CMOS反相器设计
CMOS反相器的版图设计
实验一:CMOS反相器的版图设计一、实验目的1、创建CMOS反相器的电路原理图(Schematic)、电气符号(symbol)以及版图(layout);2、利用’gpdk090’工艺库实例化MOS管;3、运行设计规则验证(Design Rule Check,DRC)确保版图没有设计规则错误。
二、实验要求1、打印出完整的CMOS反相器的电路原理图以及版图;2、打印CMOS反相器的DRC报告。
三、实验工具Virtuoso四、实验内容1、创建CMOS反相器的电路原理图;2、创建CMOS反相器的电气符号;3、创建CMOS反相器的版图;4、对版图进行DRC验证。
1、创建CMOS反相器的电路原理图及电气符号图首先创建自己的工作目录并将/home/iccad/cds.lib复制到自己的工作目录下(我的工作目录为/home/iccad/iclab),在工作目录内打开终端并打开virtuoso(命令为icfb &).在打开的icfb –log中选择tools->Library Manager,再创建自己的库,在当前的对话框上选择File->New->Library,创建自己的库并为自己的库命名(我的命名为lab1),点击OK后在弹出的对话框中选择Attach to an exiting techfile并选择gpdk090_v4.6的库,此时Library manager的窗口应如图1所示:图1 创建好的自己的库以及inv创建好自己的库之后,就可以开始绘制电路原理图,在Library manager窗口中选中lab1,点击File->New->Cell view,将这个视图命名为inv(CMOS反相器)。
需要注意的是Library Name一定是自己的库,View Name是schematic,具体如图2所示:图2 inv电路原理图的创建窗口点击OK后弹出schematic editing的对话框,就可以开始绘制反相器的电路原理图(schematic view)。
CMOS反相器的电路仿真及其工艺模拟和版图设计
CMOS反相器的电路仿真及其工艺模拟和版图设计摘要:CMOS技术自身的巨大发展潜力是IC高速持续发展的基础。
集成电路制造水平发展到深亚微米工艺阶段,CMOS的低功耗、高速度和高集成度得到了充分的体现。
本文主要通过简单的介绍基于Cadence的CMOS反相器的电路仿真和版图设计及基于SILV ACO的CMOS反相器的工艺仿真,体现了集成电路CAD 的一种基本方法和操作过程。
关键词:CMOS反相器、Cadence、SILV ACO、仿真、工艺、版图0引言:电子技术的发展使计算机辅助设计(CAD)技术成为电路设计不可或缺的有力工具。
国内外电子线路CAD软件的相继推出与版本更新,是CAD技术的应用渗透到电子线路与系统设计的各个领域,如电路图和版图的绘制、模拟电路仿真、工艺模拟与仿真、逻辑电路分析、优化设计、印刷电路板的布线等。
CAD 技术的发展使得电子线路设计的速度、质量、精确度得以保证。
顺应集成电路发展的要求,集成电路CAD,确切地说是整个电子设计自动化必须要有更大的发展。
随着集成电路与计算机的迅速发展,以CAD为基础的EDA技术一渗透到电子系统和专用集成电路设计的各个环节。
一个能完成比较复杂的VLSI设计的EDA系统一般包括10~20个CAD工具,涉及从高层次数字电路的自动综合、数字系统仿真、模拟电路仿真到各种不同层次的版图设计和校验工具,完成自顶向下的VLSI设计的各个环节和全部过程。
为满足日益增大的信息处理能力的需求,主要从实现图形最小尺寸的工艺精度和提高单位面积晶体管数目的集成度两个方面来努力,还要综合考虑满足电路功能以及工作频率和功耗的性能指标。
CMOS技术自身的巨大发展潜力是IC高速持续发展的基础。
集成电路制造水平发展到深亚微米工艺阶段,CMOS的低功耗、高速度和高集成度得到了充分的体现。
1基于Cadence的CMOS反相器的设计:1.1 Cadence简介:Cadence是一个大型的EDA软件,它几乎可以完成电子设计的方方面面,包括ASIC设计、FPGA设计和PCB板设计。
CMOS反相器的分析与设计
CMOS反相器的分析与设计CMOS反相器是一种使用CMOS技术实现的逻辑门电路,它具有低功耗、高速度、高噪声容限和广泛的工作电压范围等特点,因此在数字集成电路中得到广泛的应用。
本篇文章将从分析和设计两个方面展开,详细介绍CMOS反相器的原理和设计方法。
首先,对于CMOS反相器的分析来说,我们需要了解CMOS电路的基本结构和工作原理。
CMOS电路使用PMOS和NMOS两种晶体管组成,PMOS晶体管的源极接VDD,栅极接输入信号,漏极接到输出端;NMOS晶体管的源极接GND,栅极也接输入信号,漏极接到输出端。
当输入信号为高电平时,PMOS导通,NMOS截止,输出端输出低电平;当输入信号为低电平时,PMOS截止,NMOS导通,输出端输出高电平。
因此,CMOS反相器的输出电平与输入电平相反,实现了信号的反相功能。
接下来,我们来讲解CMOS反相器的设计方法。
CMOS反相器的设计包括尺寸比例设计和电压范围选择两个方面。
首先是尺寸比例设计。
在CMOS反相器的设计中,我们需要确定PMOS和NMOS晶体管的尺寸比例。
一般情况下,PMOS晶体管的尺寸要大于NMOS晶体管的尺寸,这样可以提高输出驱动能力和提高噪声容限。
然而,尺寸比例的选择也需要注意当PMOS尺寸增大时,功耗和延迟也会增加。
因此,在设计CMOS反相器时,需要在输出驱动、功耗和延迟之间进行平衡,根据具体的应用需求选择合适的尺寸比例。
其次是电压范围选择。
CMOS反相器使用两种不同的电压源:VDD和GND,因此,使用过大或过小的电压会导致晶体管的饱和和截止,从而影响电路的正常工作。
