浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防

发表时间:2010-04-02T22:49:12.043Z 来源:《价值工程》2010年第1月上旬供稿作者:孙勇;吴全军[导读] 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式孙勇Sun Yong;吴全军Wu Quanjun(黑龙江省逊克县库尔滨流域水电有限公司,逊克 164400)摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损,瓦温升高,将严重影响发电机的安全运行。轴电流产生的主

要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。

关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭

中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以后已经运行二年没有发生类似现象。

事实说明以上分析和处理方法是正确的。

为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验:(1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。(2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验:

①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发电机的轴电流变化情况,测量结果见表1和曲线1。

②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其测量结果见表2及曲线2。

③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。

④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)是平行的所以在轴电势也小,这就是有功越大轴电流反而越小的原因。

所以我们可以得出以下结论:

(1)要预防发电机的轴电流产生,就要避免轴绝缘被破坏。

(2)如果轴绝缘被破坏,在一定负荷条件下尽可能减小无功功率。

水轮发电机组轴电流异常原因分析及处理

水轮发电机组轴电流异常原因分析及处理 摘要:本文简要介绍了轴电流保护的功用和原理;通过采用排除法找到了轴电流异常超标的原因,得出了机组一次轴电流并无异常,而其以转频为主的二次轴电流异常问题与机组励磁电流和机组转速有关,其产生原因系转子上部的励磁空间磁场在轴CT中产生电磁感应所致;提出了行之有效的处理对策解决了机组轴电流异常超标问题。 关键词:水轮发电机组轴电流空间磁场原因分析处理对策 引言 闽东水电开发公司周宁水电站位于福建省周宁县境内,是穆阳溪梯级开发的第二级电站,装有2台设计水头为400m的混流式水轮发电机组,其单机容量为125MW,额定转速为428.6r/min。其发电机型号为SF125-14/5380,采用具有上下两个导轴承的立轴悬式结构,其推力轴承位于转子上方并布置在上机架中心体上部,上导轴承布置在上机架中心体内。 轴CT采用哈尔滨市华新电力电子设备厂生产的专用穿心式轴电流互感器,其变比为 2/0.005,饱和倍数为10倍,二次输出绕组共有2组,分别为工作绕组和试验绕组。轴CT安装在上机架中心体下部,亦即转子和上机架中心体之间。据发电机组厂家推荐,轴电流二次输出报警整定值为5mA,即对应一次轴电流为2A。 轴电流保护作为水轮发电机的一套后备保护,对机组的安全运行起着不可或缺的作用。周宁水电站两台机组自2005年4月投产以来,一直存在轴电流严重超标问题。轴电流保护装置一直在误发报警信号,根本无法起到轴电流保护作用。 1 轴电流保护的原理 由于定、转子之间的气隙不均匀以及定子铁芯的局部磁阻较大、磁路不对称等原因,导致发电机的定子磁场存在不平衡,这会使得水轮发电机的转子上产生与轴相交的交变磁通和轴向的感应电势即轴电压。在轴承绝缘良好时,轴电流是相当小的,而当轴承某一部位绝缘不良或轴电压大于油膜的击穿值时,轴电流将明显增大,该轴电流将使轴瓦发生电蚀而损伤甚至毁坏,并加速轴承润滑油的变质老化。 轴电流保护装置由轴CT和轴电流信号装置组成,主要用于监测轴电流中的工频基波50Hz 分量及其三次谐波150Hz分量。当机组运行时,如果发电机大轴中产生了轴电流,套在发电机大轴上的轴CT将该电流检测出来,送人信号装置,经过整流、滤波、放大后,当轴电流超

发电机轴电压监测

发电机轴电压监测 众所周知,大型汽轮发电机在正常运行中都会产生的轴电压,如果不采取有效的预防措施,或者预防措施失效,都将会导致轴瓦烧伤的严重后果。国内的发电机制造商都有消除轴电压危害的规范设计,就是在发电机大轴靠近汽轮机端处轴承外侧安装一个大轴接地碳刷,并在发电机大轴靠近励磁机端的轴承底座加装可靠 的绝缘垫片。这些装置只要正确地起作用,就可以解决大型汽轮发电机转子轴电压过高导致发电机轴瓦损坏的问题,但遗憾的是,国内众多发电厂实际运行情况显示,大型汽轮发电机轴瓦烧伤的事件仍时有发生,主要原因是缺少有效的在线监测手段来保证这些预防措施处于可靠的工作状态。只有采取了有效的在线监测手段,才可以彻底避免轴电压导致轴瓦烧伤事故的发生,为了寻求有效的监测方法,还得从分析轴电压的产生原因及危害途径入手。 发电机中轴电压主要有以下几个来源: (1) 由于汽轮发电机的轴封不好,沿轴向有高速蒸汽泄漏或汽缸内的高速喷射而使转轴本身带静电荷。 (2) 由于汽轮发电机的转子表面的不平整,毛刺、转轴上的螺栓、转轴上冷却风扇等在高速旋转时与周围气体(空气、氢气)发生摩擦而产生静电荷。上述两种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地而被消除。 (3) 由汽轮机最后一级动叶上甩出的水珠所形成的静态电压。如没有提供其它更为便捷的电流通道,该电压会逐渐增大,并通过轴承的油层放电。高温蒸汽温度降低时会发生正负电荷分离,随着蒸汽冲击叶片,电荷就聚集在叶片上。 (4) 直流电压场(发电机转子电压)中的交流波,会通过直流场的线圈和绝缘的电容在轴上形成一个相对地面的交流电压。该电压包括了励磁系统中的二极管或半导体闸流管交变所产生的高频电压峰值(直流同轴励磁机也存在脉动分量,只不过由于整流子极数较多,显得相对比较平缓) 。上述两种电压都很弱,而且如果通过接地刷等允许电流流出,该电压将逐渐衰减。正因为这个原因,应使用一个高电抗仪表测量这些相对于大地的电压。 (5) 因发电机磁场回路的不对称性,在发电机轴的末端会形成一个电压。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀) ,以及定、转子之间的气隙不均匀所致。该电压很强,如果不加以阻止,会形成一股强大的轴电流从轴的一端通过轴承框架流向轴的另一端。该电压有一个频率,主要是发电机的额定频率。 (6) 由于发电机定子绕组对转子铁心间存在耦合电容,转子对轴承间存在耦合电容。而由于电路、元器件、连接和回路阻抗的不平衡,发电机三相电压不平衡实际存在,即发电机定子中有零序分量存在。三相中性点电压将不可避免地产生位移。该电压将在由发电机定子—大轴—轴颈—轴瓦—轴承支架—机组底座组成的系统中产生零序电流,即轴承变为发电机零序回路的一部分。由轴承电容产生的发电机轴电压,虽然在数值上很低,但定子绕组对转子的耦合电容越大,轴电压越高。 轴电压监测系统工作原理 1 装置介绍 监测系统由安装在控制柜内的轴电压监控器、轴电流监控器和安装在发电机汽机联轴器端上发电机转子大轴接地装置组成,接地装置见图1,接地装置接线原理图见图2。

