车停止后,再启动运行的一段时间内平均速度不为0,但停止时的瞬时速度为0,A错误;B正确;物体沿一圆周运动一圈的过程中,瞬时速度不为0,但位移为0,所以平均速度为0,C错误,D正确.【答案】BD图1-3-53.(2012·玉溪高一检测)2012伦敦奥运会中,牙买加选手博尔特是公认的世界飞人,他在男子100 m 决赛和男子200 m 决赛中分别以9.63 s 和19.32 s 的成绩破两项世界纪录,获得两枚金牌,如图1-3-5所示.关于他在这两次决赛中的运动情况,下列说法正确的是( )A .200 m 决赛中的位移是100 m 决赛的两倍B .200 m 决赛中的平均速度约为10.35 m/sC .100 m 决赛中的平均速度约为10.38 m/sD .100 m 决赛中的最大速度约为20.64 m/s【解析】 200 m 决赛是曲线,指路程,其位移小于200 m ,因此选项A 错误.由于200 m 决赛的位移x 1<200 m ,则平均速度v 1=x 1t 1<20019.32 m/s ≈10.35 m/s ,故选项B 错.100 m 决赛的平均速度v 2=x 2t 2=1009.63 m/s ≈10.38 m/s ,故C 选项正确.100 m 决赛中的最大速度无法求得,故选项D 错误.【答案】 C4.下列说法中正确的是( )A .在相等的时间内发生的位移相等则物体一定做匀速直线运动B .做匀速运动的物体,在任何一个时刻的速度都相等C .如果物体运动的路程跟所需时间的比值是一恒量,则该物体的运动一定是匀速直线运动D .以上说法都不对【解析】 匀速直线运动中,在任何相等的时间内发生的位移相等,且瞬时速度不变,B 正确.【答案】 B5.用同一张底片对着小球运动的路径每隔110 s 拍一次照,得到的照片如图1-3-6所示,则小球在图示过程的平均速度是( )。
高中物理必修一各章节课后练习题(附答案解析)
高中物理必修一各章节课后练习题(附答案解析)1.在研究下述运动时,可以把物体看作质点的是()A.研究地球的自转问题B.研究体操运动员参赛时的姿势C.研究乒乓球的旋转效应D.研究火车从北京到上海所用时间【解析】在研究火车从北京到上海的运动时,火车的长度、形状与北京到上海的距离相比可以忽略,可以把火车视为质点,而对地球的自转、运动员的姿势、乒乓球旋转等现象中的物体,其大小或形状不能忽略,不能视为质点.【答案】D2.关于参考系,下列说法正确的是()A.参考系必须是静止不动的物体B.参考系必须是静止不动或正在做直线运动的物体C.研究物体的运动,可选择不同的参考系,但选择不同的参考系观察结果是一样的D.研究物体的运动,可选择不同的参考系,但选择不同的参考系对于研究同一物体的运动而言,一般会出现不同的结果【解析】参考系的选取是任意的,A、B错误;选择不同的参考系,对同一物体运动的描述一般是不同的,C错误、D正确.【答案】D3.下列关于运动的说法中,正确的是()A.物体的位置没有变化就是不运动B.两物体间的距离没有变化,两物体一定都是静止的C.自然界中没有不运动的物体,运动是绝对的,静止是相对的D.为了研究物体的运动,必须先选参考系,平常说的运动或静止是相对于地球而言【解析】物体的位置对某一参考系不变,但对另一参考系位置可能变化,物体在运动,故A错误;两物体间距离没有变化,两者可能静止,也可能以相同的速度运动,故B错误;对于不同的参考系,同一物体可能静止,也可能运动,由于参考系的选择是任意的,故C、D正确.【答案】CD4.(2012·杭州二中高一检测)明代诗人曾写下这样一首诗:“空手把锄头,步行骑水牛;人在桥上走,桥流水不流.”其中“桥流水不流”中的“桥流”应理解成其选择的参考系是()A.水B.桥C.人D.河岸【解析】“水不流”是以水为参考系,而桥相对于水是运动的,故A正确.【答案】A图1-1-105.在我国东南部的某大城市,有一天下午,在该城市的中心广场行人拥挤,有人突然高喊“楼要倒了!”其他人猛然抬头观看,也发现楼在慢慢倾倒,便纷纷狂奔逃生,引起交通混乱,但过了好久,高楼并没有倒塌.人们再仔细观望时,楼依然稳稳地矗立在那里,如图1-1-10所示.下面有关探究分析这一现象原因的说法中正确的是()A.是一种错觉,不可能发生B.感觉楼要倾倒的原因是人在运动C.是因为选择了高空运动的云作为参考系D.是因为选择了旁边更高的楼作为参考系【解析】若人以旁边的楼作为参考系,两个楼之间是相对静止的,人会感觉楼是静止的,D错.若人以高空运动的云作为参考系,认为云是静止的,那么楼相对云是运动的,人就感觉楼在动,即感觉楼在慢慢倾倒,C对,A、B错.【答案】C6.(2012·郑州一中高一检测)公路上一辆卡车紧急刹车,由于惯性,卡车上的货物相对车厢向前滑行了x=5 cm,为了测出这个距离x,我们选取的最合理的参考系应该是()A.树木B.行人C.卡车D.公路【解析】参考系的选取是任意的,但当研究具体问题时,要以简单为准,本题中以卡车为参考系最方便,故选项C正确.【答案】C7.图1-1-11某空军红鹰飞行表演队驾驶我国自主研制的k-8高级教练机首次亮相,飞出特高难动作,如图1-1-11为六机低空拉烟通场表演,以非常一致的飞行姿态通过观礼台.飞机编队保持队形不变.下列关于飞机运动情况的说法正确的是() A.地面上的人看到飞机飞过,是以地面为参考系B.飞行员看到观礼台向后掠过,是以飞机为参考系C.以编队中某一飞机为参考系,其他飞机是静止的D.以编队中某一飞机为参考系,其他飞机是运动的【解析】飞机相对地面及地面上的建筑物向前飞行,而地面上的建筑物相对飞机向后运动.可见,地面上的人看到飞机飞过是以地面为参考系.飞行员看到观礼台向后掠过是以飞机为参考系,A、B正确,由于飞机编队保持队形不变,所以以某一飞机为参考系,其他飞机是静止的,C对、D错.【答案】ABC图1-1-128.(2012·石家庄一中高一期中)如图1-1-12是体育摄影中“追拍法”的成功之作,摄影师眼中清晰的滑板运动员是静止的,而模糊的背景是运动的,摄影师用自己的方式表达了运动的美.请问摄影师选择的参考系是()A.大地B.太阳C.滑板运动员D.步行的人【解析】由于摄影师眼中运动员是静止的,所以摄影师选择的参考系是滑板运动员,此时背景相对运动员是运动的,从而模糊不清,故C正确.【答案】C9.为了提高枪械射击时的准确率,制造时会在枪膛上刻上螺旋形的槽.这样,当子弹在枪管中运动时,会按照旋转的方式前进.离开枪管后,子弹的高速旋转会降低空气密度、侧风等外部环境对子弹的影响,从而提高子弹飞行的稳定性.下列关于子弹运动的说法中正确的是()A.当研究子弹的旋转对子弹飞行的影响时可以把子弹看做质点B.当研究子弹射击百米外的靶子所用的时间时可以把子弹看做质点C.无论研究什么问题都可以把子弹看做质点D.能否将子弹看做质点,取决于我们所研究的问题【解析】在研究子弹的旋转对子弹飞行的影响时不能忽略子弹的大小和形状,因而不可以把子弹看做质点;但研究子弹射击百米外的靶子所用的时间时,其大小和形状可以忽略,可以看做质点,故选项B、D正确.【答案】BD10.如图1-1-13所示,某人从学校门口A处开始散步,先向南走了50 m 到达B处,再向东走100 m到达C处,最后又向北走了150 m到达D处,则A、B、C、D各点位置如何表示?图1-1-13【解析】可以以A点为坐标原点,向东为x轴的正方向,向北为y轴的正方向,如图所示,则各点坐标为A(0,0)、B(0,-50 m)、C(100 m,-50 m)、D(100 m,100 m).【答案】见解析11.以某十字路口的交通岗亭为坐标原点,向东为x轴正方向,向南为y轴正方向,画出用坐标系描述坐标为(-60 m,80 m)的建筑物相对交通岗亭的位置,并求该建筑物距岗亭的距离.【解析】二维坐标系的坐标值顺序为x坐标、y坐标,故该建筑物的坐标x=-60 m、y=80 m,该建筑物位于交通岗亭西60 m、南80 m处,由勾股定理可知该建筑物距交通岗亭100 m.【答案】见下图100 m图1-1-1412.