光纤传输特性测试实验

合集下载

实验一 光纤的几何特性测试实验

实验一 光纤的几何特性测试实验

实验一光纤的几特性测试实验姓名:学号:一、实验的目的和意义1、了解光纤的基本结构2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构4、学会Matlab处理实验数据5、掌握光学实验注意事项和实验室安全隐患及事故处理法光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。

光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。

光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。

[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。

光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。

[2]本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。

因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。

[3]二、实验的系统结构和实验步骤1、实验的系统结构实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。

实验系统的基本结构图如下:2、实验仪器光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑3、实验步骤(1)制作光纤端面样品日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。

光纤传输特性测试实验

光纤传输特性测试实验
3.由于光纤表面的随机畸变或粗糙所产生的波导散射损耗;
4.光纤弯曲所产生的辐射损耗;
5.外套损耗。
这些损耗可以分为两种不同的情况。一是石英光纤的固有损耗机理,像石英材料的本征吸收和瑞利散射,这些机理限制了光纤所能达到的最小损耗;二是由于材料和工艺所引起的非固有损耗机理,它可以通过提纯材料或改善工艺而减小甚至消除其影响,如杂质的吸收、波导散射等。
2.接上交流电源线,先开交流开关,再开直流开关K601,K602,五个发光二极管全亮。
3.接通数字基带信号产生模块(K40)、光收发合一模块(K20)的直流电源。
4.将光跳线将1310nm光发机与光功率计连接起来。
(dB)(3)
光纤损耗测试实验测试方案:本实验利用剪断法测量光纤损耗,由于光纤的损耗很小,一般为0.2~0.5dB/km,为了使实验效果明显,则至少需要数千米的光纤,实现起来比较困难,所以在实验中我们建议使用小可变衰减器来代替光纤进行实验。在后继实验步骤中我们以小可变衰减器代替光纤进行,实验方框图如图6所示。如果实验条件允许则将光纤代替小可变衰减器即可。
8.用光功率计测量此时的光功率P2。
9.拆除小可变衰减器。
10.用光功率计测得此时的光功率为P1。
11.代入(1)式计算即得光纤损耗值。
12.抬起J502,关闭直流电源,拆除导线。
13.光功率计及拆除扰模器上的光纤,将实验箱还原。
B、光纤弯曲损耗测量
1.连接导线:将数字基带信号产生模块T402与光收发合一模块T201连接。
光纤弯曲损耗测试实现方案:因为光纤1550nm的弯曲损耗大于1310nm的弯曲损耗,本实验测试光纤传输此两种波长时的弯曲损耗,并将结果进行比较。将一段光
纤连接在1310nm的光发机与光功率计之间,向光发机的数字驱动电路送入一伪随机信号(长度为24位),保持注入电流恒定,测得此时的光功率为P1,将光纤按图6-7(a)所示方法在扰模器上缠绕,测得此时的光功率为P2,代入(1)式即可计算出光纤弯曲半径为R1时的光纤损耗。将光纤按图7(b)所示方法在扰模器上缠绕,测得此时的光功率为 ,代入(1)式即可计算出光纤弯曲半径为R2(R1<R2)时的光纤损耗。将1310nm光收发合一模块改为1550nm,重复上述实验。

光纤特性及传输试验

光纤特性及传输试验

光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进 行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后 的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹 的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率 资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通 信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波 和亚毫米波时遇到了困难。

光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信 无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。

与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷 设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信 息社会。

实验目的1 . 了解光纤通信的原理及基本特性。

2 .测量半导体激光器的伏安特性,电光转换特性。

3 .测量光电二极管的伏安特性。

4 .基带(幅度)调制传输实验。

5 .频率调制传输实验。

6 .音频信号传输实验。

7 .数字信号传输实验。

实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横 截面如图1所示。

纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。

若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤:若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。

若纤芯直径小于 1011m ,只有一种模式的光波能在光纤中传播,称为单模光纤。

若纤芯直径5011m 左右,有多个模式的光波能在光纤中传播,称为多模光纤。

防护层由缓冲涂层、加强材料涂覆层及套塑层组成。

光纤信号传输实验报告

光纤信号传输实验报告

光纤信号传输实验报告光纤传输实验报告实验目的:音频信号光纤传输1、学习音频信号光纤传输系统的基本结构和各部件的选配原则。

2、熟悉光纤传输系统中电光/光电转换器件的基本性能。

3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。

实验仪器TKGT-1型音频信号光纤传输实验仪信号发生器双踪示波器实验原理光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。

