实验一光纤的几何特性测试实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一光纤的几何特性测试实验

姓名:学号:

一、实验的目的和意义

1、了解光纤的基本结构

2、学习光纤的处理方法,包括光纤的剥线、端面切割和清洗等等方法

3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构

4、学会Matlab处理实验数据

5、掌握光学实验注意事项和实验室安全隐患及事故处理方法

光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过严格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。

光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几何参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。

光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2]

本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3]

二、实验的系统结构和实验步骤

1、实验的系统结构

实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。

实验系统的基本结构图如下:

2、实验仪器

光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑

3、实验步骤

(1)制作光纤端面样品

日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。

①处理光纤

首先用专用剥线钳的粗口剥去最外层的保护壳,然后用剪刀剪断保护介质,再用剥线钳的小口剥去靠近纤芯的保护壳,光纤的表面还有一次涂覆层,起保护和防止光溢出的作用,应轻轻用剥线器刮去,再用剥线钳最小的小口除去涂覆层,由于裸纤叫脆弱容易折断,所以操作应小心。然后再用棉球沾少量酒将光纤擦拭干净。

②处理光纤端面

将光纤放入光纤切割机凹槽并加住,手扶着左下角,将中间按钮推进去,然后按下上端盖子,得到良好端面的光纤。

③制作光纤端面样本

在基片(玻璃、木头等)一侧黏上双面胶,将光纤端口朝上垂直粘在在基片一侧,选择合适的长度,得到光纤端面样本。

(2)观察端面结构

①将处理好的光纤,粘到方形铝块的边缘,使纤芯露出一小块,一端对

准光源,另一端的纤芯通过调整显微镜进行观察;

②调整时,先使用低倍镜。通过调节显微镜上的粗调旋钮,使显微

镜头的中心位置对准光纤端面,此时电脑上出现模糊的影像,然后调

节显微镜上的微调旋钮,使影像变得清晰。

③换用高倍镜,重复以上步骤直到出现清晰的光纤端面图像。此时

观察到的光纤纤芯的图像是明亮的圆形光斑,而包层的像是它周围较

暗的圆形阴影。

(3)实验中,先使用多模光纤进行实验;然后换单模光纤,实验步骤相同。

三、实验数据的分析和处理

1、实验结果

(a)单模光纤的实验结果图

(b)多模光纤的实验结果图

2、图像分析

从图像可以看出,单模光纤的纤芯较细而多模光纤的纤芯较粗,可以发现一般情况下单模光纤的纤芯较多模光纤的纤芯细很多,单模光纤

要求只有一个模式可以传播,所以纤芯尺寸较小。

在实验过程中发现适当调整显微镜光源的亮度可以观察到更明显的图像,比如单模光纤的图像如下,可以方便后期图像的处理

包层外围的黑色不均匀区域可能是由于处理光纤涂覆层没有处理干净,可能还有残留的涂覆层未除去或未擦拭干净。

同时通过图像可以发现单模光纤和多模光纤的光并没有完全束缚在包层中,还是有部分的光渗透到了包层里,可能是由于渐逝波导致的,

也可能是因为光纤没有保护好,或者端面没有特别均匀。

3、数据处理

光纤的几何参数是指那些仅与光纤横截面的物理结构相关的参数,与长度及传输状态无关。这次实验中用的是多模光纤,多模光纤的几何参数包括纤芯直径,包层直径,芯不圆度,包层不圆度,纤芯同心度,包层同心度。

图4 多模光纤几何参数的定义

对多模光纤几何参数的定义如上图所示,其中纤芯、包层区域的最大直径定义为纤芯直径和包层直径,分别用d和D表示,通常纤芯和包层都不是理想的

圆,二者也不同芯。因而有: 纤芯直径:max min 2d d d += 包层直径:max min 2

D D D += 纤芯不圆度:max min d d d

ε-= 包层不圆度:max min D D D

ε-= 同心度:X C d

=,X 为纤芯中芯到包层中芯的距离 将实验所得到的图形用Matlab 处理,依次灰度化,滤波去噪,二值化,并用最小二乘法进行椭圆拟合,改变二值化的阈值设置,可以分别提取出光纤纤芯和包层的轮廓,然后再进行椭圆拟合。由于包层亮度较低,纤芯亮度较高,所以首先设置较低的阈值,检测到包层的轮廓并拟合,再设置较高的阈值检测纤芯。得到纤芯和包层的拟合图像分别如下

(c )单模光纤的纤芯和包层拟合图

(c )多模光纤的纤芯和包层拟合图

相关文档
最新文档