如图1-1-14所示,一根长0.8 m的杆,竖直放置,今有一内径略大于杆直径的环,从杆的顶点A向下滑动,向下为正方向,(1)取杆的下端O为坐标原点,图中A、B两点的坐标各是多少?环从A到B的过程中,位置变化了多少(OB间距离为0.2 m)?(2)取A端为坐标原点,A、B点的坐标又是多少?环从A到B的过程中位置变化了多少?(3)由以上两问可以看出,坐标原点的不同是对位置坐标有影响还是对位置变化有影响?【解析】(1)由于杆长0.8 m,OB为0.2 m,题目给出坐标系向下为正方向,故以O点为坐标原点,A、B的坐标分别为x A=-0.8 m,x B=-0.2 m.由A到B位置变化为x B-x A=-0.2 m-(-0.8) m=0.6 m.(2)由题意知,AB长为0.6 m,以A为原点,A、B两点的坐标分别为x A=0,x B=0.6 m.A到B位置变化为x B-x A=0.6 m-0=0.6 m.(3)坐标原点选的不同,同一位置的坐标不同,但位置变化相同.【答案】(1)x A=-0.8 m x B=-0.2 mx B-x A=0.6 m(2)x A=0x B=0.6 mx B-x A=0.6 m(3)坐标不同位置变化相同1.关于矢量和标量,下列说法中正确的是()A.矢量是既有大小又有方向的物理量B.标量是既有大小又有方向的物理量C.位移-10 m比5 m小D.-10 ℃比5 ℃的温度低【解析】由矢量的定义可知,A正确,B错误;位移的正、负号只表示方向,不表示大小,其大小由数值和单位决定,所以-10 m的位移比5 m的位移大,故C错误;温度的正、负是相对温度为0 ℃时高出和低于的温度,所以-10 ℃比5 ℃的温度低,故D正确.【答案】AD2.关于路程和位移的关系,下列说法正确的是()A.物体沿直线向某一方向运动时,通过的路程就是位移B.物体沿直线向某一方向运动时,通过的路程等于位移的大小C.物体通过的路程不为零,位移也一定不为零D.物体的位移为零,路程也一定为零【解析】位移是有向线段,是矢量,而路程是标量,二者是不同概念,A 错.当物体做单向直线运动时,位移大小与路程相等,B正确.位移大小和路程无直接关系,路程不为零,但可能是运动物体又回到出发点,位移为零,即C、D均错.【答案】B3.(2012·西安一中检测)根据材料,结合已学的知识,判断下列说法正确的是()(甲)(乙)(丙)图1-2-5A.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是位移B.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是路程C.如图(乙)所示是奥运火炬手攀登珠峰的线路图,由起点到终点火炬手所走线路的总长度是火炬手的位移D.如图(丙)所示是高速公路指示牌,牌中“25 km”是指从此处到下一个出口的位移是25 km【解析】 4 500海里的总航程指路程,B正确,A错误;火炬手所走路线总长度指路程,C错误;25 km指从此处到下一出口的路程,D错误.【答案】B图1-2-64.如图1-2-6所示,“神舟八号”飞船于2011年11月1日5时58分10秒在酒泉卫星发射中心发射升空,583秒后精准进入轨道.从“神舟八号”飞船发射到与“天宫一号”对接,大约耗时2天.此后飞船绕地球稳定运行.下列说法正确的是()A.5时58分10秒表示时间间隔B.“神舟八号”绕地球运行过程中位移大小始终小于路程C.2天表示时刻D.研究“神舟八号”绕地球运行的轨迹时,可以将飞船看成质点【解析】5时58分10秒表示时刻,2天表示时间间隔,A、C错误;“神舟八号”绕地球运行过程中,轨迹为曲线,位移大小始终小于路程,B正确;研究“神舟八号”绕地球运行的轨迹时,飞船大小对轨迹影响不大,可以将飞船看成质点,D正确.【答案】BD图1-2-75.由天津去上海,可以乘火车,也可以乘轮船,如图1-2-7所示,曲线ACB和虚线ADB分别表示天津到上海的铁路线和海上航线,线段AB表示天津到上海的直线距离,则下列说法中正确的是()A.乘火车通过的路程等于其位移的大小B.乘轮船通过的路程等于其位移的大小C.乘火车与轮船通过的位移大小相等D.乘火车与轮船通过的位移大小不相等【解析】只有在单向直线运动中位移大小才等于路程,A、B错误;位移只与初末位置有关,与路径无关,C正确,D错误.【答案】C6.一个物体从A点运动到B点,下列结论正确的是()A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向BC.物体位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线【解析】位移是矢量,路程是标量,A、B错误;物体做单向直线运动时,位移的大小等于路程,做其他类型运动时,位移的大小小于路程,C正确;位移和路程都是描述物体运动的物理量,位移与初、末位置有关,路程与运动轨迹有关,不一定是曲线,D错误.【答案】C7.在2012年国际田联室内世锦赛男子800 m决赛中,埃塞俄比亚选手阿曼以1分48秒36夺冠.对于材料中800 m比赛的说法正确的是() A.位移相同比较运动的时刻B.位移相同比较运动的时间间隔C.路程相同比较运动的时刻D.路程相同比较运动的时间间隔【解析】800米比赛时,选手的起点位置是不同的,但跑过的路程相同.比赛比较的是完成全程所用的时间,指的是时间间隔.故D项正确.【答案】D8.北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第16颗北斗导航卫星发射升空并送入太空预定轨道.这标志着中国北斗卫星导航系统工程建设又迈出重要一步,北斗卫星导航系统将免费提供定位、测速和授时服务,定位精度10 m,测速精度0.2 m/s.以下说法正确的是()A.北斗导航卫星定位提供的是被测物体的位移B.北斗导航卫星定位提供的是被测物体的位置C.北斗导航卫星授时服务提供的是时间间隔D.北斗导航卫星授时服务提供的是时刻【解析】由位置、位移、时间间隔、时刻的定义可知,北斗导航卫星定位提供的是一个点,是位置,不是位置的变化,A错、B对.北斗导航卫星授时服务提供的是时刻,C错,D对.【答案】BD图1-2-89.(2012·保定一中高一检测)如图1-2-8所示,自行车的车轮半径为R,车轮沿直线无滑动地滚动,当气门芯由轮子的正上方第一次运动到轮子的正下方时,气门芯位移的大小为()A.πR B.2RC.2πR D.R4+π2【解析】如图所示,气门芯由轮子的正上方第一次运动到轮子的正下方的过程中,初末位置之间的距离,也就是位移大小为x=(2R)2+(πR)2=R4+π2,因此选项D正确,其他选项均错误.【答案】D10.在图1-2-9中,汽车初位置的坐标是-2 km,末位置的坐标是1 km.求汽车的位移的大小和方向.图1-2-9【解析】由题意知,汽车在初、末位置的坐标分别为x1=-2 km,x2=1 km.所以汽车的位移为Δx=x2-x1=1 km-(-2) km=3 km,位移的方向与x轴正方向相同.【答案】 3 km与x轴正方向相同11.某测绘规划技术人员在一次对某学校进行测量时,他从操场上某点A处开始,先向南走了30 m到达B处,再向东走了40 m到达C处,最后又向北走了60 m到达D处,则:(1)这人步行的总路程和位移的大小各是多少?(2)要比较确切地表示此人的位置变化,应该用位移还是路程?【解析】(1)如图,三角形AED为直角三角形,AE=40 m,DE=30 m,所以AD=AE2+DE2=50 m,A、D分别为起点和终点,所以位移的大小是50 m.他走过的路程为:30 m+40 m+60 m=130 m.(2)为了确切描述此人的位置变化,应该用位移,这样既能表示他相对出发点的距离,又能表示他相对出发点的方位.【答案】(1)130 m50 m(2)位移图1-2-1012.(2012·杭州一中高一检测)图1-2-10为400 m的标准跑道,直道部分AB、CD的长度均为100 m,弯道部分BC、DA是半圆弧,其长度也为100 m.A 点为200 m赛跑的起点,经B点到终点C.