1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km的石英光纤。

目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km,在1310纳米窗口小于0.3 dB/km。

目前商用光纤制作工艺多为渐变折射率芯层光纤。

从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。

普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。

目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。

一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。

光纤的工作基础是光的全反射。

由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。

附:光的全反射原理根据光的反射和折射定律,即?11 n1sin?1?n2sin?2 若n1n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c时,就发生光的全反射现象。

由于在临界状态下,22,代入上式,则?c?arcsin??n2n1 ,称为全反射临界角。

?光波在光纤中传输,可以用两种不同的理论来解释。

光纤布拉格光栅传输特性理论分析及其实验研究共3篇

光纤布拉格光栅传输特性理论分析及其实验研究共3篇

光纤布拉格光栅传输特性理论分析及其实验研究共3篇光纤布拉格光栅传输特性理论分析及其实验研究1光纤布拉格光栅传输特性理论分析及其实验研究随着通信技术的不断发展,人们对高速、宽带、低衰减的光纤通信系统的需求越来越强烈。

在新型光纤通信系统中,光纤布拉格光栅逐渐成为一种广泛应用的光纤分布式传感技术。

本文将分析光纤布拉格光栅的传输特性,并通过实验验证分析结果的准确性。

光纤布拉格光栅是一种基于光纤中的光学衍射现象的光学器件。

在光纤中加入一定周期的光折射率折变结构,就能形成光纤布拉格光栅。

在光纤中传输的光波,经过布拉格光栅时,会出现衍射现象,产生反射、透射和反向散射,这些效应是产生传输特性的基础。

光纤布拉格光栅的传输特性主要表现在其反射光频谱和传输带宽两个方面。

反射光频谱是指光波经过光纤布拉格光栅后,由栅中反射的光波在谱域的表现。

反射光频谱可以通过反射率、衰减率、相位等参数来描述。

光纤布拉格光栅的反射带宽会随着栅体的折射率调制以及周期变化而发生变化。

而传输带宽则是指光波通过光纤布拉格光栅后的传输性能表现,其传输性能主要由栅体的反射率和传播损耗来决定。

传统的光纤布拉格光栅的制备方法主要有激光干涉、可调光束、干涉光阴影和相位掩膜等方法。

一般情况下,涉及到光纤布拉格光栅的应用,需要随时监测栅体的传输特性。

为了准确地监测光纤布拉格光栅的传输特性,通常采用光谱光学方法来进行反射光频谱的测量。

根据光谱光学方法,可以直接测量出光纤布拉格光栅的反射率和反射带宽,同时还能进一步计算出光纤布拉格光栅的传输损耗和传输带宽。

为了验证理论分析的正确性,本文进行了一系列光纤布拉格光栅的实验研究。

实验采用了对光纤布拉格光栅进行反射光频谱的测量,并通过计算反射光频谱的反射率和反射带宽,得出光纤布拉格光栅的传输损耗和传输带宽。

实验结果表明,本文理论分析的光纤布拉格光栅传输特性是可靠的,能够为光纤布拉格光栅在光纤通信系统中的应用提供有效的理论基础。

光纤特性实验研究实验报告

光纤特性实验研究实验报告

光纤特性实验研究一、光纤耦合及光纤器件传输效率测试实验光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖A】实验原理1.光纤的结构纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。

掺杂的作用是提高材料的光折射率。

纤芯直径约5~~75μm(芯径一般为50或62.5μm)。

光纤外面有低折射率包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下(直径一般为125μm)。

包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。

掺杂的作用是降低材料的光折射率。

这样,光纤纤芯的折射率略高于包层的折射率。

两者折射率的区别,保证光主要限制在纤芯里进行传输。

包层外面还要涂一种涂料,是加强用的树脂涂层,可用硅铜或丙烯酸盐。

涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。

光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。

2.光纤的数值孔径概念:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。

这个角度就称为光纤的数值孔径。

光纤的数值孔径大些对于光纤的对接是有利的。

不同厂家生产的光纤的数值孔径不同。

3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。

多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:6 00MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。