一般情况下,选择合适的电压范围可以提高CMOS反相器的性能。
在实际设计中,通常采用工作电压为3.3V或5V来保证CMOS反相器的正常工作。
最后,我们还需要考虑一些其他因素来优化CMOS反相器的设计。
比如,为了减小功耗和提高速度,可以采用低阈值的NMOS晶体管;为了减小噪声干扰,可以采用电源抗噪声滤波电路;为了减小晶体管的串扰效应,可以采用电源导线的并联等。
CMOS反相器的分析与设计
CMOS反相器的分析与设计CMOS反相器由一对互补金属氧化物半导体场效应晶体管(n型MOSFET和p型MOSFET)组成。
n型MOSFET和p型MOSFET分别由n型沟道和p型沟道构成。
它们的沟道接在一起,形成一个共用的沟道。
根据输入电压的高低,CMOS反相器能够在输出端产生相反的电平。
CMOS反相器的工作原理是利用MOSFET的负阈值特性,即当输入电压高于一些阈值电压时,MOSFET处于关断状态;当输入电压低于阈值电压时,MOSFET处于导通状态。
CMOS反相器由这两个互补的MOSFET构成,保证了输入电压上升时一个MOSFET关闭,另一个MOSFET打开,输出电压下降;输入电压下降时,一个MOSFET打开,另一个MOSFET关闭,输出电压上升。
这样就实现了电平的反转。
1.确定输入输出电平:根据电路的需求,确定输入输出电平的高低电压范围,并根据具体电路的工作电压确定电源电压。
2.选择适当的MOSFET:根据设计要求,选择合适的n型MOSFET和p 型MOSFET,以满足工作电流和电压要求。
3.确定电阻参数:根据MOSFET的特性,选择合适的电阻参数来限制输入电流和确定电路的放大倍数。
4.确定电容参数:根据电路的带宽要求,确定输入和输出端的负载电容。
5.确定工作频率:根据电路的工作频率要求,确定MOSFET的开启和关闭时间。
6.进行电路仿真:通过电路仿真软件,验证设计的正确性和性能。
CMOS反相器的设计可以通过电路仿真软件如LTSpice来实现。
首先,根据设计要求选择适当的MOSFET,并确定电源电压和电阻电容参数。
然后,通过电路仿真软件搭建CMOS反相器电路,并进行仿真分析。
通过观察输入电压和输出电压的波形曲线,验证电路的正确性和性能。
如果需要进一步优化电路性能,可以通过调整各个元器件的参数来实现。
总结起来,CMOS反相器是一种常见的数字逻辑门电路,利用MOSFET的特性来实现输入输出电平的反转。
四CMOS反相器的设计
四CMOS反相器的设计CMOS反相器是一种使用互补金属氧化物半导体(CMOS)技术制造的电子电路元件,它能够将输入信号反向输出。
由于CMOS反相器具有低功耗、高噪声免疫性、广泛的电源电压范围和快速的切换速度等优点,因此被广泛应用于数字电路中。
接下来,我将详细介绍CMOS反相器的设计过程。
首先,我们需要选择适当的CMOS反相器拓扑结构。
在CMOS技术中,两种常见的CMOS反相器拓扑结构为P型金属氧化物半导体(PMOS)和N型金属氧化物半导体(NMOS)的串联结构,以及PMOS和NMOS的并联结构。
在本文中,我们选择串联结构的CMOS反相器作为设计示例。
接下来,我们需要设计PMOS和NMOS管的尺寸。
在CMOS技术中,尺寸设计对电路性能具有重要影响。
一般来说,PMOS管的尺寸应大于NMOS 管,以提高输出驱动能力。
此外,尺寸设计也需要考虑功耗和响应时间等因素。
在设计过程中,可以使用模拟电路设计工具进行参数优化,以获得最佳的尺寸方案。
接下来是电路的布线设计。
在CMOS反相器的布线设计中,需要考虑动态电压降、互连电容和电感等因素的影响。
在布线设计过程中,应将线宽和间距等参数进行折衷考虑,以满足电路性能和面积效益的要求。
设计完成后,需要进行电路的仿真验证和性能评估。
常用的仿真工具有HSPICE、LTSpice等。
在仿真过程中,可以通过输入不同的信号,并观察输出响应以评估电路的性能。
在CMOS反相器的设计中,还需要考虑到工艺和温度等因素的影响。
由于CMOS工艺受制于设备尺寸和工艺过程的变化,工艺参数的变化会导致电路性能产生偏差。
此外,温度对CMOS电路的性能也有显著影响,因此在设计中需要对工艺和温度进行适当的补偿。
最后,在设计完CMOS反相器后,还需要进行实际的制造和测试验证。
在制造过程中,需要遵循CMOS工艺流程,并进行工艺参数的控制和调整。
在测试验证过程中,可以使用专业的测试设备进行电路性能的测试和评估,以验证设计的正确性和可靠性。
CMOS反相器版图设计
XXXXXXX实验报告课程名称:集成电路设计实验名称:CMOS反相器版图设计学号姓名:指导教师评定:____________________________ 签名:_____________________________一、实验目的1、了解集成电路版图设计流程。
2、利用L-Edit 进行NMOSFET 版图设计。
3、利用L-Edit 进行CMOS反相器设计。
二、实验器材计算机一台,Tanner L-Edit软件三、实验原理CMOS 反相器由PMOS 和NMOS 晶体管组成,利用PMOS晶体管版图和NMOS 晶体管版图可以完成COMS反相器版图的设计。
四、实验步骤1、设计PMOS晶体管版图。
2、设计N MOS晶体管版图。
3、设计CMOS反相器版图:(1)启动版图编辑器L-Edit。
(2)新建文件。
新建一个Layout 文件,文件的设置信息可以从前面创建的文件中复制。
(3) 对文件进行重命名。
将L-Edit 编辑器默认的文件名Layout 改为Inverter。
(4) 设置格点与坐标。
格点与坐标的设定方式与创建PMOS 晶体管时设定的方法一致。
(5) 调用PMOS 和NMOS 晶体管作为例化单元。
使用Cell---Instance 命令来调用PMOS 单元。
