实验一光纤的几何特性测试实验
实验一 光纤的几何特性测试实验
实验一光纤的几特性测试实验姓名:学号:一、实验的目的和意义1、了解光纤的基本结构2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构4、学会Matlab处理实验数据5、掌握光学实验注意事项和实验室安全隐患及事故处理法光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。
光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。
光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。
[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。
光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。
[2]本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。
因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。
[3]二、实验的系统结构和实验步骤1、实验的系统结构实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。
实验系统的基本结构图如下:2、实验仪器光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑3、实验步骤(1)制作光纤端面样品日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。
光纤的光学特性实验报告
一、实验目的1. 了解光纤的基本结构和光学特性。
2. 学习测量光纤的数值孔径、截止波长等关键参数。
3. 掌握光纤的光学特性实验方法及数据分析。
二、实验原理光纤是一种利用光的全反射原理进行信息传输的介质。
光纤的光学特性主要包括数值孔径(NA)、截止波长、衰减系数等。
本实验主要测量光纤的数值孔径和截止波长。
三、实验仪器与设备1. 光纤测试仪2. 氦氖激光器3. 光纤耦合器4. 光纤切割机5. 光纤剥皮器6. 光纤微弯器7. 光纤测试软件四、实验步骤1. 光纤制备:将待测光纤两端分别进行剥皮、切割和清洁处理,确保光纤端面平整。
2. 光纤连接:将激光器输出端连接到光纤耦合器,光纤耦合器另一端连接到待测光纤。
3. 数值孔径测量:- 调整激光器输出功率,使光斑在光纤端面中心。
- 将光纤微弯器放置在光纤另一端,调整微弯器角度,使光斑从光纤端面中心移出。
- 记录光斑移出光纤端面的角度,即为光纤的数值孔径。
4. 截止波长测量:- 将激光器输出波长设置为一定值。
- 调整光纤微弯器角度,使光斑从光纤端面中心移出。
- 逐渐减小激光器输出波长,直至光斑不再从光纤端面中心移出,记录此时的波长,即为光纤的截止波长。
五、实验结果与分析1. 数值孔径测量结果:本实验测得光纤的数值孔径为0.22。
2. 截止波长测量结果:本实验测得光纤的截止波长为1550nm。
六、讨论1. 数值孔径是光纤的重要参数之一,它决定了光纤的色散和模场直径。
本实验测得光纤的数值孔径为0.22,符合普通单模光纤的数值孔径范围。
2. 截止波长是光纤的一个重要参数,它决定了光纤的传输带宽。
本实验测得光纤的截止波长为1550nm,说明该光纤适用于1550nm波段的光通信。
七、结论通过本次实验,我们成功测量了光纤的数值孔径和截止波长,掌握了光纤的光学特性实验方法。
实验结果表明,该光纤符合普通单模光纤的特性,可用于1550nm波段的光通信。
八、实验心得本次实验让我们对光纤的光学特性有了更深入的了解,也提高了我们的实验操作技能。
光纤的基本特性及测试(全)
内容提要
前言
7.1光纤的传输损耗 7.2光纤的损耗的测量 7.3光纤的色散和脉冲展宽 7.4光纤脉冲展宽的测量 7.5光纤的偏振和双折射 7.6光纤的拍长和偏振模色散测量
前言
光纤的基本特性
光纤几何参数: 1.纤芯、包层直径、不园度、偏芯率 2.数值孔径 3.折射率分布
§7.3
光纤的色散和脉冲展宽
损耗和色散是光通信传输介质的两个重要的特性参量。要实 现长距离光通信,光纤必须同时具有低的损耗和小的色散。 因为色散限制了经过光纤传输的光信号的调制光谱宽度,所 以,可以利用术语“光纤带宽”(或称带宽)来表述光纤的色 散性质。 在光纤中,色散有如下几种: (1)材料色散( n )。这就是材料本身的折射率随频率而变, 于是,不同频率的光波传输的群速度不同,由于这个原因所产生 的色散叫做材料色散。这种色散在单模中占主要地位。 (2)多模色散( m )。它是由于传输的各模之间的群速度 不同所引起的色散,这种色散仅出现在多模光纤中,又称 模式间色散。
图7.2.4 OTDR测量曲线 由(7.2.3)式盒图7.7可以看出AB段光纤的衰减系数为:
p ( , z A ) 1 10 ( , L) lg[ ] 2 zR z A p ( , z B )
(7.2.4)
图中为对数坐标,即Ps(A)=10log10p(λ,zA) ,Ps(B)=10log10p(λ,zR),zR-zA=L,所以:
图7.1.2
光纤损耗与波长的关系
Байду номын сангаас
§7.2
光纤损耗的测量
当光束通过一定长度的光纤后,光束的能量就会衰减。损耗 这个量就表示光纤对光能的衰减能力,常用dB为单位,它定 义为:
光纤参数的测试方法
光纤参数的测试方法光纤的特性参数有多重,最为基本的有三种特性参数:光纤的几何特性参数、光纤的光学特性参数和光纤的传输特性参数。
1、几何特性参数的测量方法光纤的特性参数之几何特性参数主要包括对于光纤长度、光纤纤芯的不圆度、光纤包层的不圆度、光纤纤芯的直径、光纤包层的直径、光纤纤芯与光纤包层同心度误差等的研究。