求:(1)200 m赛跑的路程和位移;(2)跑至弯道BC的中点P时的路程和位移.(结果保留一位小数)【解析】(1)在200 m赛跑中,200 m指路径的长度,即路程是200 m;位移是从起点A指向终点C的有向线段,因BC是半圆弧,则直径d=2×100πm≈63.7 m,故位移的大小AC=AB2+d2≈118.6 m,方向由A指向C.(2)跑至弯道BC的中点P时,路程是s=AB+BP=100 m+50 m=150 m;位移的大小AP=(AB+d2)2+(d2)2≈135.6 m方向由A指向P.【答案】(1)200 m118.6 m,方向由A指向C(2)150 m135.6 m,方向由A指向P.1.关于矢量和标量,下列说法中正确的是()A.矢量是既有大小又有方向的物理量B.标量是既有大小又有方向的物理量C.位移-10 m比5 m小D.-10 ℃比5 ℃的温度低【解析】由矢量的定义可知,A正确,B错误;位移的正、负号只表示方向,不表示大小,其大小由数值和单位决定,所以-10 m的位移比5 m的位移大,故C错误;温度的正、负是相对温度为0 ℃时高出和低于的温度,所以-10 ℃比5 ℃的温度低,故D正确.【答案】AD2.关于路程和位移的关系,下列说法正确的是()A.物体沿直线向某一方向运动时,通过的路程就是位移B.物体沿直线向某一方向运动时,通过的路程等于位移的大小C.物体通过的路程不为零,位移也一定不为零D.物体的位移为零,路程也一定为零【解析】位移是有向线段,是矢量,而路程是标量,二者是不同概念,A 错.当物体做单向直线运动时,位移大小与路程相等,B正确.位移大小和路程无直接关系,路程不为零,但可能是运动物体又回到出发点,位移为零,即C、D均错.【答案】B3.(2012·西安一中检测)根据材料,结合已学的知识,判断下列说法正确的是()(甲)(乙)(丙)图1-2-5A.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是位移B.图(甲)为我国派出的军舰护航线路图,总航程4 500海里,总航程4 500海里指的是路程C.如图(乙)所示是奥运火炬手攀登珠峰的线路图,由起点到终点火炬手所走线路的总长度是火炬手的位移D.如图(丙)所示是高速公路指示牌,牌中“25 km”是指从此处到下一个出口的位移是25 km【解析】 4 500海里的总航程指路程,B正确,A错误;火炬手所走路线总长度指路程,C错误;25 km指从此处到下一出口的路程,D错误.【答案】B图1-2-64.如图1-2-6所示,“神舟八号”飞船于2011年11月1日5时58分10秒在酒泉卫星发射中心发射升空,583秒后精准进入轨道.从“神舟八号”飞船发射到与“天宫一号”对接,大约耗时2天.此后飞船绕地球稳定运行.下列说法正确的是()A.5时58分10秒表示时间间隔B.“神舟八号”绕地球运行过程中位移大小始终小于路程C.2天表示时刻D.研究“神舟八号”绕地球运行的轨迹时,可以将飞船看成质点【解析】5时58分10秒表示时刻,2天表示时间间隔,A、C错误;“神舟八号”绕地球运行过程中,轨迹为曲线,位移大小始终小于路程,B正确;研究“神舟八号”绕地球运行的轨迹时,飞船大小对轨迹影响不大,可以将飞船看成质点,D正确.【答案】BD图1-2-75.由天津去上海,可以乘火车,也可以乘轮船,如图1-2-7所示,曲线ACB和虚线ADB分别表示天津到上海的铁路线和海上航线,线段AB表示天津到上海的直线距离,则下列说法中正确的是()A.乘火车通过的路程等于其位移的大小B.乘轮船通过的路程等于其位移的大小C.乘火车与轮船通过的位移大小相等D.乘火车与轮船通过的位移大小不相等【解析】只有在单向直线运动中位移大小才等于路程,A、B错误;位移只与初末位置有关,与路径无关,C正确,D错误.【答案】C6.一个物体从A点运动到B点,下列结论正确的是()A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向BC.物体位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线【解析】位移是矢量,路程是标量,A、B错误;物体做单向直线运动时,位移的大小等于路程,做其他类型运动时,位移的大小小于路程,C正确;位移和路程都是描述物体运动的物理量,位移与初、末位置有关,路程与运动轨迹有关,不一定是曲线,D错误.【答案】C7.在2012年国际田联室内世锦赛男子800 m决赛中,埃塞俄比亚选手阿曼以1分48秒36夺冠.对于材料中800 m比赛的说法正确的是() A.位移相同比较运动的时刻B.位移相同比较运动的时间间隔C.路程相同比较运动的时刻D.路程相同比较运动的时间间隔【解析】800米比赛时,选手的起点位置是不同的,但跑过的路程相同.比赛比较的是完成全程所用的时间,指的是时间间隔.故D项正确.【答案】D8.北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第16颗北斗导航卫星发射升空并送入太空预定轨道.这标志着中国北斗卫星导航系统工程建设又迈出重要一步,北斗卫星导航系统将免费提供定位、测速和授时服务,定位精度10 m,测速精度0.2 m/s.以下说法正确的是()A.北斗导航卫星定位提供的是被测物体的位移B.北斗导航卫星定位提供的是被测物体的位置C.北斗导航卫星授时服务提供的是时间间隔D.北斗导航卫星授时服务提供的是时刻【解析】由位置、位移、时间间隔、时刻的定义可知,北斗导航卫星定位提供的是一个点,是位置,不是位置的变化,A错、B对.北斗导航卫星授时服务提供的是时刻,C错,D对.【答案】BD图1-2-89.(2012·保定一中高一检测)如图1-2-8所示,自行车的车轮半径为R,车轮沿直线无滑动地滚动,当气门芯由轮子的正上方第一次运动到轮子的正下方时,气门芯位移的大小为()A.πR B.2RC.2πR D.R4+π2【解析】如图所示,气门芯由轮子的正上方第一次运动到轮子的正下方的过程中,初末位置之间的距离,也就是位移大小为x=(2R)2+(πR)2=R4+π2,因此选项D正确,其他选项均错误.【答案】D10.在图1-2-9中,汽车初位置的坐标是-2 km,末位置的坐标是1 km.求汽车的位移的大小和方向.图1-2-9【解析】由题意知,汽车在初、末位置的坐标分别为x1=-2 km,x2=1 km.所以汽车的位移为Δx=x2-x1=1 km-(-2) km=3 km,位移的方向与x轴正方向相同.【答案】 3 km与x轴正方向相同11.某测绘规划技术人员在一次对某学校进行测量时,他从操场上某点A处开始,先向南走了30 m到达B处,再向东走了40 m到达C处,最后又向北走了60 m到达D处,则:(1)这人步行的总路程和位移的大小各是多少?(2)要比较确切地表示此人的位置变化,应该用位移还是路程?【解析】(1)如图,三角形AED为直角三角形,AE=40 m,DE=30 m,所以AD=AE2+DE2=50 m,A、D分别为起点和终点,所以位移的大小是50 m.他走过的路程为:30 m+40 m+60 m=130 m.(2)为了确切描述此人的位置变化,应该用位移,这样既能表示他相对出发点的距离,又能表示他相对出发点的方位.【答案】(1)130 m50 m(2)位移图1-2-1012.(2012·杭州一中高一检测)图1-2-10为400 m的标准跑道,直道部分AB、CD的长度均为100 m,弯道部分BC、DA是半圆弧,其长度也为100 m.A 点为200 m赛跑的起点,经B点到终点C.求:(1)200 m赛跑的路程和位移;(2)跑至弯道BC的中点P时的路程和位移.(结果保留一位小数)【解析】(1)在200 m赛跑中,200 m指路径的长度,即路程是200 m;位移是从起点A指向终点C的有向线段,因BC是半圆弧,则直径d=2×100πm≈63.7 m,故位移的大小AC=AB2+d2≈118.6 m,方向由A指向C.