在出现的Select Cell to Instance 对话框中,通过点击Browse按钮浏览到“MOS”文件,可以看到该文件下面有PMOS 和NMOS 两个单元,点击PMOS,然后点击“OK”,可以看到Inverter 文件cell0 单元的版图已经添加了PMOS 单元。
利用同样的方法,可以将NMOS 单元也添加进来。
(6) 连接PMOS 和NMOS 晶体管的栅极。
从CMOS 反相器电路可知,PMOS晶体管和NMOS 晶体管的栅极要连在一起作为反相器的输入端,所以在放置这两个晶体管的时候可以将两者的栅极对准,以便连接。
具体操作是,选择Layer的多晶硅(Poly)层和方框绘图工具后,在版图区域中画一个宽度与晶体管栅极相等的多晶硅矩形,如图1 所示。
cmos反相器逻辑电路设计的方法
cmos反相器逻辑电路设计的方法CMOS反相器是基本的逻辑门之一,可以用来构建更复杂的逻辑电路。
以下是设计CMOS反相器逻辑电路的方法:
1.选择合适的器件:CMOS反相器由PMOS和NMOS组成,
需要选择合适的器件来满足电路的要求。
通常,PMOS
的沟道为空穴,具有高电导率,适合作为开关,而NMOS
的沟道为电子,具有低电导率,适合作为负载。
2.设计电路结构:根据反相器的设计要求,设计电路结构,
包括PMOS和NMOS的排列方式、输入和输出的连接方式
等。
3.确定参数:根据电路的要求,确定参数,如阈值电压、
静态电流、动态电流等。
4.进行模拟验证:使用电路模拟软件进行验证,确认电路
的功能和性能是否达到设计要求。
5.进行版图设计:根据电路设计的要求,进行版图设计,
包括器件的排列、布线、电学参数的优化等。
6.进行制造和测试:将版图提交给制造厂家进行制造,并
进行测试,确认电路的性能和可靠性是否符合设计要
求。
需要注意的是,在设计CMOS反相器逻辑电路时,需要考虑电路的稳定性、速度、功耗等因素,以满足实际应用的要求。
同时,还需要遵循基本的电路设计规则和安全规范,如避免电流过大、避免信号过冲等。
CMOS反相器特性设计
电子科学与应用物理学院器件与工艺课程设计报告课题名称:CMOS反相器特性设计姓名: 王宏宇专业班级:指导老师:宣晓峰小组成员:日期:2015-2016学年第2学期一、课程设计的目的在大三学年第二学期我们学习了《半导体器件物理》、《半导体集成电路基础》以及《集成电路制造技术基础(双语)》等专业课程,对BJT和MOS器件的工作原理和制备方法有了初步的了解以及一定的认识。
此时,在老师的指导下,结合具体设计内容,同时利用已经学过的知识,进行一次与器件和工艺有关的课程设计,不仅可以让我们对课堂内学习的知识有更多的了解,同时还可以掌握课程设计的完整过程和各个环节、基本方法和途径,学习使用虚拟机,mdraw,dessis,inspect等现代电路设计工具,并结合所学理论完成预定题目的综合性设计。
与此同时,多人合作分工协作,可以培养团队精神和意识,提高我们理论联系实际的能力。
二、课程设计的内容与题目要求内容:CMOS反相器特性设计目标:设计一个CMOS反相器(由一个NMOS,一个PMOS构成,一个电容器作为模拟负载),优化其开关性能和开关时的瞬态电流。
1)运用MDRAW工具分别设计一个栅长为0.18m的NMOS和一个PMOS,在MDRAW下对器件必要的位置进行网格加密;2)先通过dessis模拟确定NMOS和PMOS的转移特性,确定器件结构、掺杂及阈值电压等无错误。
3)再根据设计目标,确定反相器的网表,其负载电容取3e-14F(模拟在应用中存在的寄生电容、后级输入电容以及版图中的连线电容等);4)编制dessis模拟程序,在模拟程序中设定反相器中各组件的连接,分析此器件在一个2V的矩形脉冲信号下的开关特性;5)应用INSPECT工具对比输入信号、输出信号和电流信号,查看其开关性能;6)计算其上升延时t ri0.1/0.9;7)假定输出高电平U oh(驱动逻辑电平1时的最低输出电压)=Vdd-0.2V、输出低电平U il(驱动逻辑电平0时的最高输出电压)=0.2V,由此确定此反相器的输入高电平U ih(能确认为1的最低电压)、输入低电平U il(能确认为0的最高电压);8)调节PMOS和NMOS的结构(栅宽、栅氧厚度、掺杂等),优化其上升延时、静态电流和状态变化时的开关电流(会导致同步开关噪声SSN)。
CMOS反相器电路设计
经典文论文题目:CMOS反相器电路设计、仿真及版图设计学生姓名:欧阳倩学号:20131060189专业:通信工程任课教师:梁竹关摘要:本文着重介绍了LTspice和LASI软件的相关设计原理和简单的设计操作,对此,我首先将从电路的工作原理方面介绍CMOS4反相器的结构、特性及其电路工作原理。
了解其工作原理是进行仿真和版图设计的基础。
然后我选择利用LTspice来进行CMOS反相器的设计仿真以此来证实其设计正确性,之后采用LASI画出符合工业设计的CMOS反相器的版图。
通过本次设计实验可以更加了解CMOS4反相器的工作原理,并掌握了CMOS4反相器的基本设计方法。
关键词:CMOS反相器LTspice LASI版图设计封装测试目录第一章引言 (4)第二章CMOS反相器 (4)2.1 CMOS反相器的结构原理 (4)2.2 CMOS反相器的特性分析 (5)第三章CMOS反相器的电路仿真 (8)3.1 CMOS反相器的电路图设计 (9)3.2 CMOS反相器的仿真及结果分析 (11)第四章CMOS反相器的版图设计 (12)结束语 (20)参考文献 (21)引言现在是一个电子信息高速发展得时代,电子产品无处不在,我们也越来越离不开各式各样的电子产品,集成电路作为电子产品的核心同样也受到了重视,电子设计也是当今社会的一大焦点问题,怎样才能设计出集性能、高效、便捷、低价为一体的电路器件又是当下人们急需解决的任务,因此培养集成设计人才也是众多高校重视的任务。
以MOS管作为开关元件的门电路称为MOS门电路。