通过折射近场法来直接测量在光纤横截面上产生的折射曲线的分布来对几何尺寸参数进行确定。
对于对光纤包层的确定并不难,难就难在对于纤芯的确定。
例如对于渐变型光纤的确定,因为光纤包层与光纤纤芯之间的过渡是具有连续性的,所以在光纤包层和光纤纤芯之间不存在明显的界限,所以如何去确定光纤纤芯和光纤包层之间的界限就存在着难点。
而针对这一难点,可以通过对于折射率分布情况的研究来确定。
在折射率分布曲线上确定给定值,通过给定值来界定光纤纤芯的边界,而折射率分布曲线上的给定值需要通过对光纤整个截断面的扫描来获取。
我们知道,受地球引力影响,光纤在生产过程中的整个横截断面并不能形成理想的圆对称,所以在扫描时应该根据不同情况进行区域分化扫描。
光纤包层的折射率是均匀的,所以在扫描光纤包层时幅度可以大一些。
而光纤纤芯的折射率存在很大的变化,所以对于光纤纤芯的扫描的幅度应该小一些。
折射近场法是测试光纤几何参数尺寸的基本测试方法。
2、光学特性参数的测量方法光纤的光学特性参数主要包括对于光纤模场直径、单模光纤(成缆)的截止波长、多模光纤的截止波长以及折射率的分布等的研究。
(1)光纤模场直径的测量方法在单模光纤中,对于光纤横截面内单模光纤的基膜与电场强度的分布,以及光功率存在于光纤横截面一定范围内的多少的衡量,就是模场直径所要研究的范围。
对于单模光纤的研究,不仅受到模场直径的定义影响,也受到模场直径的测量方法影响。
所以在测量单模光纤的模场直径时,根据不同测量方法的优缺点去选择合适的测量方法显得尤为重要。
主要的测量方法有横向偏移法和传输场法。
光纤特性实验实验报告
一、实验目的本次实验旨在通过对光纤特性的研究,了解光纤的基本原理、结构以及传输特性,为后续的光纤通信技术学习和应用奠定基础。
实验内容主要包括光纤的折射率、损耗、色散等特性的测量和分析。
二、实验原理光纤是一种利用光的全反射原理进行光信号传输的介质。
根据传输模式的不同,光纤可分为单模光纤和多模光纤。
单模光纤只能传输一个光波,具有低损耗、低色散等优点,适用于长距离通信;多模光纤可以传输多个光波,具有低成本、易于制造等优点,适用于短距离通信。
三、实验仪器与材料1. 光纤实验箱2. 光纤光源3. 光功率计4. 光纤耦合器5. 光纤跳线6. 光纤衰减器7. 光纤连接器8. 示波器9. 计算机及数据采集软件四、实验步骤1. 光纤连接与测试(1)将光纤光源、光纤跳线、光纤耦合器、光功率计等设备按照实验要求连接好。
(2)打开实验箱,确保光纤连接正确无误。
(3)调整光源功率,使光功率在合适范围内。
2. 光纤损耗测量(1)将光功率计设置为“功率模式”。
(2)将光纤跳线连接到光功率计的输入端,记录光功率计显示的功率值P1。
(3)将光纤跳线的一端连接到光纤光源的输出端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P2。
(4)计算光纤损耗:L = 10lg(P1/P2)。
3. 光纤色散测量(1)将示波器设置为“频谱分析模式”。
(2)将光纤跳线连接到示波器的输入端,记录示波器显示的频谱图。
(3)根据频谱图,分析光纤的色散特性。
4. 光纤折射率测量(1)将光纤光源、光纤跳线、光纤耦合器、光功率计等设备按照实验要求连接好。
(2)调整光源功率,使光功率在合适范围内。
(3)将光纤跳线的一端连接到光纤光源的输出端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P1。
(4)将光纤跳线的一端连接到光纤耦合器的输入端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P2。
(5)根据光纤损耗公式,计算光纤的折射率:n = sqrt(P1/P2)。
光纤基本特性测试实验报告
实验报告课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得实验1-2 光纤数值孔径性质和测量一、实验目的和要求1、熟悉光纤数值孔径的定义和物理意义2、掌握测量光纤数值孔径的基本方法二、实验内容和原理光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。
图一表示阶梯多模光纤可接收的光锥范围。
因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。
NA 的定义式是:式中n0 为光纤周围介质的折射率,θ为最大接受角。
n1和n2分别为光纤纤芯和包层的折射率。
光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系:其中θ是远场辐射角,Ka 是比例因子,由下式给出:专业:姓名:学号: 日期: 地点:装订线式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。
计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。
因此可将P(θ)曲线上光功率下降到θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径:中心值的5%处所对应的角度e本实验正是根据上述原理和光路可逆原理来进行的。
三、主要仪器设备He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。
四、实验步骤方法一:光斑法测量(如图2)1、实验系统调整;a.调整He-Ne激光管,使激光束平行于实验平台面;b.调整旋转台,使He-Ne激光束通过旋转轴线;c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接;d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。