(2)跑至弯道BC的中点P时,路程是s=AB+BP=100 m+50 m=150 m;位移的大小AP=(AB+d2)2+(d2)2≈135.6 m方向由A指向P.【答案】(1)200 m118.6 m,方向由A指向C(2)150 m135.6 m,方向由A指向P.1.下列所说的速度中,哪些是瞬时速度()A.百米赛跑的运动员以9.5 m/s的速度冲过终点线B. 2011年8月28日铁路调整列车运行后,部分高铁和客专的动车组速度悄然降低,如济南西—杭州的G51次列车,在沪杭高铁段时速由350 km降至300 kmC. 返回地面的太空舱以8 m/s的速度落入太平洋D. 由于堵车,在隧道内的车速仅为1.2 m/s【解析】9.5 m/s是运动员冲线瞬间的速度,8 m/s是太空舱落入太平洋瞬间的速度,对应的都是一个时刻,都是瞬时速度;350 km/h、300 km/h、1.2 m/s 说的都是行程中的平均速度,故应选A、C两项.【答案】AC2.(2012·海口一中高一检测)对于瞬时速度和平均速度的理解,下列说法正确的是()A.瞬时速度为0,平均速度一定为0B.瞬时速度为0,平均速度可以不为0C.瞬时速度不为0,平均速度一定不为0D.瞬时速度不为0,平均速度可以为0【解析】车辆中途刹车停止后,再启动运行的一段时间内平均速度不为0,但停止时的瞬时速度为0,A错误;B正确;物体沿一圆周运动一圈的过程中,瞬时速度不为0,但位移为0,所以平均速度为0,C错误,D正确.【答案】BD图1-3-53.(2012·玉溪高一检测)2012伦敦奥运会中,牙买加选手博尔特是公认的世界飞人,他在男子100 m 决赛和男子200 m 决赛中分别以9.63 s 和19.32 s 的成绩破两项世界纪录,获得两枚金牌,如图1-3-5所示.关于他在这两次决赛中的运动情况,下列说法正确的是( )A .200 m 决赛中的位移是100 m 决赛的两倍B .200 m 决赛中的平均速度约为10.35 m/sC .100 m 决赛中的平均速度约为10.38 m/sD .100 m 决赛中的最大速度约为20.64 m/s【解析】 200 m 决赛是曲线,指路程,其位移小于200 m ,因此选项A 错误.由于200 m 决赛的位移x 1<200 m ,则平均速度v 1=x 1t 1<20019.32 m/s ≈10.35 m/s ,故选项B 错.100 m 决赛的平均速度v 2=x 2t 2=1009.63 m/s ≈10.38 m/s ,故C 选项正确.100 m 决赛中的最大速度无法求得,故选项D 错误.【答案】 C4.下列说法中正确的是( )A .在相等的时间内发生的位移相等则物体一定做匀速直线运动B .做匀速运动的物体,在任何一个时刻的速度都相等C .如果物体运动的路程跟所需时间的比值是一恒量,则该物体的运动一定是匀速直线运动D .以上说法都不对【解析】 匀速直线运动中,在任何相等的时间内发生的位移相等,且瞬时速度不变,B 正确.【答案】 B5.用同一张底片对着小球运动的路径每隔110 s 拍一次照,得到的照片如图1-3-6所示,则小球在图示过程的平均速度是( )。
人教版 高中数学必修一课后习题配套参考答案(解析版)
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I; 则39()(){(0,0),(,)}55A B B C =-IU I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U ,集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
(完整版)人教版高一化学必修一课后习题答案
《化学(必修)1》 课后习题参考答案第一章第一节 p101.C 2.C 3.CD 4.略5.乳化原理或萃取原理 6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节 p171.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol )6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。
7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:2 9.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol 10.40 (M=40 g/mol ,该气体的相对分子质量为40。
)第一章复习题 p191.C 2.B 3.A 4.BC 5.C6.(1) 不正确。
(标况下或没有明确O2的状态)(2)不正确。
(溶液体积不为1L )或氢氧化钠加入水中后,形成溶液的体积不能确定 (3)不正确。
(水标况下不是气体)或水在常温下是液体(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比) 7.(1)5% (2)0.28mol/L 8.9.1.42 g , 操作步骤 (1)计算所需硫酸钠的质量,m (硫酸钠)=0.2mol/L×0.05L×142g/mol=0.56g(2) 称量(3)溶解并冷却至室温(4)转移至50ml 容量瓶,并洗涤小烧杯2次~3次,将洗涤液转移到容量瓶中,轻轻摇动容量瓶,使溶液混合均匀铁 粉 过 滤Fe 、CuFeSO 4溶液稀硫酸过 滤FeSO 4溶液蒸发 结晶第二章第一节p291.②⑧①④⑤⑥⑦⑩⑨2.树状分类法略6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm范围。
生物 新教材 必修一 课后习题答案
1.1一、概念检测1、√√×√2、C3、(1)人体皮肤:本切片图中可见上皮组织的细胞、角质保护层细胞(死亡)和皮下结缔组织中的多种细胞;迎春叶:表皮细胞(保护)、保卫细胞(控制水分蒸发和气体进出)、叶肉细胞(光合作用)、导管细胞(运输水和无机盐)、筛管细胞(运输有机物),等等。
(2)植物细胞和动物细胞的共同点是:有细胞膜、细胞质、细胞核;区别是:植物细胞有细胞壁、液泡,有些植物细胞还有叶绿体。
(3)因为人体皮肤和迎春叶都是由多种组织组成的。
例如:人体皮肤由上皮组织、结缔组织、神经组织和肌肉组织组成,这些不同的组织按照一定的次序结合在一起构成行使保护等功能的器官。
二、拓展应用1、提示:可用已学过的植物或动物的分类、细胞所具有的结构进行举例,也可以结合生活经验进行举例。
运用不完全归纳法时,要审慎地接受所得出的结论,归纳时需要注意抓住所归纳对象的本质特征。
2、病毒尽管没有细胞结构,但病毒必须寄生在细胞中生活,依靠细胞中的物质来合成自己需要的物质,离开了细胞,病毒就不能长时间生存,因此说,病毒的生活是离不开细胞的。
3、如果“新细胞都是从老细胞中产生的”不成立,细胞一直可以从无机环境中自然发生,生物进化论中生物都起源于共同原始祖先的观点就会受到质疑。
一切动植物都是由细胞发育而来的,并由细胞和细胞产物所构成,说明动物和植物的统一性,从而阐明了生物界的统一性,这也支持生物有着共同起源的观点。
1.2一、概念检测1、×√√2、D3、根瘤菌是细菌,属原核细胞,没有成形的细胞核,植物细胞有成形的细胞核。
二、拓展应用1、细胞之所以会有统一性,是因为细胞来源于细胞,即新细胞是从老细胞通过分裂而形成的,所有细胞都来自一类共同的祖先,所以具有统一性。
细胞的多样性是在进化过程中,由于自然选择等原因,细胞出现结构分化、分别承担不同功能而产生的。
2、(1)支原体与动物细胞结构的区别是:支原体没有成形的细胞核,只有游离的DNA 和核糖体一种细胞器。
高中数学,必修一课后习题答案,完整版,附精品高考试卷1套