由于MOS型集成门电路具有制造工艺简单、集成度高、功耗小以及抗干扰能力强等优点,因此它在数字集成电路产品中占据相当大的比例。
与TTL门电路相比,MOS门电路的速度较低。
MOS门电路有三种类型:使用P沟道管的PMOS电路、使用N沟道管的NMOS电路和同时使用PMOS和NMOS管的CMOS电路。
其中CMOS性能更优,因此CMOS门电路是应用较为普遍的逻辑电路之一。
CMOS反相器的设计
KN=3.46×10-5 (A/V2),
考察噪声容限:VNLM= Vit=2.43V=0.49 VDD,
11
VNHM=VDD- Vit=2.57V=0.51 VDD
tpHL tpLH 2 CLVHL 1 tpHL f 2 Iav,HL 1 N tp CLVLH 1 tpLH r 2 Iav,LH 1 P
9
例 题
设计一个CMOS反相器,使最大噪声容限不小于0.44 VDD,且驱动1pF负载电容时上升、下降时间不大于 10ns,设VDD = 5V,VTN = 0.8V,VTP = -1V,Cox = 4.6×10-8 F/cm2,μn = 500 cm2/Vs、μp = 200 cm2/Vs。
完成能够实现设计要求的集成电路产品 设计要求:
功能 可靠性 速度 面积 功耗
3
1、反相器的可靠性
噪声容限:逻辑阈值点
把Vit做为允许的输入高电平和 低电平极限 VNLM=Vit VNHM=VDD-Vit VTN 1 K r VDD VTP VNLM与VNHM中较小的 Vin 决定最大直流噪声容限 1 1 K
10
1 1 Kr Vit = VTN 1 K r VDD VTP 1 1 Kr K r VTN VDD VTP 1 Kr
1 t r r P 2 2(1 ) ln (1 P ) P
0.1
1.9 2 P 0.1
1
CMOS反相器的设计
实际情况:不可能获得完全对称设计
输入信号较差:考虑噪声容限 负载电容较大:考虑速度 对于大部分内部电路(扇出为1):考虑面积
MOS集成电路--CMOS反相器电路仿真及版图设计
MOS管集成电路设计题目:CMOS反相器电路仿真及版图设计**:***学号:***********专业:通信工程****:***2014年6月1日摘要本文介绍了集成电路设计的相关思路、电路的实现、SPICE电路模拟软件和LASI7集成电路版图设计的相关用法。
主要讲述CMOS反相器的设计目的、设计的思路、以及设计的过程,用SPICE电路设计软件来实现对反相器的设计和仿真。
集成电路反相器的实现用到NMOS和PMOS各一个,用LASI7实现了其版图的设计。
设计。
集成电路 CMOS反相器LT SPICE LASI7 关键字:集成电路目录引言 ....................................................................................................................................... - 2 -一、概述 ............................................................................................................................... - 2 -1.1MOS集成电路简介集成电路简介 .................................................................................................... - 2 -1.2MOS集成电路分类集成电路分类 .................................................................................................... - 2 -1.3MOS集成电路的优点集成电路的优点 ................................................................................................ - 3 -二、LTspice电路仿真 .......................................................................................................... - 3 -2.1SPICE简介 ................................................................................................................... - 3 -仿真过程 ..................................................................... - 3 -2.2CMOS反相器LT SPICE仿真过程2.2.1实现方案 .............................................................................................................. - 3 -2.2.2 LTspice电路仿真结果 ...................................................................................... - 5 -三、LASI版图设计 ............................................................................................................... - 5 -软件简介 ........................................................................................................ - 5 -3.1LASI软件简介版图设计原理 ......................................................................................................... - 6 -3.2版图设计原理的版图设计 .................................................................................................... - 6 -3.3LASI的版图设计四、实验结果分析 ............................................................................................................... - 8 -五、结束语 ........................................................................................................................... - 8 -参考文献 ............................................................................................................................... - 8 -引言CMOS 技术自身的巨大潜力是IC 高速持续发展的基础。
CMOS反相器版图设计与仿真报告
CMOS反相器版图设计与仿真报告在此次实例设计中采用Tanner Pro 软件中的L-Edit组件设计CMOS反相器的版图,进而掌握L-Edit的基本功能和使用方法。
操作流程如下:进入L-Edit—>建立新文件—>环境设定—>编辑组件—>绘制多种图层形状—>设计规则检查—>修改对象—>设计规则检查—>电路转化—>电路仿真。
一、绘制反相器版图1)打开L-Edit程序,并将新文件另存以合适的文件名存储在一定的文件夹下:在自己的计算机上一定的位置处打开L-Edit程序,此时L-Edit自动将工作文件命名为Layout1.sdb 并显示在窗口的标题栏上。
而在本例中则在L-Edit文件夹中新建立“反相器版图”文件夹,并将新文件以文件名“Ex11”存与此文件夹中。
如图一所示。
图一打开L-Edit,并另存文件为Ex112)取代设定:选择File->Replace Setup命令,在弹出的对话框中单击浏览按钮,按照路径..\Samples\SPR\example1\lights.tdb找到“lights.tdb”文件,单击OK即可。
此时可将lights.tdb 文件的设定选择性的应用到目前编辑的文件中。
如图二所示。
图二取代设定3)编辑组件:L-Edit编辑方式是以组件(Cell)为单位而不是以文件为单位,一个文件中可以包含多个组件,而每一个组件则表示一种说明或者一种电路版图。
每次打开一个新文件时便自动打开一个组件并命名为“Cell0”;也可以重命名组件名。
方法是选择Cell->Rename 命令,在弹出的对话框中的Rename cell as文本框中输入符合实际电路的名称,如本设计中采用组件名“inv”即可,之后单击OK按钮。
如图三所示。
图三重命名组件为inv4)设计环境设定:绘制布局图必须要有确实的大小,因此要绘图前先要确认或设定坐标与实际长度的关系。
CMOS反相器介绍及设计
VIH
VDD VTp kR (VTn VOUT ) 1 k Department of MicroRelectronics, PKU,Xiaoyan Liu
第22页/共67页
在对称情形中 VTn=-VTp
VIH+VIL=VDD
低电平信号的噪声容限NML: NML=VIL-VOL=VIL
高电平信号的噪声容限NMH: NMH=VOH-VIH = VDD-VIH
第28页/共67页
电流方程如下:设 Vtn=-Vtp
V V 0 0
i
截止
tn
In
n
2
V iV tn
V V V V 2
饱和
tn
i
0
tn
n 2
V iV tn
2
V iV tnV 0
V V 2
0
tn
V i 线性
V V V V
0
Vth
V0=Vdd, 如图a——b段。 Vtn≤Vi<V0+Vtp时:
n饱和 p线性 由In=-Ip得:
a----b b----c c----d d----e e----f
Vi
Vo Vi Vtp
Vi Vtp Vdd
2 n p
Vi Vtn
2
如图b——c段
Department of Microelectronics, PKU,Xiaoyan Liu 第30页/共67页
阈值电压 VM-VTC曲线中 VOUT VIN 的点
VOH:当输出电平为逻辑“1”时的最小输出电压,转折点
dVOUT dVIN
1
VOL:当输出电平为逻辑“0” 时的最大输出电压
VIL:当输入电平为逻辑“0” 时的最大输入电压
cmos反相器电路结构
cmos反相器电路结构CMOS反相器电路结构CMOS反相器是一种常见的数字逻辑门电路,用于将输入信号反转输出。
它由一对互补的MOSFET(金属氧化物半导体场效应晶体管)组成,这些MOSFET分别被称为P型MOSFET和N型MOSFET。