光纤通信实验报告光源的PI特性测试

光纤通信实验报告光源的PI特性测试
y=[,387,,,,,,,,,,,,];
plot(x,y)
xlabel('I/mA');ylabel('P/uW');
title('实验得LD半导体激光器P-I特性曲线')
gridon;
对实验结果曲线图的阈值电流部分进行局部放大,如图所示:
实验结果及分析:
通过进行了光源的P-I特性测试实验,结合了书本上的知识,我对半导体激光器LD的P-I特性有了进一步的了解,同时也掌握了光源P-I特性曲线的测试方法。
(3)用同轴电缆线将25号光收发模块P4(光探测器输出)连至23号模块P1(光探测器输入)。
2、将25号光收发模块开关J1拨为“10”,即无APC控制状态。开关S3拨为“数字”,即数字光发送。
3、将25号光收发模块的电位器W4和W2顺时针旋至底,即设置光发射机的输出光功率为最大状态;
4、开电,设置主控模块菜单,选择主菜单【光纤通信】→【光源的P-I特性测试】功能。
在做实验的过程中,也因为是初次接触,还有些不习惯,从这第一个实验开始对实验箱的每个模块进行熟悉,中间在读数的时候,我们测得的数据波动的很厉害,不能稳定地读数,所以只能取中间值进行采集。
在实验的过程中,我们对多组数据进行了测量。我们首先由u=(V)测量至u=(V),发现了P-I大致的规律,后又估计在u=(V)左右对应有阈值电流,故又在此范围附近多测量了几组,使最终结果更精确。最后根据我们的数据绘出了实验测得的LD光源P-I特性曲线,曲线与理想情况还有些偏差,我认为造成误差的原因,主要可能有实验温度的影响和测量过程中读数与记录的误差等,但在误差允许的范围内,实验结果与理论基本吻合。可以从曲线上看出,阈值电流在左右,阈值功率在左右。
实验步骤:

光纤光学基础实验报告

光纤光学基础实验报告

一、实验目的1. 了解光纤的基本结构和特性。

2. 掌握光纤通信的基本原理。

3. 学习光纤连接和测试的基本方法。

4. 熟悉光纤通信系统中的关键器件。

二、实验原理光纤通信是一种利用光波在光纤中传输信息的技术。

其基本原理是利用光的全反射原理,将光信号从光纤的一端传输到另一端。

光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。

三、实验仪器与设备1. 光纤测试仪2. 光纤跳线3. 光纤耦合器4. 光源5. 光功率计6. 光纤连接器四、实验内容1. 光纤基本特性测试(1)光纤衰减测试:使用光纤测试仪测量光纤的衰减系数,并与理论值进行比较。

(2)光纤带宽测试:使用光纤测试仪测量光纤的带宽,分析其传输性能。

(3)光纤连接损耗测试:使用光纤跳线和连接器,连接两根光纤,测量连接损耗。

2. 光纤通信系统搭建(1)搭建光纤通信系统,包括发送端、接收端、光纤、光模块等。

(2)使用光源和光功率计测试系统性能,分析系统中的损耗和噪声。

3. 光纤通信系统测试(1)测试系统传输速率,分析其性能。

(2)测试系统误码率,分析其抗干扰能力。

(3)测试系统稳定性,分析其长期运行性能。

五、实验结果与分析1. 光纤基本特性测试结果(1)光纤衰减测试:实验测得光纤的衰减系数为0.18dB/km,与理论值0.2dB/km基本一致。

(2)光纤带宽测试:实验测得光纤的带宽为20GHz,满足系统传输需求。

(3)光纤连接损耗测试:实验测得连接损耗为0.5dB,符合预期。

2. 光纤通信系统搭建与测试结果(1)系统传输速率:实验测得系统传输速率为1.5Gbps,满足设计要求。

(2)系统误码率:实验测得系统误码率为10^-9,说明系统抗干扰能力强。

(3)系统稳定性:实验测得系统运行稳定,长期性能良好。

六、实验结论1. 光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。

2. 光纤通信系统性能良好,满足设计要求。

3. 通过实验,掌握了光纤基本特性测试、光纤通信系统搭建与测试方法。

《光信息传输技术》实验指导书(新)

《光信息传输技术》实验指导书(新)

《光信息传输技术》实验指导书何宁编信息与通信学院2009年12月实验一 光纤及LD 特性测量一.实验目的1.掌握光纤的基本结构和传输特性。

2.了解光纤通信光源的类型及发光机理。

3.掌握光纤及LD 有关特性测量。

二.实验内容及要求1. 光纤损耗特性及连接技术测试。

2.LD 伏安特性测试。

3.LD 电光转换特性测试。

4.LD 调制特性测试。

三.实验原理光纤制造过程是比较复杂的过程,生产光纤的主要材料为石英(SiO 2),其制造流程如图1所示:图1 光纤光缆制造流程图光纤的制作过程一般可分为三个主要步骤:熔炼、拉丝、套塑。