高中数学,必修一课后习题答案完整版,附精品高考试卷1套第一章集合与函数概念1. 1集合1. 1. 1集合的含义与表示练习(第5页)用符号或填空:(1)1.设A 为所有亚洲国家组成的集合,贝上中国.印度一A,A,美国.英国一A,A ;(2)若 A = {x\x 2 =x},则一1(3)^B = {x \x 2+x -6 = 0},贝J 3B ;(4)^C = {xeN\l<x<10}f 贝U8C, 9.1 C.A ;1.(1)中国g A ,美国印度g A ,英国g A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)-IgAA = {x\x 2 =x} = {0.1}.(3)3 w 8B = {x\x 1+x —6 = 0} = (—3,2).2.8 g C,9.19.1WN .(4)试选择适当的方法表示下列集合:(1)由方程x 2-9 = 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y =工+3与y = -2x+6的图象的交点组成的集合;(4)不等式4x-5<3的解集.2.解:(1)因为方程x 2-9 = 0的实数根为吐=—3,改=3,所以由方程/ -9 = 0的所有实数根组成的集合为(-3,3};(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};x = l y = 4(3)由<y=x+3,,得< y = -2尤+6即一次函数y=x+3与y=-2x+6的图象的交点为(1,4),所以一次函数y=x+3与y=-2x+6的图象的交点组成的集合为{(1,4)};(4)由4x-5<3,得x<2,所以不等式4x-5<3的解集为{x|x<2}.1. 1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得0;取一个元素,得{a},{b},{c}取两个元素,得{a,b},{a,c},{b,c}-,取三个元素,得{a,b,c},即集合{a,b,c}的所有子集^0,(«},(Z?},{c},{a,/?},(«,c},{b,c},{a,b,c}.2.用适当的符号填空:_{心=0};(1)a___—{a,b,c};(2)0____(3)0—__{xg7?|x23+1=0);(4){0,l}_____N;(5){0}_____{x|x2=x};(6)(2,1}_____{x\x1—3x+2=0} 2.(1)a^{a,b,c}a是集合{a,b,c}中的一个元素;(2)0e(%|%2=0}(x|x2=0}={0};(3)0-{xe/?|x2+l-0}方程%2+1=0无实数根,{xek|F+l=O}=0;(4){0,l}%N(或{0,1}g N){0,]是自然数集合N的子集,也是真子集;(5){0}S(x|x2=x}(或{0}o{x|x2 =%))(x|x2=%)={0,1);(6)(2,1}={x\x2-3x+2=0)方程了2一3工+2=0两根为jq=1,芍=2.3.判断下列两个集合之间的关系:(1)A={1,2,4},8={幻尤是8的约数};(2)A={x\x-3k,k^N},B-{x\x=6z.z^N];(3)A={x|x是4与10的公倍数,xc M},B-{x\x~20m,m^N+}.3.解:(1)因为8={x|俱8的约数}={1,2,4,8},所以A隼B;(2)当k=2z时,3k=6z;当R=2z+1时,3k=6z+3,即B是A的真子集,(3)因为4与10的最小公倍数是20,所以A=B.1. 1.3集合的基本运算练习(第11页)1.设A={3,5,6,8},3={4,5,7,8},求A B,A B.1.解:A B=(3,5,6,8}{4,5,7,8}={5,8},A B=(3,5,6,8}{4,5,7,8}={3,4,5,6,7,8}.2.iS A—{x|x2 —4x—5—0},2?={x\x2=1},求A B,A B.2.解:方程x2-4x-5=0的两根为X]=—1,易=5,方程*2—i=o的两根为改=一1,易=1,得A={_1,5},3={-1,1},即A B=(-1),A B=(-1,1,5).3.已知A={x|x是等腰三角形},3={x|x是直角三角形},求A B,A B.3.解:A3={x|x是等腰直角三角形},A3={x|x是等腰三角形或直角三角形}.4.已知全集U={1,2,3,4,5,6,7},A={2,4,5},3={1,3,5,7},求A(雅8),(〃A)(*3).4.解:显然切3={2,4,6},{1,3,6,7),则A QB)={2,4},(噂4)(波)={6}.1.1集合习题1.1(第11页)A组1.用符号或“W,,填空:⑴3-7—Q-(2)32_—N;(3)7i______(4)^2——R;(5)a/9_______Z;⑹(姊2______N.1.(1)3—g Q23—是有理数;(2)32e N32=9是个自然数;77(3)7i7T是个无理数,不是有理数;(4)gcR扬是实数;(5)a/9s Z^=3是个整数;(6)(>/5)2e N(灼2=5是个自然数2.已知A={x\x=3k-l,k^Z},用“b‘或“w”符号填空:(1)5A;(2)7A;(3)-10A.2.(1)5g A;(2)7g A;(3)-10e A.当k=2时,3k—1=5;当k=-3时,3R—1=—10;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2)A={x|(x-l)(x+2)=0};(3)B=(xeZ|-3<2x-l<3).3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(X—l)(x+2)=0的两个实根为茶=一2,易=1,即{—2,1}为所求;(3)由不等式—3<2x—1<3,得—l<x<2,且xcZ,艮盯0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数y=x"-4的函数值组成的集合;2(2)反比例函数y=—的自变量的值组成的集合;x(3)不等式3x>4-2x的解集.4.解:(1)显然有X2>0,得工2_42T,即y>-4,得二次函数y=x2-4的函数值组成的集合为{y|y2—4};2(2)显然有尤主0,得反比例函数y=—的自变量的值组成的集合为{x|xa0};x44(3)由不等式3xN4—2x,Wx>-,即不等式3x>4-2x的解集为{工|工>;}. 5.选用适当的符号填空:(1)已知集合A={x12x-3v3x},8={x|x>2},则有:-4B;-3A;{2B;B A;(2)已知集合A={x\x2-1=0},则有:1A;(-1A;0A;(1-]A;(3){x|x是菱形}{x|x是平行四边形};{x|x是等腰三角形}{x|x是等边三角形}.5.(1)-4WB;-3WA;(2;2x-3<3x=>x>-3,即A=[x\x>-3},B={x|x>2);(2)1e A;{-1呈A:。
必修一课后习题答案
变形虫、草履虫具有细胞膜、细胞质和成形的细胞核,不具有细胞壁
(3)眼虫有叶绿体,与植物细胞类似;眼虫有眼点能感受光的刺激,有鞭毛,能运动,这些特征与动物类似。从以上分析可以看出,眼虫与植物和动物都有相同之处,说明眼虫可能是与植物、动物共同祖先很接近的生物。
拓展应用:
溶酶体中含有多种水解酶,但是溶酶体膜不会被水解。根据这一事实,可以做出多种合理假说。例如,膜的成分可能被修饰,使得酶不能对其发挥作用;溶酶体膜可能因为所带电荷或某些特定基团的作用而能使酶远离自身;可能因膜转运物质使得膜周围的环境(如pH)不适合酶发挥ห้องสมุดไป่ตู้用;等等。
细胞核的结构和功能
概念检测:
1.(1)√(2)√
2.C 3.D
拓展应用
1.提示:染色体呈高度螺旋状态,这种状态有利于在细胞分裂过程中移动并分配到自细胞中去,而染色质处于细丝状,有利于DNA完成复制、转录等生命活动。
2.提示:有幸升值的子代继承了双亲的遗传信息,在子代中双亲的遗传物质得到了重新组合,从而大大增加了生物变异,增加了适应多变环境的能力,也为进化提供了原材料。克隆是无性繁殖的产物,克隆人与亲代相比,遗传物质是一样的,没有什么变化,因为降低了适应环境变化的能力。还有,如果克隆人对某种疾病具有易感性,就可能带来灾难性的后果;在社会学意义上,克隆人没有传统意义上的父亲和母亲,这回冲击原有的家庭和社会伦理观念,等。