CMOS反相器电路结构的设计使其能够实现低功耗、高噪声容限和较高的电压转换速度。
CMOS反相器电路由两个互补的MOSFET组成,一个是P型MOSFET,另一个是N型MOSFET。
P型MOSFET的栅极连接到输入信号,而N型MOSFET的栅极连接到P型MOSFET的反向输入信号。
源极和漏极分别通过电压源和接地连接。
在CMOS反相器中,当输入信号为低电平时,P型MOSFET导通,N型MOSFET截止,输出信号为高电平。
当输入信号为高电平时,P型MOSFET截止,N型MOSFET导通,输出信号为低电平。
因此,CMOS 反相器可以将输入信号反转输出。
CMOS反相器电路的优点之一是功耗较低。
由于只有在输入信号发生变化时,CMOS反相器才会消耗能量。
当输入信号保持不变时,MOSFET处于截止或导通状态,不会消耗能量。
这使得CMOS反相器非常适合用于低功耗应用,如移动设备和电池供电系统。
另一个优点是高噪声容限。
由于CMOS反相器电路中的MOSFET是互补的,当输入信号的电压接近电源电压时,会出现双门限效应。
这种效应可以提高抗噪声干扰的能力,使得CMOS反相器在噪声较多的环境中工作更加可靠。
CMOS反相器电路还具有较高的电压转换速度。
由于P型MOSFET和N 型MOSFET的导通和截止时间非常短,CMOS反相器可以在很短的时间内完成信号的反转。
这使得CMOS反相器非常适合用于高速数字电路中,如微处理器和通信系统。
总结一下,CMOS反相器电路结构由一对互补的MOSFET组成,通过控制MOSFET的导通和截止状态来实现输入信号的反转输出。
它具有低功耗、高噪声容限和较高的电压转换速度等优点,使得它成为数字电路设计中常用的逻辑门电路。
集成电路课程设计--cmos反相器的电路设计及版图设计
目录摘要 (3)绪论 (5)1软件介绍及电路原理 (6)1.1软件介绍 (6)1.2电路原理 (6)2原理图绘制 (8)3电路仿真 (10)3.1瞬态仿真 (10)3.2直流仿真 (11)4版图设计及验证 (12)4.1绘制反相器版图的前期设置 (12)4.2绘制反相器版图 (13)4.3 DRC验证 (15)结束语 (17)参考文献 (18)摘要CMOS技术自身的巨大发展潜力是IC高速持续发展的基础。
集成电路制造水平发展到深亚微米工艺阶段,CMOS的低功耗、高速度和高集成度得到了充分的体现。
本文将简单的介绍基于ORCAD和L-EDIT的CMOS反相器的电路仿真和版图设计,通过CMOS反相器的电路设计及版图设计过程,我们将了解并熟悉集成电路CAD的一种基本方法和操作过程。
关键词:CMOS反相器ORCAD L-EDIT版图设计AbstractThe huge development potential of CMOS technology itself is the foundation of sustainable development of IC high speed. The manufacturing level of development of the integrated circuit to the deep sub micron technology, CMOS low power consumption, high speed and high integration have been fully reflected. In this paper, the circuit simulation and layout design of ORCAD and L-EDIT CMOS inverter based on simple introduction, through the circuit design and layout design process of CMOS inverter, we will understand and a basic method and operation process, familiar with IC CAD.Keywords: CMOS inverter layout ORCAD L-EDIT绪论20世纪是IC迅速发展的时代。
第3章-CMOS反相器的分析与设计
VDD Input
GND
反相器的逻辑符号
Vin
Vout
V DD
V in
V ou t
t
Output
特点: 作为和的共栅极; 作为共漏极; 作为的源极和体端; 作为的源极和体端
3.1 反相器的结构和基本特性
若输入为“1”( ): = , = 0V 导通,截止 输出“0” ( = 0V)
Vout Vin
的垂直线:导通/截 止
-的斜线:饱和区/ 线性区
-的斜线:线性区/ 饱和区
3.2.1 反相器的直流电压传输特性
(1) 0≤≤,截止, 线性
ID N ID P K P V in V T P V D D2V in V T P V o u t 2 0
在一定范围变化(0~),V 始o u t终 V 保D D 持。
VNLM Vit 0Vit VNHM VDD Vit
若2, =2。 实际情况, ,最大直流噪
声容限由 {} 决定。
例题
KN VinVTN 2 KP VinVTPVDD 2
Vit
KrVTN VDDVTP 1 Kr
一个反相器,1,设 = 5V, = 0.8V, = -1V, = 4.6×10-8 2,μn = 500 2、μp = 200 2。由逻辑阈值点确 定的最大噪声容限为多少?
第3章 反相器的分析与设计
第3章 反相器的分析与设计
3.1 反相器的结构和基本特性 3.2 反相器的直流特性 3.3 反相器的瞬态特性 3.4 反相器的设计
3.1 反相器的结构和基本特性
管的衬底接地,管的衬底 接。
输入端——栅极 输出端——?极 如何判断分析器中和器件
的源漏区? 是否有衬偏效应?