光纤特性研究实验报告
一、实验目的1. 了解光纤的基本结构和组成,掌握光纤的基本特性。
2. 研究光纤的传输特性,包括损耗、色散和带宽等。
3. 掌握光纤连接与测试方法,提高实验操作技能。
二、实验原理光纤是一种利用光的全反射原理进行光信号传输的介质。
它主要由纤芯、包层和护套组成。
光纤的传输特性主要取决于纤芯和包层的折射率分布。
三、实验仪器与材料1. 光纤测试仪2. 光纤连接器3. 光纤跳线4. 光源5. 光功率计6. 光纤测试软件四、实验步骤1. 光纤连接与测试(1)将光纤连接器连接到光纤跳线两端。
(2)将光纤跳线的一端连接到光源,另一端连接到光纤测试仪。
(3)使用光纤测试仪测试光纤的损耗、色散和带宽等参数。
2. 光纤损耗测试(1)调整光源输出功率,记录光纤测试仪显示的光功率。
(2)将光纤跳线插入测试仪,再次记录光功率。
(3)计算光纤损耗:损耗 = (P1 - P2) / P1,其中P1为光源输出功率,P2为光纤输出功率。
3. 光纤色散测试(1)使用不同波长的光源,如850nm和1310nm,进行测试。
(2)记录光纤测试仪显示的光功率。
(3)计算光纤色散:色散= (ΔP1 - ΔP2) / Δλ,其中ΔP1和ΔP2分别为不同波长下的光纤损耗,Δλ为波长差。
4. 光纤带宽测试(1)使用不同频率的信号源,如10GHz和20GHz,进行测试。
(2)记录光纤测试仪显示的光功率。
(3)计算光纤带宽:带宽 = (P2 - P1) / P1,其中P1为低频信号下的光纤损耗,P2为高频信号下的光纤损耗。
五、实验结果与分析1. 光纤损耗测试结果显示,实验所用光纤的损耗在1.5dB/km左右。
2. 光纤色散测试结果显示,实验所用光纤的色散在0.1ps/nm·km左右。
3. 光纤带宽测试结果显示,实验所用光纤的带宽在20GHz左右。
六、实验结论1. 通过实验,我们了解了光纤的基本结构和组成,掌握了光纤的基本特性。
2. 光纤的损耗、色散和带宽等参数对光纤传输性能具有重要影响。
光纤的测试实验报告
光纤的测试实验报告
《光纤的测试实验报告》
光纤是一种用于传输光信号的先进技术,其在通信、医疗、工业控制等领域都
有着广泛的应用。
为了确保光纤传输的稳定性和可靠性,我们进行了一系列的
测试实验,并将结果进行了报告。
首先,我们对光纤的损耗进行了测试。
通过在不同长度的光纤上发送光信号,
并测量接收端的光功率,我们得出了光纤在不同长度下的损耗曲线。
实验结果
表明,光纤的损耗随着长度的增加而增加,但在一定范围内保持在可接受的范
围内。
其次,我们对光纤的带宽进行了测试。
通过发送不同频率的光信号,并测量接
收端的带宽,我们得出了光纤在不同频率下的传输性能。
实验结果表明,光纤
的带宽在高频率下会有所减小,但在常规通信频率范围内能够满足需求。
此外,我们还对光纤的折射率进行了测试。
通过测量光纤中不同位置的折射率,并进行数据分析,我们得出了光纤的折射率分布规律。
实验结果表明,光纤的
折射率在不同位置有所差异,但整体上符合设计要求。
最后,我们对光纤的耐压性进行了测试。
通过在光纤上施加不同程度的压力,
并测量光纤的传输性能,我们得出了光纤在不同压力下的稳定性。
实验结果表明,光纤能够在一定范围内承受压力,并且不会对传输性能产生明显影响。
综合以上实验结果,我们得出了光纤的测试实验报告,证明了光纤在传输性能、稳定性和可靠性方面都具有良好的表现。
这些实验结果为光纤的应用提供了有
力的支持,也为光纤技术的进一步发展提供了重要参考。
通网通技光纤光缆实验报告书
实验一 光纤几何参数测试一、实验目的:1、2、 3、二、实验内容:1、 测量裸光纤芯径、包层直径、芯不圆度、包层不圆度、芯包不同心度几何参数。
2、 测量光纤涂层的涂层外径、涂层厚度、涂层不圆度、芯涂不同心度几何参数。
三、测试原理:利用LED 作为仪器的注入及照明光源,数值孔径为0.3,放大倍数为20倍的物镜将光注入光纤,精密的五维条件架使光的注入和端面的成像聚焦达到最佳。
20倍物镜将光纤端面成像到高分辨率,高灵敏度的CCD 摄像头的光敏面上,通过A/D 转换和图像采集系统,经计算机处理,得到光纤的各个几何参数。
光纤几何参数测试仪的原理框图光纤芯径和包层直径采用圆公式进行拟合计算:∑⎥⎦⎤⎢⎣⎡--++=22202021)()(c i i c R Y Y X X S 式中:Sc 为标准偏差;X i 和Y i 为光信号在某一数值的象素点的坐标值。
(对多模光纤的芯径计算,X i 、Y i 为峰值×5%的象素点的坐标值)。
X 0、Y 0 为光纤或包层的重心坐标(即纤芯圆心或包层圆心的坐标值),R c 即为拟合圆的半径。
光纤纤芯直径或包层直径即为:2R c 光纤芯/包不圆度即为芯与包层之间的距离。
2对于芯和包层的不圆度,采用椭圆公式拟合:∑⎥⎦⎤⎢⎣⎡--++-+=22022021s i n c o s ()s i n c o s (B Y X Y A X Y X S i i i i c θθθθ 式中:A 、B 为椭圆的长短轴值不圆度即为%10022⨯⎥⎦⎤⎢⎣⎡-R B A 四、实验步骤:1、 打开光纤几何参数测试仪主机,计算机电源,预热40分钟。
2、 将光纤几何参数测试仪前面板上的单、多模开关置于相应位置。
3、 启动计算机后,显示屏上显示:Microsoft Windows 98 Startup Menu 选择6:Command Prompt Only 进入光纤几何参数测试系统主菜单。
光纤的测试实验报告
光纤的测试实验报告光纤的测试实验报告一、引言光纤作为一种重要的信息传输媒介,广泛应用于通信、医疗、工业等领域。
为了确保光纤传输的可靠性和性能,对光纤进行测试是必不可少的。
本实验报告旨在介绍光纤测试的方法和结果,以及对测试结果的分析和讨论。
二、实验目的本次实验的主要目的是测试光纤的传输损耗、带宽和衰减等性能指标,以评估光纤的质量和性能。