光纤按制作材料不同可分为石英光纤,塑料光纤和氧化物光纤。

按工作波长分为短波光纤(0.85um ),长波长光纤(1.31um ,1.55um )和超长波长光纤(2um 以上)。

按传输模式分为单模光纤和多模光纤。

光纤接续有固定连接和活动连接两种,固定连接一般用于光缆工程上;活动连接一般用于机与线或机与机之间的连接,是可以拆卸的。

光纤接续损耗主要受以下几个因素的影响,被焊接光纤折射率失配,纤蕊失配,端面的平整度和干净程度等。

光纤传输特性主要有损耗特性和频带特性,光纤损耗特性通常用dB/km 表示,引起光能量衰减的原因有吸收损耗、散射损耗和辐射损耗。

要降低光纤衰减,可采用纯度极高的石英玻璃。

光纤频带特性通常用兆赫千米来表示,说明1Km 光纤所具有的带宽能力,光纤频带特性主要受传光时色散性的影响。

光纤的损耗是决定光纤通信系统传输距离的一个很重要的参数,光纤内的吸收、散射和弯曲、微弯以及护套等因素均可引起光纤传输中光功率的衰减,由于精确地计算光纤损耗极为困难,光纤的损耗通常用实验确定,因此,掌握测量光纤损耗的方法十分重要。

光纤中光信号的传输可用下式表示:L e I P L P 1)()(α-= (1)式中)(I P 是光纤输入功率,)(L P 是光纤长L 处的光功率,1α是功率损耗系数,单位是1/米。

光纤特性测量实验报告

光纤特性测量实验报告
(3)调整信号发生器的输出功率和频率。
(4)记录光纤测试仪显示的输出功率和传输时间。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率和传输时间。
(8)计算光纤的色散。
五、实验数据与分析
1. 光纤跳线损耗
测试结果:跳线损耗为0.5dB。
2. 光纤传输损耗
(3)调整信号发生器的输出功率。
(4)记录光纤测试仪显示的输出功率。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率。
(8)计算光纤的传输损耗。
3. 测量光纤色散
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
3. 光功率计
4. 光衰减器
5. 光纤连接器
6. 信号发生器
7. 示波器
四、实验步骤
1. 测试光纤跳线损耗
(1)将光纤跳线插入光纤测试仪的输入端口。
(2)调整测试仪的测试模式为“跳线损耗”。
(3)记录测试仪显示的跳线损耗值。
2. 测量光纤传输损耗
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
1. 实验过程中,注意安全操作,避免设备损坏。
2. 测量时,确保光纤连接牢固,避免信号泄露。
3. 实验数据应准确记录,以便后续分析。
4. 实验过程中,注意观察现象,分析实验结果。
通过本次实验,我们不仅掌握了光纤特性测量的方法,还提高了对光纤技术的认识。在今后的学习和工作中,我们将继续关注光纤技术的发展,为我国光纤通信事业贡献力量。

光纤通信 实验1 实验报告 光源的 P-I 特性测试实验

光纤通信 实验1 实验报告 光源的 P-I 特性测试实验

课程名称:光纤通信实验名称:实验1光源的P-I 特性测试实验姓名:班级:电17-3学号:实验时间:指导教师:得分:序号:42实验1光源的P-I 特性测试实验一、实验目的1、了解半导体激光器L D 的P-I 特性。

2、掌握光源P-I 特性曲线的测试方法。

二、实验器材1、主控&信号源模块2、2 号数字终端&时分多址模块3、25 号光收发模块4、23 号光功率计模块5、示波器三、实验内容光源的P-I 特性测试四、实验原理数字光发射机的指标包括:半导体光源的P-I 特性曲线测试、消光比(EXT)测试和平均光功率的测试。

接下来的三个实验我们将对这三个方面进行详细的说明。

I(mA)LD 半导体激光器P-I 曲线示意图半导体激光器的输出光功率与驱动电流的关系如图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith 表示。

在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系相似于正向二极管的特性。

P-I 特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流Ith 尽可能小,Ith对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。

且要求P-I 曲线的斜率适当。

斜率太小,则要求驱动信号太大,给驱动电路带来麻烦:斜率太大,则会山现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

将开始出现净增益的条件称为阈值条件。

一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith 时,其输出光为非相干的荧光,类似于LED 发出光,当电流大于Ith 时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I 的线性关系。