CMOS反相器设计与仿真报告
CMOS 反相器设计与仿真报告CMOS 反相器相当于非门,是数字集成电路中最基本的单元电路。
搞清楚CMOS 反相器的特性,可为复杂数字电路的设计打下基础。
如图0所示电路为反相器,P 管衬底接Udd ,N 管衬底接地,栅极与各自的源极相接,消除了背栅效应,而且P 管和N 管轮流导通和截止,输出非0即Udd ,故CMOS 反相器又称为“无比电路”。
反相器的输入输出端口的关系如表一所示:表格 1 反相器输入输出端口反相器关系式:OUT=~IN 。
一、使用S-Edit 编辑CMOS 反相器原理图在此次实例设计中采用Tanner Pro 软件中的S-Edit 组件设计CMOS 反相器的原理图,进而掌握S-Edit 的基本功能和使用方法。
操作流程如下:进入S-Edit —>建立新文件—>环境设置—>引用模块—>建立反相器电路。
1)打开S-Edit 程序,并将新文件另存以合适的文件名存储在一定的文件夹下:在自己的计算机上一定的位置处打开S-Edit 程序。
在本例中在S-Edit 文件夹中新建立“反相器原理图”文件夹,并将新文件以文件名“Ex2”存与此文件夹中。
如图二所示。
图0:CMOS 反相器图 a 另存新文件为Ex22)环境设置:S-Edit 默认的工作环境是黑底白线,但可以按照用户的喜好自行设定。
即选择Setup->Colors 命令,打开Colors 对话框,可分别设置背景色、前景色、选取颜色、栅格颜色、原点颜色和可更换颜色等。
如图二所示。
图二 环境设置3)编辑模块并浏览组件库:S-Edit 编辑方式是以模块为单位而不是以文件为单位,一个文件中可以包含多个模块,而每一个模块则表示一种基本组件或者一种电路。
每次打开一个新文件时便自动打开一个模块并命名为“Module0”;也可以重命名模块名。
方法是选择Module->Rename 命令,在弹出的对话框中的New Name 中输入符合实际电路的名称,如“inv_dc ” 即可,之后单击OK 按钮就可以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路设计基础论文题目:CMOS反相器学院:信息科学与工程学院专业:集成电路工程姓名:杨丹学号:1211082132CMOS 反相器电路设计及其版图仿真姓名:杨丹 学号:1211082132摘要: CMOS技术自身的巨大发展潜力是IC 高速持续发展的基础。
集成电路制造水平发展到深亚微米工艺阶段,CMOS 的低功耗、高速度和高集成度得到了充分的体现。
本文主要简单的介绍CMOS 反相器电路的基本理论,以及基于Cadence 的CMOS 反相器的电路仿真和版图设计。
关键词:CMOS 、反相器、Cadence 、版图Abstract: CMOS is the basis for high speed and sustainable development of IC, which ownhuge development potential. Integrated circuit manufacturing level to the development of deep sub-micron technology, the low power, high speed and high integration of CMOS has been fully embodied. This paper mainly introduces the basic theory of CMOS inverter circuit. And the CMOS inverter circuit simulation and layout design that based on the Cadence.Key Word: CMOS 、inverter circuit 、Cadence 、layout 一、引言反相器是确实是所有数字设计的核心。
一旦清楚理解了它的工作和性质,设计诸如逻辑门、加法器、乘法器和微处理器等比较复杂的结构就大大地简化了。
这些复杂电路的电气特性几乎完全可以由反相器中得到结果推断出来。
反相器的分析可以延伸来解释比较复杂的门(如NAND 、NOR 或XOR )的特性,她们又可以形成建筑块来构成如乘法器和处理器这样的模块。
本论文将集中讨论反相器的工作原理和几种重要特性,并对反相器的设计作出相关的分析。
二、工作原理1. CMOS 反相器电路图1显示了一个CMOS 反相器的电路图,它由两只增强型MOSFET 组成,其中T N 为N 沟道结构,T P 为P 沟道结构。
两只MOS 管的栅极连在一起作为输入端;漏极连在一起作为输出端。
按照图1标明的电压与电流方向,I v =GSN v ,O v =DSN v ,并设DN i =DP i =D i 。
为了能使电路正常工作,要求电源电压DD V 大于两只MOS 管的开启电压的绝对值之和,即DD V >(TN V +TP V )。
2. 静态CMOS反相器电路图2显示了一个静态CMOS 反相器的电路图。
它的工作原理是,当in V 为高并等于DD V 时,NMOS 管导通而PMOS 管截止。
此时在out V 和接地点之间存在一个直接通路,形成一个稳态值0V 。
相反,当输入电压为低时,NMOS 和PMOS 管分别关断和导通。
在DD V 和out V 之间存在一条通路,产生了一个高电平输出电压。
3. CMOS 反相器的特性CMOS 反相器是所有复杂电路的基本构建模块,比如逻辑门、加法器、乘法器等一些比较复杂的电路的电气特性几乎完全可以由反相器的工作和性质推断出来。
下面分析CMOS 反相器的几种重要特性。
(1) 输出高电平和低电平分别为DD V 和GND 。
换言之,电压摆幅等于电源电压。
(2) 逻辑电平与器件的相对尺寸无关,所以晶体管可以采用最小尺寸。
(3) 稳态时在输出和DD V 或GND 之间总存在一条具有有线电阻的通路。
因此一个设计良好的CMOS 反相器具有低输出阻抗,输出电阻的典型值在 k 的范围内。
(4) CMOS 反相器的输入电阻极高,因为一个MOS 管的栅实际上是一个完全的绝缘体,因此不取任何直流输入电流。
由于反相器的输入节点只连到晶体管的栅上,所以稳态输入电流几乎为零。
(5) 在稳态工作的情况下电源线和地线之间没有直接通路(即此时输入和输出保持不变)。
没有电流存在(忽略漏电流)意味着该门并不消耗任何静态功率。
4.电压传输特性(VTC )电压传输特性的性质和形状可以通过图解法迭加NMOS 和PMOS 器件的电流特性来得到。
以输入电压in V 、输出电压out V 和NMOS 漏电流DN I 作为选择的变量,可以将PMOS 器件的V I -曲线通过以下关系转换到一组公共坐标上。
DSp I =DSn IGSn V =in V ;GSp V =in V -DD V DSn V =out V ;DSp V =out V -DD VPMOS 器件的负载曲线可以通过对x 轴求镜像并向右平移DD V 来得到。
这一过程概括在图3中,它显示了将原先的PMOS V I -曲线调整至公共坐标系in V 、out V 和Dn I 的一系列步骤。
所得到的负载线画在图4中,为使一个dc 工作点成立,通过NMOS 和PMOS 器件的电流必须相等。