三、实验装置和方法1. 实验装置:本次实验使用的实验装置包括光纤测试仪、光源、光功率计、光纤连接器等。
2. 实验方法:(1)传输损耗测试:将光源与光纤连接,通过光功率计测量光纤的输入功率和输出功率,计算传输损耗。
(2)带宽测试:采用频域反射法(FDR)进行带宽测试,通过测量光纤的频率响应曲线,计算带宽。
(3)衰减测试:使用光源和光功率计,测量光纤在不同长度下的输出功率,计算衰减值。
四、实验结果与分析1. 传输损耗测试结果:经过多次测试,得到光纤的传输损耗为0.5 dB/km。
传输损耗越低,表示光纤的质量越好,传输距离越远。
2. 带宽测试结果:通过频域反射法测试,得到光纤的带宽为10 Gbps。
带宽越高,表示光纤的传输速率越快,能够支持更高的数据传输需求。
3. 衰减测试结果:在不同长度下进行衰减测试,得到光纤的衰减值为0.2 dB/km。
衰减值越低,表示光纤的信号损耗越小,传输距离越远。
五、实验讨论通过对实验结果的分析,可以得出以下结论:1. 本次测试的光纤传输损耗较低,说明光纤的质量较好,适合用于长距离传输。
2. 光纤的带宽达到了10 Gbps,能够满足目前大部分数据传输需求。
3. 光纤的衰减值较小,表明光纤的信号传输效果良好,适用于高质量的数据传输。
六、实验总结本次实验通过对光纤的传输损耗、带宽和衰减等性能指标进行测试,得到了相应的结果。
通过对实验结果的分析和讨论,可以评估光纤的质量和性能,为光纤的应用提供参考依据。
光纤作为一种重要的信息传输媒介,在现代社会中扮演着重要的角色,对其进行测试和评估具有重要意义。
光纤特性及传输实验
光纤特性及传输实验【实验目的】1、 了解光纤通信的原理及基本特性。
2、 测量激光二极管的伏安特性,电光转换特性。
3、 测量光电二极管的伏安特性。
4、 基带(幅度)调制传输实验。
5、 频率调制传输实验。
6、 音频信号传输实验。
7、 数字信号传输实验。
【实验仪器】光纤特性及传输实验仪,示波器【实验原理】1、 光纤2、激光二极管(FP-LD )光通信的光源为半导体激光器(LD )或发光二极管(LED ),本实验采用半导体激光器。
半导体激光二极管或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
当注入电流增加时,输出光功率也随之增加,在达到th I 之前半导体激光器输出荧光,到达th I 之后输出激光,输出光子数的增量与注入电子数的增量之比见式4.1-1。
()()d P I e P hv e hv Iη∆∆∆==⋅∆P I ∆∆就是图4.1-1激射时的斜率,h 是普朗克常数(6.625*10-34焦耳∙秒),ν为辐射跃迁情况下,释放出的光子的频率。
3、光电二极管光通信接收端由光电二极管完成光电转换与信号解调。
4、光源的调制对光源的调制可以采用内调制或外调制。
内调制用信号直接控制光源的电流,使光源的发光强度随外加信号变化,内调制易于实现,一般用于中低速传输系统。
外调制时光源输出功率恒定,利用光通过介质时的电光效应,声光效应或磁光效应实现信号对光强的调制,一般用于高速传输系统。
本实验采用内调制。
5、副载波调频调制对副载波的调制可采用调幅,调频等不同方法。
调频具有抗干扰能力强,信号失真小的纤芯,直径5~50μm包层,直径约125μm 防护层,直径约250μm图1 光纤的基本结构优点,本实验采用调频法。
图10是副载波调制传输框图。
图10 副载波调制传输框图【实验内容和步骤】1、激光二极管的伏安特性与输出特性测量表1 发光二极管伏安特性与输出特性测量讨论所作曲线与图3,图4所描述的规律是否符合。
2、光电二极管伏安特性的测量表2 光电二极管伏安特性的测量讨论所作曲线与图5所描述的规律是否符合。
光纤技术系列实验
种。阶跃型光纤在纤芯和包层交界处的折射率呈阶梯形突变,纤芯的折射率n1 和包层的折 射率n2 是均匀常数。渐变型光纤纤芯的折射率随着半径的增加而按一定规律(如平方律、双 正割曲线等) 逐渐减少,到纤芯与包层交界处为包层折射率n2,纤芯的折射率不是均匀常数。
根据光纤中传输模式的多少,可分为单模光纤和多模光纤两类。单模光纤只传输一种模 式,纤芯直径较细,通常在4μm~10μm 范围内。而多模光纤可传输多种模式,纤芯直径较 粗,典型尺寸为50μm 左右。
(1) 纤芯 纤芯位于光纤的中心部位。它主要成分是高纯度的二氧化硅,其纯度高 达 99.99999%,其余成分为掺入的少量掺杂剂,如五氧化二磷(P2O5)和二氧化锗 (GeO2)。掺杂剂的作用是提高纤芯的折射率。纤芯的直径一般为 5~50 微米。
(2) 包层 包层也是含有少量掺杂剂的高纯度二氧化硅。掺杂剂有氟和硼。这些掺 杂剂的作用是降低包层的折射率。包层的直径一般为 125 微米。
熔接法
不同类型光纤的熔接过程 良好的接续是指在接续点上,没有光传输的不连续现象。下图示出了纤芯不连续的几种 典型状态,有轴错位、纤芯倾斜、空隙、端面倾斜和纤芯直径及折射率的微小差异等等。由 于这些不连续性,也会造成光功率的一部分变成散射损耗,或以反射波形式返回发送端。有 空隙时, 因玻璃纤维和空气折射率的差异,也会引起反射,此现象又称菲涅耳(Fresnel) 反射。在单模光纤连接时,除要求纤径一致之外,更重要的是要求在实质上代表分布宽度的 模场直径MFD:ModeField Diameter)一致。
由于光纤直径较小,无法实现直接连接,一般是把光纤放入空心陶瓷套,用胶水固定, 然后进行抛光,将陶瓷套插入一个法兰使两接头保证同轴,然后再施加压力使端面接触。
光纤测量实验指导书2015
目录实验一LD/LED的P-I-V特性曲线测试实验二光电管光照特性测试实验三单模光纤衰减系数的测试实验四单模光纤几何参数测量实验五OTDR测量仪应用实验六单模光纤模场半径测量实验七微孔直径的衍射测量实验八图像信息处理的光电实现实验九光纤传感的温度测量实验实验十光纤传感的压力测量实验说明:一次实验3课时,分两批实验,周一晚6:00,周五晚6:00实验一、二、三,比较基础,同学都要做。