光纤特性及传输实验

光纤特性及传输实验

光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。

光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。

与用电缆传输电信号相比,光纤通信具有通信容量大,传输距离长,价格低廉,重量轻易敷设,抗干扰,保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信息社会。

【实验目的】1、 了解光纤通信的原理及基本特性。

2、 测量激光二极管的伏安特性,电光转换特性。

3、 测量光电二极管的伏安特性。

4、 音频信号传输实验。

5、数字信号传输实验。

【实验仪器】光纤特性及传输实验仪,示波器【实验原理】1、 光纤光纤是由纤芯,包层,防护层组成的同心圆柱体,横截面如图1所示。

纤芯与包层材料大多为高纯度的石英玻璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光波导效应,使大部分的光被束缚在纤芯中传输。

若纤芯的折射率分布是均匀的,在纤芯与包层的界面处折射率突变,称为阶跃型光纤。

若纤芯从中心的高折射率逐渐变到边缘与包层折射率一致,称为渐变型光纤。

若纤芯直径小于10μm ,只有一种模式的光波能在光纤中传播,称为单模光纤。

若纤芯直径50μm 左右,有多个模式的光波能在光纤中传播,称为多模光纤。

防护层由缓冲涂层,加强材料涂覆层及套塑层组成。

通常将若干根光纤与其它保护材料组合起来构成光缆,便于工程上敷设和使用。

光纤测试实验

光纤测试实验
光纤传输特性测试实验
一、实验目的
1.了解光纤损耗的定义
2.学会用插入法测量光纤的损耗
1.
二、实验原理
传输损耗是光纤很重要的一项光学性质,它在很大程度上决定着传输系统中的中继距离。损耗的降低依赖于工艺的提高和对石英材料的研究。
对于光纤来说,产生损耗的原因较复杂,主要由以下因素造成:
1.纤芯和包层物质的吸收损耗,包括石英材料的本征吸收和杂质吸收;
1.首先在连接处D作临时接头;
2.在光纤连接后的尾端C处测得接收光功率P3;
3.在临时接头后的B点(相距D点约几厘米)切断光纤,测得光功率为P2;
4.在临时接头前的A点切断光纤,测得光功率为P1;
5.在连接处D点将光纤作永久性连接,然后在C点重新测得光功率为P4。
则此永久性连接的附加损耗为:
(2)
光纤弯曲损耗的测量框图如图5所示,:
3.比较相同弯曲半径,不同波长的弯曲损耗。
六、注意事项
1.光源,光跳线的插头属易损件,应轻拿轻放,使用时切忌用力过大。
2.测量光纤弯曲损耗时,光纤在扰模器上缠绕不可拉得过紧。
3.不可带电拔插光电器件,要拔插光电器件,须先关闭电源后进行。
七、思考题
1.分析用剪断法测量光纤损耗中扰模器的作用,若不使用扰模器,则会对实验结果有何影响。
2.传输相同波长信号时,为什么不同弯曲半径下光纤的损耗不同?
3.相同弯曲半径时,为什么光纤传输不同波长信号损耗不同?
4.测量光纤损耗时,对光纤稍微用力拉紧,比较此时测得的光纤损耗的变化,并分析其原因。
测量光纤损耗的方法很多,CCITT(国际电报、电话咨询委员会)建议以剪断法为参考,插入法为第一替代法,背向散射法为第二替代法。
测量光纤损耗时,只要测出光纤输入端的光功率P1和输出光功率P2,即可得到光纤总的平均损耗,则光纤损耗为:

光纤通信实验报告1-光源的P-I特性测试

光纤通信实验报告1-光源的P-I特性测试
《光纤通信》实验报告
实验室名称:光纤通信实验室实验日期:2014年12月11日
学院
信息科学与工程学院
专业、班级
姓 名
实验名称
光源的P-I特性测试
指 导
教 师
教师评语
教师签名:
年 月 日
实验目的:
1、了解半导体激光器LD的P-I特性。
2、掌握光源P-I特性曲线的测试方法。
实验器材:
1、实验器材:主控&信号源模块、2号、25号模块 各一块
LD半导体激光器P-I曲线示意图
半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P-I的线性关系。
5、用万用表测量R7两端的电压(测量方法:先将万用表打到直流电压档,然后将红表笔接TP3,黑表笔接TP2)。读出万用表读数U,代入公式I=U/R7,其中R7=33Ω, 读出光功率计读数P。
调节功率输出W4,将测得的参数填入表格。
P(uW)
u(V)
I(A)
实验步骤:
1、关闭系统电源,按如下说明进行连线:
(1)用连接线将2号模块TH7(DoutD)连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON”,使输入信号为全1电平。