2.鱼肝油主要含有维生素A和维生素D。维生素D有助于细胞吸收和储存钙和磷,所以当婴幼儿服用钙片时,医生会建议同时服用鱼肝油来促进钙的吸收。当维生素D缺乏时,婴幼儿容易患佝偻病、软骨病等。
蛋白质是生命活动的主要承担者
概念检测
高中数学必修一课后习题答案
高中数学必修一课后习题答案
《高中数学必修一课后习题答案》
高中数学必修一是高中阶段学习数学的基础课程,通过学习这门课程,学生可以掌握基本的数学知识和解题方法。
课后习题是巩固知识、提高能力的重要途径,下面是课后习题的答案。
1. 有理数的加减
答案:-5/6
2. 一元一次方程
答案:x=3
3. 二次根式
答案:2√3
4. 一元二次方程
答案:x=2或x=-3
5. 几何图形的面积和体积
答案:面积为24平方厘米,体积为36立方厘米
6. 函数及其图象
答案:f(x)=2x+3
7. 直角三角形的三角函数
答案:sinA=3/5, cosA=4/5, tanA=3/4
8. 统计与概率
答案:概率为1/6
通过课后习题的答案,我们可以检验自己的学习成果,找出自己的不足之处,
并加以改正。
同时,也可以对照答案,了解解题方法和思路,提高解题能力。
希望同学们能够认真对待课后习题,不断提高数学水平,取得更好的成绩。
总之,高中数学必修一课后习题答案是我们学习的重要参考资料,通过认真对待习题答案,我们可以更好地掌握数学知识,提高解题能力,取得更好的学习成绩。
希望同学们能够认真对待课后习题,不断提高数学水平,为将来的学习和工作打下坚实的数学基础。
人教版高一化学必修一、二课后习题答案详解
《化学(必修)1》 课后习题参考答案第一章第一节 p101.C 2.C 3.CD 4.略5.乳化原理或萃取原理 6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节 p171.D 2.B 3.B 4.B 5.65 mg/dL ~110mg/dL (1mmol=10-3mol )6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内溶质有损失。
7.14mL 8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol10.40 (M=40 g/mol ,该气体的相对分子质量为40。
)第一章复习题 p191.C 2.B 3.A 4.BC 5.C6.(1) 不正确。
(标况下或没有明确O2的状态)(2)不正确。
(溶液体积不为1L )或氢氧化钠加入水中后,形成溶液的体积不能确定(3)不正确。
(水标况下不是气体)或水在常温下是液体(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比)7.(1)5% (2)0.28mol/L8.9.1.42 g ,操作步骤(1)计算所需硫酸钠的质量,m (硫酸钠)=0.2mol/L×0.05L×142g/mol=0.56g(2) 称量(3)溶解并冷却至室温(4)转移至50ml 容量瓶,并洗涤小烧杯2次~3次,将洗涤液转移到容量瓶中,轻轻摇动容量瓶,使溶液混合均匀第二章第一节 p291.②⑧ ①④ ⑤ ⑥ ⑦⑩ ⑨ 2.树状分类法 略7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm 范围。
胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。
高中化学必修一课后习题参考答案
《化学(必修)1》课后习题参考答案第一章第一节1.C 2.C 3.CD 4.略5.乳化原理或萃取原理6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节1.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol)6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。
7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol10.40 (M=40 g/mol,该气体的相对分子质量为40。
)第一章复习题1.C 2.B 3.A 4.BC 5.C6.(1) 不正确。
(标况下)(2)不正确。
(溶液体积不为1L)(3)不正确。
(水标况下不是气体)(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比)7.(1)5% (2)0.28mol/L8.9.1.42 g,操作步骤略。
第二章第一节1.②⑧①④⑤⑥⑦⑩⑨2.树状分类法略6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm范围。
胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。
第二章第二节1.水溶液熔融状态电离阴阳离子阳离子H+阴离子OH-金属离子或铵根离子酸根离子H+ + OH-=H2O2.两种电解质在溶液中相互交换离子的反应生成难溶物、易挥发物质、弱电解质3.C 4.C 5.C 6.B 7.D8.(1) NaOH=Na++OH-(2) CuCl2=Cu2++2Cl-(3) Fe2(SO4)3=2Fe3++3SO42-(4) Ba(NO3)2=Ba2++2NO3-铁粉过滤Fe、CuFeSO4溶液稀硫酸过滤FeSO4溶液蒸发结晶9.(1) SO42-+Ba2+=BaSO4(2) 2Al+3Hg2+=3Hg+2Al3+(3) CO32-+2H+=H22(4) 不反应。
高中高一化学必修一课后习题包括答案.docx
《化学(必修) 1》课后习题参考答案第一章第一节1.C2.C3.CD4.略5.乳化原理或萃取原理6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节1.D2.B3.B4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol)6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。
7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol2)Cu2+:0.2mol Cl-:0.4mol0.40 (M=/mol ,该气体的相对分子质量0。
)第一章复习题1.C2.B3.A4.BC5.C6.(1) 不正确。
(标况下)(2)不正确。
(溶液体积不为)(3)不正确。
(水标况下不是气体)(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比)7.( 1)5%(2)0.28mol/L8.9.,操作步骤略。
第二章第一节1.②⑧①④⑤⑥⑦⑩⑨2.树状分类法略5.6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm 范围。
胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。
第二章第二节1.水溶液熔融状态电离阴阳离子阳离子H+阴离子OH-金属离子或铵根离子酸根离子H+ + OH-=H2O2.两种电解质在溶液中相互交换离子的反应生成难溶物、易挥发物质、弱电解质3.C4.C5.C6.B7.D8.(1) NaOH=Na++OH-(2) CuCl2=Cu2++2Cl-(3) Fe2(SO4)3=2Fe3++3SO42-(4) Ba(NO3)2=Ba2++2NO3-9.(1) SO42-+Ba2+=BaSO4(2) 2Al+3Hg2+=3Hg+2Al3+(3) CO32-+2H+=H2O+CO2(4) 不反应。