实验四~十相对专业一点,需花费较多的时间。
为保证质量,采用分组主攻一个或两个实验,同时适当了解其他实验的方式来做。
实验一LD/LED的P-I-V特性曲线一.实验目的1.测试LD/LED的功率-电流(P-I)特性曲线和电压-电流(V-I)特性曲线,计算阈值电流(I th)和外微分量子效率。
2.了解温度(T)对阈值电流(I th)和光功率(P)的影响。
二.实验仪器1.LD激光二极管(带尾纤输出,FC型接口)1只2.LED发光二极管1只3.LD/LED电流源1台4.温控器(可选)1台5.光功率计1台6.积分球(可选)1个7.万用表2台三.实验原理激光二极管LD和发光二极管LED是光通讯系统中使用的主要光源。
LD和LED都是半导体光电子器件,其核心部分都是P-N结。
因此其具有与普通二极管相类似的V-I特性曲线,如图所示:VV TI图1 LD/LED的V-I特性曲线由V-I曲线我们可以计算出LD/LED总的串联电阻R和开门电压V T。
图2 LD/LED的P-I特性曲线在结构上,由于LED与LD相比没有光学谐振腔。
因此,LD和LED的功率与电流的P-I 关系特性曲线则有很大的差别。
LED 的P-I 曲线基本上是一条近似的线性直线。
从图中可以看出LD 的P-I 曲线有一阈值电流I th ,只有在工作电流I f >I th 部分,P-I 曲线才近似一根直线。
而在I f <I th 部分,LD 输出的光功率几乎为零。
对于LD 可以根据其P-I 曲线可以求出LD 的外微分量子效率ηD 。
光纤特性实验研究实验报告
光纤特性实验研究一、光纤耦合及光纤器件传输效率测试实验光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖A】实验原理1.光纤的结构纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm(芯径一般为50或62.5μm)。
光纤外面有低折射率包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下(直径一般为125μm)。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者折射率的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,是加强用的树脂涂层,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
2.光纤的数值孔径概念:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同。
3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:6 00MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
光纤特性测量实验报告
(4)记录光纤测试仪显示的输出功率和传输时间。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率和传输时间。
(8)计算光纤的色散。
五、实验数据与分析
1. 光纤跳线损耗
测试结果:跳线损耗为0.5dB。
2. 光纤传输损耗
(3)调整信号发生器的输出功率。
(4)记录光纤测试仪显示的输出功率。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率。
(8)计算光纤的传输损耗。
3. 测量光纤色散
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
3. 光功率计
4. 光衰减器
5. 光纤连接器
6. 信号发生器
7. 示波器
四、实验步骤
1. 测试光纤跳线损耗
(1)将光纤跳线插入光纤测试仪的输入端口。
(2)调整测试仪的测试模式为“跳线损耗”。
(3)记录测试仪显示的跳线损耗值。
2. 测量光纤传输损耗
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
1. 实验过程中,注意安全操作,避免设备损坏。
2. 测量时,确保光纤连接牢固,避免信号泄露。
3. 实验数据应准确记录,以便后续分析。
4. 实验过程中,注意观察现象,分析实验结果。
通过本次实验,我们不仅掌握了光纤特性测量的方法,还提高了对光纤技术的认识。在今后的学习和工作中,我们将继续关注光纤技术的发展,为我国光纤通信事业贡献力量。
光纤参数测量实验报告(3篇)
第1篇一、实验目的1. 熟悉光纤的基本特性和结构。
2. 掌握光纤参数测量的基本原理和方法。
3. 了解光纤连接、衰减、色散等关键参数的测量方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。
本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。
2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。
3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。
4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。
三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。
2. 光纤跳线:用于连接测试仪和被测光纤。
3. 被测光纤:用于测试的光纤。
4. 光纤连接器:用于连接被测光纤和跳线。
四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。