光纤测试报告范文

光纤测试报告范文

光纤测试报告范文一、测试目的本次测试的目的是验证光纤的传输质量和性能,并评估其是否符合设计要求和标准,以确保光纤通信系统的正常运行。

二、测试内容1.光纤的物理参数测试:包括光纤的长度、直径、弯曲半径、损耗等参数的测试,以确定光纤的基本物理性能。

2.光纤的传输性能测试:测试光纤的传输衰减、色散、带宽等参数,以评估其传输质量和性能。

3.光纤的可靠性测试:测试光纤在不同工作条件下的可靠性和稳定性,包括温度、湿度、振动等环境因素的影响。

三、测试方法1.光纤的物理参数测试:使用光纤测试仪器对光纤进行长度测量、直径测量、弯曲半径测试等。

2.光纤的传输性能测试:使用光纤光源和光纤功率计进行光纤衰减和色散的测试,使用频谱仪进行光纤带宽的测试。

3.光纤的可靠性测试:将光纤暴露在不同条件下,如高温、低温、高湿度、低湿度、振动等环境下进行测试。

四、测试结果与分析1.光纤的物理参数测试结果如下:-光纤长度为XXX米,符合设计要求。

-光纤直径为XXX微米,符合设计要求。

-光纤弯曲半径为XXX毫米,符合设计要求。

-光纤的损耗为XXX分贝,符合标准要求。

2.光纤的传输性能测试结果如下:-光纤传输衰减为XXX分贝,符合设计要求。

-光纤色散为XXX皮秒/纳米/千米,符合设计要求。

-光纤带宽为XXX千兆赫兹,符合设计要求。

3.光纤的可靠性测试结果如下:-光纤在高温环境下表现稳定,无明显性能下降。

-光纤在低温环境下表现稳定,无明显性能下降。

-光纤在高湿度环境下表现稳定,无明显性能下降。

-光纤在低湿度环境下表现稳定,无明显性能下降。

-光纤在振动环境下表现稳定,无明显性能下降。

五、结论通过对光纤的测试,我们得出以下结论:-光纤的物理参数符合设计要求和标准,具有良好的物理性能。

-光纤的传输性能符合设计要求和标准,具有优秀的传输质量和性能。

-光纤在不同工作条件下表现稳定,具有良好的可靠性和稳定性。

六、建议根据测试结果-继续进行光纤的长期可靠性测试,以进一步验证其稳定性和可靠性。

光纤传输特性实验实验报告

光纤传输特性实验实验报告

光纤传输特性实验实验报告实验报告:光纤传输特性实验一、实验目的1. 了解光纤传输的基本原理和特性;2. 掌握光纤传输信号损耗的测量方法;3. 了解光纤覆盖层的保护作用和光纤附加噪声。

二、实验仪器1. 光纤传输箱;2. 光纤光源;3. 光纤接收仪;4. 光纤带宽检测装置;5. 光源电源。

三、实验原理1. 光纤传输基本原理:光纤传输是利用光在纤维中的反射和折射来传输信息的一种方式。

光纤由纤芯、包层和裸露纤芯组成,光信号通过射入纤芯,然后沿着纤芯的光轴传播。

纤芯是光传输的核心,包层则用于保护光传输中的信号。

2. 光纤传输信号损耗的测量方法:光纤传输中的信号衰减主要包括衰减损耗和连接损耗。

衰减损耗是指光信号沿光纤传输中由于各种原因所导致的信号强度的损失。

连接损耗是指光纤之间的连接所带来的光信号损失。

测量光纤传输中的信号损耗常用的方法是利用光纤接收仪读取光源发出的光强度,然后与光源发出的光强度进行比较,计算信号损耗。

3. 光纤覆盖层的保护作用:光纤的包层主要用于保护光纤的传输信号,减少信号损耗。

光纤的包层一般由石英、聚合物等材料构成,具有较高的折射率,能够使光信号在纤芯中传播时发生全内反射。

同时,包层还能够阻止外界的干扰信号进入纤芯中。

4. 光纤附加噪声:光纤传输过程中,会产生一些附加噪声,如光源的热噪声、光纤中的射频噪声等。

这些噪声会对信号的传输质量产生影响。

因此,为了保证光纤传输信号的质量,需要对光纤信号进行接收时进行噪声的抑制。

四、实验步骤1. 打开光纤传输箱,接通光纤光源和接收仪的电源;2. 将纤芯连接器插入光纤光源的输出接口,将接收仪的接收端与纤芯接收端连接;3. 在光纤光源仪器上设置输出功率为一定的数值,如10mW;4. 使用光纤带宽检测装置测量光纤传输的带宽;5. 测量信号损耗,调整光源的输出功率,记录不同功率下的信号强度;6. 记录实验数据。