人教版数学必修一课后习题答案
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B .4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U AB =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组 1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求BC ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()RA B ,()R A B ,()R A B ,()R A B .10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}RA B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R AB x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()131f x x x =-++.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素60相对应的B 中的元素是什么?与B中的元素2相对应的A 中元素是什么? 4.解:因为3sin 60=,所以与A 中元素60相对应的B; 因为2sin 45=B相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域: (1)3()4xf x x =-; (2)()f x = (3)26()32f x x x =-+; (4)()1f x x =-. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠; (2)x R ∈,()f x =即该函数的定义域为R ;(A )(B )(C )(D )(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()()f x x g x x ==; (3)326(),()f x x g x x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1) 义域是(,)-∞+∞,值域是(,)-∞+∞;定 (2)义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;定(3)义域是(,)-∞+∞,值域是(,)-∞+∞;定(4)义域是(,)-∞+∞,值域是[2,)-+∞. 定2()352f x x x =-+,求(2)f -,()f a -,4.已知函数(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d , 周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+,得22100(0)d x x x =+>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>, 即2220(0)l d d =+>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个? 并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇. (1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得125xt -=+,(012)x ≤≤,即125xt -=+,(012)x ≤≤.(2)当4x =时,12483()3535t h -=+=+≈. 第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1) 5(,)2-∞上递减;函数在5[,)2+∞上递函数在增;(2) (,0)-∞上递增;函数在[0,)+∞上递函数在减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少? 2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-. 7.解:(1)因为1()1xf x x-=+,所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x +=-,求证: (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤. 10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数. B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =,(){2,4}U A B =,求集合B . 3.解:由(){1,3}U A B =,得{2,4,5,6,7,8,9}A B =,集合A B 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分 不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一《分子与细胞》课后练习答案第1章走近细胞第1节基础题:1、(1)活细胞:ADGI (2)死细胞:BE (3)细胞的产物:CFH2、(1)细胞层次(也是个体层次)(2)种群层次(3)群落层次拓展题:1、不是。
病毒不具有细胞结构,不能独立生活,只能寄生在活细胞中才能生活,因此,尽管人工合成了脊髓灰质炎病毒,但不意味着人工制造了生命。
2、人工合成病毒的研究,其意义具有两面性。
用绝对肯定或绝对否定的态度都是不全面的。
从肯定角度看,人工合成病毒可以使人类更好地认识病毒,例如,研究抗病毒的药物和疫苗,从而更好地为人类的健康服务;从否定的角度看,人工合成病毒的研究也可能会合成某些对人类有害的病毒,如果这些病毒传播开来,或者被某些人用做生物武器,将给人类带来灾害。
第2节基础题:1、B2、(1)人体皮肤:本切片图中可见上皮组织的细胞、角质保护层细胞(死亡)和皮下结缔组织中的多种细胞。
迎春叶:表皮细胞(保护)、保卫细胞(控制水分蒸发和气体进出)、叶肉细胞(光合作用)、导管细胞(运输水和无机盐)、筛管细胞(运输有机物),等等。
(2)动植物细胞的共同点:都有细胞膜、细胞质和细胞核;不同点:植物细胞有细胞壁和液泡,植物细胞一般还有叶绿体。
(3)因为他们都是由多种组织构成的,并能行使一定的功能。
例如,人体皮肤由上皮组织、肌肉组织、结缔组织和神经组织共同组成,人体皮肤有保护、感受环境刺激等功能;迎春叶由保护组织(表皮)、营养组织、机械组织和输导组织等构成,有进行光合作用、运输营养物质等功能。
3、原核细胞和真核细胞的根本区别是:有无成形的细胞核。
即真核细胞有由核膜包围的细胞核;原核细胞没有细胞核,只有拟核、拟核的结构比细胞核要简单。
它们的区别包含着共性:细胞核和拟核的共同点是都有遗传物质——DNA,体现了彼此之间在进化上的联系。
第1章自我检测的答案和提示一、概念检测判断题:1、×2、×3、√选择题:1、C 2、D 3、B画概念图:三个问号分别表示的连接词:不具有、具有、具有。
二、技能应用假定人脑每个细胞完全充满水,一个脑细胞的平均大小为1.5×10-15m3。
脑细胞是简单的立方体,那么平均大小的脑细胞每边长约为1.14×10-5m。
三、思维拓展(答案合理即可)第2章组成细胞的分子第1节基础题 1.(1)√ (2)×; 3.B。
拓展题1.细胞是有生命的,它可以主动地从环境中获取生命活动需要的元素。
这是生物与非生物的区别之一。