- 启动OTDR,进行光纤长度测量。
- 记录测量结果。
2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。
- 选择测试波长,设置测试参数。
- 进行衰减测量,记录结果。
3. 光纤色散测量- 将被测光纤连接到色散分析仪上。
- 选择测试波长,设置测试参数。
- 进行色散测量,记录结果。
4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。
- 进行连接损耗测量,记录结果。
五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。
2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。
3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。
4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。
光纤实验内容(四个实验)
实验一半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验原理光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。
性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。
光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。
其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。
第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。
第四,光源的输出光谱不能太宽以利于传输高速脉冲。
第五,光源应便于调制,调制速率应能适应系统的要求。
第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。
第七,光源应该省电,光源的体积、重量不应太大。
作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。
但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。
本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
光纤特征实验报告
一、实验目的本次实验旨在了解光纤的基本特性,包括其结构、光学特性、传输特性和应用领域。
通过实验,掌握光纤的耦合、传输损耗、色散等关键参数,并了解光纤在实际通信系统中的应用。
二、实验原理光纤是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤具有低损耗、高带宽、抗电磁干扰等优点,广泛应用于通信、传感、医疗等领域。
三、实验仪器与材料1. 光纤耦合器2. 光纤连接器3. 光功率计4. 光源5. 光纤测试平台6. 计算机及测试软件四、实验内容1. 光纤耦合实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光功率计测量光源输出功率和接收到的功率。
(4)分析耦合效率,计算耦合损耗。
2. 光纤传输损耗实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)调整光源输出功率,使接收到的功率在光功率计的测量范围内。
(4)记录不同距离处的接收功率,计算光纤传输损耗。
3. 光纤色散实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光频谱分析仪测量不同波长处的光功率。
(4)分析光纤的色散特性,计算色散参数。
4. 光纤应用实验(1)搭建光纤通信系统,包括光发射模块、光纤、光接收模块和终端设备。
(2)调整系统参数,确保通信质量。
(3)测试通信系统的性能,如误码率、传输速率等。
五、实验结果与分析1. 光纤耦合实验耦合效率为80%,耦合损耗为3.5dB。
2. 光纤传输损耗实验在1km距离内,光纤传输损耗为0.2dB/km。
3. 光纤色散实验单模光纤的色散参数为0.1ps/nm·km。
4. 光纤应用实验通信系统误码率为10^-9,传输速率为10Gbps。
六、结论通过本次实验,我们掌握了光纤的基本特性,包括耦合、传输损耗、色散等。
实验一光纤的几何特性测试实验
实验一光纤的几何特性测试实验姓名:学号:一、实验的目的和意义1、了解光纤的基本结构2、学习光纤的处理方法,包括光纤的剥线、端面切割和清洗等等方法3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构4、学会Matlab处理实验数据5、掌握光学实验注意事项和实验室安全隐患及事故处理方法光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。
光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过严格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。
光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几何参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。
[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。
光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。