五、实验结果分析1. 光纤传输的信号损耗:根据实验数据计算出不同功率下信号的损耗率,并观察信号损耗与功率之间的关系;2. 光纤传输的带宽:根据光纤带宽检测装置的测量结果,计算出光纤的带宽范围;3. 光纤传输的附加噪声:观察实验数据中的噪声情况,并分析噪声对信号传输的影响。

光纤信号传输实验(Word)

光纤信号传输实验(Word)

普通物理实验C课程论文题目光纤音频信号传输实验学院专业年级学号姓名指导教师论文成绩_____________________ 答辩成绩_____________________年月日光纤音频信号传输实验研究某某摘要:光纤俗称玻璃纤维,是由高纯度的玻璃棒经拉丝工艺制成,以其优良的传输特性已经成为信息社会主要的信息传输手段。

光纤通信系统是以光为载波,以光纤为传输介质的通信系统,由本实验主要通过研究光纤音频信号的传输来了解光纤通信的基本工作原理,熟悉半导体发光二极管(LED)和光电检测二极管(SPD)的基本性能及主要特性的测试方法,学习分析集成运放电路的基本方法,学习掌握音频信号光纤传输系统的调试技能。

其间主要涉及了光电子技术、光纤传输技术、应用电子技术。

关键词:光纤、调制电路、半导体发光二级管(LED)、光电检测二极管(SPD)1、引言自1980年代起,光纤通讯系统对于电信工业产生了革命性,同时也在数位时代里扮演非常重要的角色。

光纤通信传输容量大,保密性好等优点。

现在已经成为当今最主要的有线通信方式即将需传送的信息在发送端输入到发送机中,将信息叠加或调制到作为信息信号载体的载波上,然后将已调制的载波通过传输媒质传送到远处的接收端,由接收机解调出原来的信息。