2.不能。
生命系统内部有严谨有序的结构,不是物质随意堆砌而成的。
第2节基础题1.(1)√;(2)√。
2.A。
3.B。
拓展题红细胞中的蛋白质和心肌细胞中的蛋白质,其氨基酸的种类、数量和排列顺序以及蛋白质分子的空间结构都不同,它们的功能也不相同。
第3节基础题1.(1)√;(2)√ ;(3)× 。
2.C。
3.C。
第4节基础题1.(1)√;(2)×。
2.C。
3.C。
4.C。
5.C。
拓展题1. 糖类是生物体主要利用的能源物质,尤其是大脑和神经所利用的能源必须由糖类来供应。
而脂肪是生物体内最好的储备能源。
脂肪是非极性化合物,可以以无水的形式储存在体内。
虽然糖原也是动物细胞内的储能物质,但它是极性化合物,是高度的水合形式,在机体内贮存时所占的体积相当于同等重量的脂肪所占体积的4倍左右。
因此脂肪是一种很“经济”的储备能源。
与糖类氧化相比,在生物细胞内脂肪的氧化速率比糖类慢,而且需要消耗大量氧气,此外,糖类氧化既可以在有氧条件下也可以在无氧条件下进行,所以对于生物体的生命活动而言,糖类和脂肪都可以作为储备能源,但是糖类是生物体生命活动利用的主要能源物质。
2. 葡萄糖是不能水解的糖类,它不需要消化可以直接进入细胞内,因此葡萄糖可以口服也可以静脉注射;但是蔗糖只能口服而不可以静脉注射,因为蔗糖是二糖,必须经过消化作用分解成两分子单糖后才能进入细胞。
蔗糖经过口服后,可以在消化道内消化分解,变成单糖后被细胞吸收。
第5节基础题 1.C。
2.A。
3.D。
拓展题质量分数为0.9%的氯化钠溶液的浓度,正是人体细胞所处液体环境的浓度,所以叫生理盐水。
当人体需要补充盐溶液或输入药物时,应输入生理盐水或用生理盐水作为药物的溶剂,以保证人体细胞的生活环境维持在相对稳定的状态。
第2章自我检测的答案和提示一、概念检测判断题1.√。
2.×。
3.×。
4.√。
5.×。
6.×。
选择题 1.A。
2.B。
3.D。
4.A。
画概念图完成下面有关蛋白质分子的概念图二、知识迁移自由水,结合水,自由水。
三、技能应用20种氨基酸在形成肽链时可以有不同的序列,这是肽链形式多样的主要原因。
用数学的排列组合方式可以解释,假若一段只有20个氨基酸的肽链,那么由于不同的排列组合可以形成的肽链形式就有2020种之多。
更何况肽链中的氨基酸数目远不止20个,通常是成百上千,可以想像形成的肽链形式将会是一个天文数字。
四、思维拓展在陨石中发现了氨基酸,且非地球所有,这说明宇宙中很可能还存在与地球生物类似的生命形式。
因为氨基酸是组成蛋白质的基本单位,而蛋白质又是生命活动的主要承担者。
第3章细胞的基本结构第1节基础题:1.C。
2.A。
3.C。
拓展题1.把细胞膜与窗纱进行类比,合理之处是说明细胞膜与窗纱一样具有容许一些物质出入,阻挡其他物质出入的作用。
这样类比也有不妥当的地方。
例如,窗纱是一种简单的刚性的结构,功能较单纯;细胞膜的结构和功能要复杂得多。
细胞膜是活细胞的重要组成部分,活细胞的生命活动是一个主动的过程;而窗纱是没有生命的,它只是被动地在起作用。
2.“染色排除法”利用了活细胞的细胞膜能够控制物质进出细胞的原理。
台盼蓝染色剂是细胞不需要的物质,不能通过细胞膜进入细胞,所以活细胞不被染色。
而死的动物细胞的细胞膜不具有控制物质进出细胞的功能,所以台盼蓝染色剂能够进入死细胞内,使其被染色。
第2节基础题1.图1中,注字的“内质网”应是“高尔基体”,“高尔基体”应是“内质网”。
染色质的注字指示线位置有误。
中心体还应包括指示线下方的中心粒。
图2中,注字的“核仁”应是“叶绿体”,“叶绿体”应是“线粒体”,“核糖体”应是“中心体”。
2.C。
3.B。
4.C。
拓展题:溶酶体的膜在结构上比较特殊,如经过修饰等,不会被溶酶体内的水解酶水解。
第3节基础题 1.(1)√;(2)×。
2.C。
3.C。
拓展题:出生小牛的绝大部分性状像母牛甲。
因为小牛获得的是母牛甲细胞核中的遗传物质,所以它的性状与母牛甲最相似。
第3章自我检测的答案和提示一、概念检测判断题1.×。
2.×。
选择题C。
连线题二、知识迁移与溶酶体的作用有关。
细胞死亡后,溶酶体膜破裂,各种水解酶释放出来,分解细胞中的蛋白质等物质,这时的畜、禽肉烹饪后更鲜嫩。
这个过程需要一定的时间。
三、技能应用调暗视野有两种方法:一是转动反光镜使进光量减少;二是选择小的光圈,减少进光量。
四、思维拓展1.(1)精卵结合时需要精子提供父方的遗传物质;(2)精子要靠尾部摆动游到卵细胞所在位置,才能与卵细胞结合这一过程需要大量的能量,这些能量主要来自线粒体内进行的有氧呼吸。
2.从生物膜在组成、结构、功能上的联系来考虑。
第4章细胞的物质输入和输出第1节基础题 1.√。
2.√。
3.×。
拓展题农业生产上的轮作正是针对不同作物根系对矿质元素的选择性吸收而采取的生产措施。
如果长期在同一块田里种植同种作物,地力就会下降(俗称伤地),即某些元素含量下降,这样就会影响作物的产量。
第2节基础题1.细胞膜太薄了,光学显微镜下看不见,而19世纪时还没有电子显微镜,学者们只好从细胞膜的生理功能入手进行探究。
2.脂质和蛋白质。
3.这两种结构模型都认为,组成细胞膜的主要物质是脂质和蛋白质,这是它们的相同点。
不同点是:(1)流动镶嵌模型提出蛋白质在膜中的分布是不均匀的,有些横跨整个脂双层,有些部分或全部嵌入脂双层,有些则镶嵌在脂双层的内外两侧表面;而三层结构模型认为蛋白质均匀分布在脂双层的两侧。
(2)流动镶嵌模型强调组成膜的分子是运动的;而三层结构模型认为生物膜是静态结构。
4.D。
拓展题1.生物膜结构的研究历史反映了科学研究的艰辛历程,也告诉我们建立模型的一般方法。
科学家根据观察到的现象和已有的知识提出解释某一生物学问题的假说或模型,用观察和实验对假说或模型进行检验、修正和补充。
一种模型最终能否被普遍接受,取决于它能否与以后的观察和实验结果相吻合,能否很好地解释相关现象,科学就是这样一步一步向前迈进的。
2.生物膜的流动镶嵌模型不可能完美无缺。
人类对自然界的认识永无止境,随着实验技术的不断创新和改进,对膜的研究将更加细致入微,对膜结构的进一步认识将能更完善地解释细胞膜的各种功能,不断完善和发展流动镶嵌模型。
第3节基础题 1.D。
2.A。
拓展题低温环境肯定会影响物质的跨膜运输。
温度会影响分子运动的速率,影响化学反应的速率,因此,组成细胞膜的分子的流动性也会相应降低,呼吸作用释放能量的过程也会因有关酶的活性降低而受到抑制。
这些都会影响物质跨膜运输的速率。
第4章自我检测的答案和提示一、概念检测判断题1.×。
2.×。
3.×。
4.×。
5.×。
选择题 1.D。
2.C。
画概念图二、知识迁移小肠绒毛上皮细胞能够从消化了的食物中吸收葡萄糖,却很难吸收相对分子质量比葡萄糖小的木糖。
这一事实说明细胞膜对物质进入细胞具有选择透过性。
这与细胞的生活关系密切,细胞膜的这一特性使细胞尽可能地只吸收自身需要的物质,细胞不需要或对细胞有害的物质常被阻挡在细胞外。
三、技能应用温度高低会提高或降低水分子通过半透膜的扩散速率。
在一定温度范围内,提高温度会加快水分子通过半透膜的速率;而降低温度则减缓水分子通过半透膜的速率。
实验方案设计如下:按本章第1节渗透现象示意图组装好三组装置。
在第一组的烧杯外用酒精灯或水浴锅加热升温;第二组烧杯外加冰块降温;第三组留作对照。
三组装置同时开始实验,并记录液面变化及时间。
四、思维拓展在顺浓度梯度的情况下,葡萄糖、氨基酸等分子可以通过协助扩散进入细胞。
当细胞外葡萄糖或氨基酸的浓度低于细胞内时,如果此时细胞的生命活动需要这些营养物质,细胞还能吸收这些营养物质,是通过主动运输。
第5章细胞的能量供应和利用第1节第一小节练习基础题1.巴斯德:发酵与活细胞有关,发酵是整个细胞而不是细胞中的某些物质在起作用。
李比希:引起发酵的是细胞中的某些物质,但是这些物质只有在酵母细胞死亡并裂解后才能发挥作用。
毕希纳:酵母细胞中的某些物质能够在酵母细胞破碎后继续起催化作用,就像在活酵母细胞中一样。