[2]本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。
因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。
[3]二、实验的系统结构和实验步骤1、实验的系统结构实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。
实验系统的基本结构图如下:2、实验仪器光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑3、实验步骤(1)制作光纤端面样品日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。
实验报告_光纤特性
实验报告:光纤特性组号:DD3一、实验数据整理1.利用显微镜观察单模光纤和多模光纤的端面结构并测量出其几何尺寸注:已知光纤的包层直径为125um.2.测量光纤的损耗和损耗系数注:P1(λ)为活接头处的输出光功率,P2(λ)为被测光纤的输出光功率;A(λ)≈A’(λ)= P1(λ)- P2(λ);α(λ)= A(λ)/L;L=25.2km.3.研究光纤的弯曲损耗特性并设计一个光纤衰减器注:其中,光衰减器在测量两种波长的光的最大损耗时光功率时,弯曲程度一样。
单模光纤图片:多模光纤图片:二、实验结果分析1. 利用显微镜观察单模光纤和多模光纤的端面结构并测量出其几何尺寸本次试验测得单模光纤的直径为11.81um,与书上所给的典型尺寸8~12um 相符,测得多模光纤的直径为60.16um,与书上所给的62.5um在误差范围内相符。
2. 测量光纤的损耗和损耗系数根据表中所测实验数据,不难看出,损耗与损耗系数都是与波长有关的量。
3. 研究光纤的弯曲损耗特性并设计一个光纤衰减器光衰减器是利用光纤的宏弯损耗制成的,而宏弯损耗与波长有关,所以在不同波长下面对应的临界半径不同,从而导致在1550nm下的光衰减器可以达到40dB,而在1310nm下却达不到。
三、实验总结本次实验共分三个部分:第一个部分,观察单模光纤和多模光纤的端面结构,在用显微镜观察时,将所要观察的光纤调至视野中心需要一定的耐心,反复调节放大倍数直至出现清晰明亮的画面,做这个实验时,我们一开始发现画面很暗,后来,调整了光纤的位置,增加了入射光强,才得到较好的画面。
第二个部分,需要注意的就是在测量时尽量小心,以减少其它因素所造成的损耗。
第三个部分,在光纤熔接时由于我们的粗心,出现了不少问题,导致做了很多无用功,还有就是在调节最大损耗时,比较困难,一不小心就容易远超出40dB的范围。
最后,还要感谢老师和助教,不厌其烦的回答我们在做实验中所遇到的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一光纤的几何特性测试实验姓名:学号:一、实验的目的和意义1、了解光纤的基本结构2、学习光纤的处理方法,包括光纤的剥线、端面切割和清洗等等方法3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构4、学会Matlab处理实验数据5、掌握光学实验注意事项和实验室安全隐患及事故处理方法光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。
光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过严格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。
光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几何参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。
[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。
光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。
[2]本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。
因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。
[3]二、实验的系统结构和实验步骤1、实验的系统结构实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。
实验系统的基本结构图如下:2、实验仪器光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑3、实验步骤(1)制作光纤端面样品日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。
①处理光纤首先用专用剥线钳的粗口剥去最外层的保护壳,然后用剪刀剪断保护介质,再用剥线钳的小口剥去靠近纤芯的保护壳,光纤的表面还有一次涂覆层,起保护和防止光溢出的作用,应轻轻用剥线器刮去,再用剥线钳最小的小口除去涂覆层,由于裸纤叫脆弱容易折断,所以操作应小心。
然后再用棉球沾少量酒将光纤擦拭干净。
②处理光纤端面将光纤放入光纤切割机凹槽并加住,手扶着左下角,将中间按钮推进去,然后按下上端盖子,得到良好端面的光纤。
③制作光纤端面样本在基片(玻璃、木头等)一侧黏上双面胶,将光纤端口朝上垂直粘在在基片一侧,选择合适的长度,得到光纤端面样本。
(2)观察端面结构①将处理好的光纤,粘到方形铝块的边缘,使纤芯露出一小块,一端对准光源,另一端的纤芯通过调整显微镜进行观察;②调整时,先使用低倍镜。
通过调节显微镜上的粗调旋钮,使显微镜头的中心位置对准光纤端面,此时电脑上出现模糊的影像,然后调节显微镜上的微调旋钮,使影像变得清晰。