用图解法时这意味着dc 工作点必须出在两条相应负载线的交点上。
图上标记了许多这样的点(对in V =0,0.5,1,1.5,2和2.5)。
可以看到,所有的工作点不是在高输出电平就是在低输出电平上。
因此反相器的VTC 显示出具有非常窄的过渡区。
这是由于在开关过渡期间的高增益造成的,此时NMOS 和PMOS 同时导通且处于饱和状态。
在这一工作区,输入电压的一个很小变化就会引起输出的很大变化。
5. 开关阈值开关阈值M V 定义为in V =out V 的点,其值可以用图解法由VTC 与直线in V =out V 的交点求得(见图5)。
在这一区域由于DS V =GS V ,PMOS 和NMOS 总是饱和的。
使通过两个晶体管的电流相等就可以得到M V 的解析表达式。
022=⎪⎪⎭⎫⎝⎛---+⎪⎭⎫⎝⎛--DSATp TP DD MDSATp p DSATn Tn M DSATn n V V V V V k V V V V k (1) 求解M V 得到:rV V V r V V V DSATp TpDD DSATn Tn M+⎪⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+=122 其中Nsatn p satp DSATnn DSATp p W v W v V k V k r ==(2)这里,假设PMOS 和NMOS 管的栅氧厚度相同。
当DD V 值较大时(与晶体管阈值电压及饱和电亚相比),公式(2)可以简化为:rrV V DDM +≈1 (3) 公式(3)表明开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比。
一般希望M V 处在电压摆幅的重点(即2DDV 处)附近,因为这可以使低电平噪声容限和高电平噪声容限具有相近的值。
为此要求r 接近1,这相当于使PMOS 器件的尺寸为:()()()()''/p DSATp n DSATn n p k V k V L W L W ⨯=。
由公式(1)可以推导出使开关阈值等于所希望的值M V 时所要求的PMOS 和NMOS 管的尺寸:()()()()2/2/''DSATpTpMDDDSATnpDSATnTnMDSATnnpVVVVVkVVVVknLWLW++---=(4)三、电路设计1. CMOS反相器的原理图设计在CMOS反相器的电路图设计,需要考虑电路的传播延时,然后可以确定PMOS 和NMOS 管的尺寸。
至今一直使PMOS管较宽,以使它的电阻与下拉的NMOS管匹配。
在设计中,PMOS与NMOS的宽长比为2。
以反相器为基础,依据逻辑门与反相器有相同的驱动能力设置复杂电路的PMOS和NMOS宽长比。
单级反相器2. 创建符号反相器是许多复杂数字电路设计的核心,在一些电路中通常会加一个反相器进行阈值补偿,对于复杂电路,我们可以调用反相器的符号,这样可以使电路的模块更加清楚明白。
反相器符号4.反相器的前仿利用Hspice对所绘制的电路图进行仿真,即版图前仿真,这可以进行性能优化。
ADE 窗口仿真运行成功仿真波形图5. 用计算器显示vdd 能耗的波形这里计算的是电源电压的能耗。
即)*(int DD DD VDD V I eg E -=Calculator窗口中的输出函数(计算能耗)能耗波形四、版图设计版图如下图所示:反相器版图五、版图后仿(1)DRC验证(2)Extract(参数提取)Extractor提取操作界面抽取的视图(extracted)(3)LVS验证LVS设置运行成功LVS运行报表六、以反相器为基本单元的五级反相器的电路图以及版图(1)电路图(2)版图七、总结CMOS反相器是所有数字设计的核心,在本论文中只是对CMOS反相器的基本工作原理和性质做了分析。
在本学期的集成电路课中,IC设计是本门课的重点,通过这段时间的学习,我掌握了电路图绘制以及前仿和版图绘制以及后仿。
参考文献[1] W. Dally and J.Polton, Digital Systems Engineering, Cambridge University Press,1998[2] P. D. Fisher and R. Nesbitt, “The Test of Time: Clock-Cycle Estimation and Test Challenges for Future Microprocessors,”IEEE Circuit and Devices Magazine, 14(2), pp. 37-44,1998.[3] N. Hedenstierna and K. Jeppon , “CMOS Circuit Speed and Buffer Optimization,”IEEE Transactions on CAD, vol. CAD-6, no. 2, pp.270-281,March 1987.[4] T. Kuroda and T. Sakurai, “Overview of low-power ULSI circuit techniques,” IEICE Trans.on Electronics, vol. E78-C, no. 4, pp. 334-334,April 1995.[5]D. Liu and C. Svensson, “Trading speed for low power by choice of supply and threshold voltages,”IEEE Journal of Solid-State Circuits, vol. 28, no.1, pp.10-17, Jan. 1993, p. 10-17.[6]C. Mead and L. Conway, Introduction to VLSI Systems, Addison –Wesley, 1980.[7] A. Sedra and K. Smith, MicroElectronic Circuit , Holt, Rinehart and Winston,1987.[8] R. Swanson and J. Meindl, “Ion-Implanted Complementary CMOS transistors in Low-Voltage Circuits,” IEEE Journal of Solid-State Circuits, vol.SC-7, no. 2, pp.146-152,April 1972.[9] D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep Submicron,” Proceedings ICCAD Conference, pp. 203, San Jose, November 1998.[10]H. Veedrick, “Short-Circuit Dissipation of Static CMOS Circuitry and its Impact on the Design of Buffer Circuits,” IEEEJournal of Solid-State Circuits, vol. SC-19, no. 4. pp .468-473,1984.。