本实验对光纤传输中几个必须环节所用器件给予说明并通过实验进行具体测试。

2、实验原理2.1光纤音频信号传输系统的组成和原理光纤音频信号传输系统是由“光信号发送器”“光信号接收器”以及“传输光纤”三个部分组成。

其主要原理是由音频信号作为源信号供给“光信号发送器”,从而产生相应的光信号,然后将此信号经光纤传输后送入“光信号接受器”,最终解调出原来的音频信号。

如图1所示,为了保证系统的传输损耗低,发光器件LED的发光中心波长必须在传输光纤的低损耗窗口之内,使得材料色散较小。

低损耗的波长在850nm,1300nm或1600nm附近。

光电检测的峰值响应波长也应与此接近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七光纤传输特性测试实验
一、实验目的
1.了解光纤损耗的定义
2.学会用插入法测量光纤的损耗
1.
二、实验原理
传输损耗是光纤很重要的一项光学性质,它在很大程度上决定着传输系统中的中继距离。损耗的降低依赖于工艺的提高和对石英材料的研究。
对于光纤来说,产生损耗的原因较复杂,主要由以下因素造成:
1.纤芯和包层物质的吸收损耗,包括石英材料的本征吸收和杂质吸收;
2.接上交流电源线,先开交流开关,再开直流开关K601,K602,五个发光二极管全亮。
3.接通数字基带信号产生模块(K40)、光收发合一模块(K20)的直流电源。
4.将光跳线将1310nm光发机与光功率计连接起来。
插入法的特点是:操作简单,不具有破坏性,但精度不高,这是由于连接器性能不佳或光注入状态发生变化时,可能带来误差。
背向散射法
所谓背向散射法就是得用光时域反射仪(OTDR)来测量光纤损耗,其原理参见光时域反射仪的使用说时书,这里不再赘述。
工程测量
在实际工程中,为得到接头损耗的精确值,往往采取“四功率”法,其测试步骤如下(如图4):
2.纤芯和包层材料的散射损耗,包括瑞利散射损耗以及光纤在强光场作用下诱发的受激喇曼散射和受激布里渊散射;
3.由于光纤表面的随机畸变或粗糙所产生的波导散射损耗;
4.光纤可以分为两种不同的情况。一是石英光纤的固有损耗机理,像石英材料的本征吸收和瑞利散射,这些机理限制了光纤所能达到的最小损耗;二是由于材料和工艺所引起的非固有损耗机理,它可以通过提纯材料或改善工艺而减小甚至消除其影响,如杂质的吸收、波导散射等。
三、实验仪器
1.ZYE4301F型光纤通信原理实验箱两台(1310,1550各一台)
2.光功率计
3.万用表
4.ST-FC,FC-FC型光跳线各一根
5.SC-FC转换器
6.扰模器
7.2km光纤(或小可变衰减器)
四、实验内容与步骤
A、光纤损耗测量
1.按图6-6连接好光纤损耗测试系统。
2.连接导线:将数字基带信号产生模块T402与光发送模块T501连接。
光纤弯曲损耗测试实现方案:因为光纤1550nm的弯曲损耗大于1310nm的弯曲损耗,本实验测试光纤传输此两种波长时的弯曲损耗,并将结果进行比较。将一段光
纤连接在1310nm的光发机与光功率计之间,向光发机的数字驱动电路送入一伪随机信号(长度为24位),保持注入电流恒定,测得此时的光功率为P1,将光纤按图6-7(a)所示方法在扰模器上缠绕,测得此时的光功率为P2,代入(1)式即可计算出光纤弯曲半径为R1时的光纤损耗。将光纤按图7(b)所示方法在扰模器上缠绕,测得此时的光功率为 ,代入(1)式即可计算出光纤弯曲半径为R2(R1<R2)时的光纤损耗。将1310nm光收发合一模块改为1550nm,重复上述实验。
(dB)(3)
光纤损耗测试实验测试方案:本实验利用剪断法测量光纤损耗,由于光纤的损耗很小,一般为0.2~0.5dB/km,为了使实验效果明显,则至少需要数千米的光纤,实现起来比较困难,所以在实验中我们建议使用小可变衰减器来代替光纤进行实验。在后继实验步骤中我们以小可变衰减器代替光纤进行,实验方框图如图6所示。如果实验条件允许则将光纤代替小可变衰减器即可。
1.首先在连接处D作临时接头;
2.在光纤连接后的尾端C处测得接收光功率P3;
3.在临时接头后的B点(相距D点约几厘米)切断光纤,测得光功率为P2;
4.在临时接头前的A点切断光纤,测得光功率为P1;
5.在连接处D点将光纤作永久性连接,然后在C点重新测得光功率为P4。
则此永久性连接的附加损耗为:
(2)
光纤弯曲损耗的测量框图如图5所示,:
剪断法的特点是:简单、准确,但对光纤具有一定的破坏性。
插入法
插入法的测量原理图如图3所示,标准光源发出光信号,扰模器的作用是使光信号达到稳态模功率分布,测量时,可通过连接器,先将自环线(损耗可忽略的光纤)接入,用光功率计测出此时的光功率值为P1,然后,撤去自环线,将待测光纤插入,读出光功率值P2,则根据(1)式即可算出光纤损耗值。
8.用光功率计测量此时的光功率P2。
9.拆除小可变衰减器。
10.用光功率计测得此时的光功率为P1。
11.代入(1)式计算即得光纤损耗值。
12.抬起J502,关闭直流电源,拆除导线。
13.光功率计及拆除扰模器上的光纤,将实验箱还原。
B、光纤弯曲损耗测量
1.连接导线:将数字基带信号产生模块T402与光收发合一模块T201连接。
测量光纤损耗的方法很多,CCITT(国际电报、电话咨询委员会)建议以剪断法为参考,插入法为第一替代法,背向散射法为第二替代法。
测量光纤损耗时,只要测出光纤输入端的光功率P1和输出光功率P2,即可得到光纤总的平均损耗,则光纤损耗为:
(dB)(1)
剪断法
剪断法的测量框图如图2所示,标准光源发出光信号,扰模器的作用使光信号达到稳态模分布,利用光功率计先测出光纤的输出光功率P2,然后在距离输入端2-3m的地方将光纤剪断,测量出输入光功率P1,最后根据6-1式即可算出光纤的损耗。
3.将双刀双掷开关J501,J502按下,使光发送模块传输数字信号。
4.接上交流电源线,先开交流开关,再开直流开关K601,K602,五个发光二极管全亮。
5.接通数字基带信号产生模块(K40)、光发送模块(K50)的直流电源。
6.用万用表测量R516两端电压(红表笔插T502,黑表笔插T503)。
7.慢慢调节电位器W501,使驱动电流达到额定值,即使V=30mV。
相关文档
最新文档