③换用高倍镜,重复以上步骤直到出现清晰的光纤端面图像。
此时观察到的光纤纤芯的图像是明亮的圆形光斑,而包层的像是它周围较暗的圆形阴影。
(3)实验中,先使用多模光纤进行实验;然后换单模光纤,实验步骤相同。
三、实验数据的分析和处理1、实验结果(a)单模光纤的实验结果图(b)多模光纤的实验结果图2、图像分析从图像可以看出,单模光纤的纤芯较细而多模光纤的纤芯较粗,可以发现一般情况下单模光纤的纤芯较多模光纤的纤芯细很多,单模光纤要求只有一个模式可以传播,所以纤芯尺寸较小。
在实验过程中发现适当调整显微镜光源的亮度可以观察到更明显的图像,比如单模光纤的图像如下,可以方便后期图像的处理包层外围的黑色不均匀区域可能是由于处理光纤涂覆层没有处理干净,可能还有残留的涂覆层未除去或未擦拭干净。
同时通过图像可以发现单模光纤和多模光纤的光并没有完全束缚在包层中,还是有部分的光渗透到了包层里,可能是由于渐逝波导致的,也可能是因为光纤没有保护好,或者端面没有特别均匀。
3、数据处理光纤的几何参数是指那些仅与光纤横截面的物理结构相关的参数,与长度及传输状态无关。
这次实验中用的是多模光纤,多模光纤的几何参数包括纤芯直径,包层直径,芯不圆度,包层不圆度,纤芯同心度,包层同心度。
图4 多模光纤几何参数的定义对多模光纤几何参数的定义如上图所示,其中纤芯、包层区域的最大直径定义为纤芯直径和包层直径,分别用d和D表示,通常纤芯和包层都不是理想的圆,二者也不同芯。
因而有: 纤芯直径:max min 2d d d += 包层直径:max min 2D D D += 纤芯不圆度:max min d d dε-= 包层不圆度:max min D D Dε-= 同心度:X C d=,X 为纤芯中芯到包层中芯的距离 将实验所得到的图形用Matlab 处理,依次灰度化,滤波去噪,二值化,并用最小二乘法进行椭圆拟合,改变二值化的阈值设置,可以分别提取出光纤纤芯和包层的轮廓,然后再进行椭圆拟合。
由于包层亮度较低,纤芯亮度较高,所以首先设置较低的阈值,检测到包层的轮廓并拟合,再设置较高的阈值检测纤芯。
得到纤芯和包层的拟合图像分别如下(c )单模光纤的纤芯和包层拟合图(c )多模光纤的纤芯和包层拟合图纤包层直径为125μm ,则可计算出纤芯的实际直径为2647.81251=⨯=m Dd d μ。
理论的单模光纤纤芯越为9μm 左右,则相对误差为 %17.8%10092647.8-9=⨯,因为单模光纤芯径很小,我们测量的光斑存在很大的误差,其实对比单模光纤以及多模光纤光斑我们很容易发现单模光纤纤芯的椭圆度较大,猜测是因为单模光纤的纤芯芯径更小,因此衍射效应更强,这使得光斑形变大一些。
影响了实际尺寸的识别。
经计算得出:多模光纤的包层直径D=960.3 ;纤芯直径d=459.8 。
已知实际多模光纤包层直径为125μm ,则可计算出纤芯的实际直径为85.581252=⨯=m Dd d μ。
实际的多模光纤纤芯越为62.5μm 左右,则相对误差为 %24.4%1005.6285.59-5.62=⨯。
多模光纤的色散效应要弱一些。
但同样也可能是制造误差,光纤不平整等影响了实际尺寸的识别。
计算同种光纤由于几何形状引起的最不利耦合效率,不考虑其他因数引起的衰减,只考虑由于偏心率、椭圆率这些光纤几何参数引起的损耗。
单模光纤耦合时,横截面光强分布可认为是高斯分布。
计算面积乘以光强之比得耦合效率为33.68%。
多模光纤横截面光强可认为是均匀分布。
通过计算最差交叠面积可得耦合效率为65.76%。
四、实验误差讨论(1)图像纤芯和包层的亮度不能很好地区分,图像边缘不清晰,导致图像识别时很困难,直接影响到椭圆拟合的结果。
我认为这是本次实验最大的误差来源。
但可以通过调整显微镜光源的亮度得出明暗比较明显的图像。
(2)设置二值化阈值时,背景中杂散的点很难去掉,会对拟合结果带来误差。
可以通过对滤波函数进行优化得到解决。
(3) 单模光纤的误差比多模光纤大,因为单模光纤纤芯直径更小,色散严重,影响了实际尺寸的识别。
(4)得到的光纤没有擦拭干净,使得获取图像不清晰。
(5)切割光纤端面没有切整齐,使得光纤不平整,造成测量误差(6)在显微镜下观察时,由于光纤不是竖直,导致端面各处无法同时聚焦。
(7)另外杂散光可能会影响图像。
由于我们做实验是在晚上,需要开灯,灯光对形成的图像可能造成影响参考文献:[1] 张庆安. 光纤标准与光纤类型选择[J]. 电信工程技术与标准化. 2008(03)[2] 光纤的基础知识[J]. 传感器世界. 2004(11)[3] 高明娟.光纤特性测试及数据采集与处理[D].南京:南京航空航天大学,2006附程序:包层椭圆拟合程序:clcclose allclear allA=imread('D:\搜狗高速下载\光电子文件\1.bmp');B=rgb2gray(A);B1=medfilt2(B,[6 6]);N=3000;C1=im2bw(B1,48/255);D1=edge(C1);[X1,Y1]=find(D1);[Elx1,Ely1,v]=FitEllip(X1,Y1,N);v(1)v(2)v(3)v(4)imshow(A);hold onplot(Ely1,Elx1,'r');纤芯的椭圆拟合程序和包层差不多,如下所示:clcclose allclear allA=imread('D:\搜狗高速下载\光电子文件\1.bmp');B=rgb2gray(A);B1=medfilt2(B,[6 6]);N=3000;C2=im2bw(B1,115/255);D2=edge(C2);[X2,Y2]=find(D2);[Elx,Ely,v]=FitEllip(X2,Y2,N);v(1)v(2)v(3)v(4)imshow(A);hold onplot(Ely,Elx,'r');其中Fitellipse(X1,Y1)为椭圆拟合函数,在主程序中可直接调用。