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 发表时间:2010-04-02T22:49:12.043Z 来源:《价值工程》2010年第1月上旬供稿作者:孙勇;吴全军[导读] 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式孙勇Sun Yong;吴全军Wu Quanjun(黑龙江省逊克县库尔滨流域水电有限公司,逊克 164400)摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损,瓦温升高,将严重影响发电机的安全运行。轴电流产生的主 要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验:(1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。(2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)是平行的所以在轴电势也小,这就是有功越大轴电流反而越小的原因。 所以我们可以得出以下结论: (1)要预防发电机的轴电流产生,就要避免轴绝缘被破坏。 (2)如果轴绝缘被破坏,在一定负荷条件下尽可能减小无功功率。

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

2020版大型交流异步电动机轴电流的危害与防治

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版大型交流异步电动机轴 电流的危害与防治 Safety management is an important part of production management. Safety and production are in the implementation process

2020版大型交流异步电动机轴电流的危害 与防治 大同二电厂装机容量为6×200MW,其中5,6号机为国内首批空冷式机组,与之相配套的循环泵电动机为匈牙利生产的立式电机,型号为FVKO906M16,额定功率为1200kW。与1~4号机湿冷机组循环泵电动机不同之处是电机采用滚动轴承,每台电动机有2盘导向轴承(型号为NU238)和1盘推力轴承(型号为29340E),导向轴承润滑脂原为二硫化钼现为XO(倍力)润滑脂,推力轴承润滑油为20号透平油。电动机转子轴上部安装一个巨大的风扇,静子圆周设有通风散热管。 1存在问题 5,6号机循环泵共配5台电动机,每机2台,1台备用。从1989年投产到1999年电动机运行基本良好。但此后运行状况逐步变差,

如检修后的电动机,在运行一段时间后出现异常声音,且声音逐步增大,不得不换用备用电动机。据统计,5,6号机循环泵电动机1998年检修2次,1999年4次,2000年7次,2001年9次,2002年8次,2003年10次。电动机运行周期越来越短,造成检修工作量剧增,材料消耗增大。特别是电动机每次检修需更换3盘SKF进口轴承,价值近2万元,占用日常维护费用的很大一部分。更为严重的是循环泵电动机运行不稳定,已经影响到5,6号机组的安全、稳定长周期运行。 2原因分析 经分析研究,认为循环泵电动机运行周期缩短是由于轴承受损所致,而造成循环泵电动机轴承受损的主要原因为,磁通脉动造成的轴电压累积,使油膜击穿形成轴电流,轴电流持续不断地对轴承内圈放电,导致轴承滚道产生麻点,这种损害不断扩大,在滚道上形成搓板状的伤痕。此时,电动机的异常声音非常明显,只得换用备用电动机。此外由于电动机的多次检修,风扇互换及紧力面的磨损等原因造成风扇动平衡不好,从而加剧了轴承的损坏。另外,如

水轮发电机轴电流保护装置调试报告

四川华能太平驿有限责任公司发电机轴电流保护装置 安装调试竣工报告 一、概述 四川华能太平驿水电站4#水轮发电机组单机容量65MW,水轮机为混流式,发电机为悬吊式。发电机由天津发电设备厂制造,发电机大轴直径725mm,其主要技术参数分别为: 发电机 型号:SF65—24/6440;额定容量:76.47MVA 额定电压:10500V;额定电流:4205A; 励磁电压:198V;励磁电流:1021A; 功率因素:cosΦ=0.85;额定频率:f=50HZ; 相数:3;定子接法:2Y; 绝缘等级:B(后改造为F级);励磁方式:可控硅励磁; 电机重量:457T。 二、工程概况 本工程于2012年12月至2013年3月,利用1、2、4号机组检修停电进行了发电机轴电流监测装置的安装及调试,3号机组由于检修时装置尚未到货,该机组另行找停电机会安装。从1、2、4号机组安装的情况来看,该装置工作状态稳定,测量数据准确,报警信号灵敏,且厂家承诺在3号机组安装时如有任何安装及设备本身问题,无偿提供服务,故本项目提前竣工。 1、ZDL-M轴电流监测装置功能 装置采用高性能单片机为核心控制部件构成控制器,采用空心环形互感器做为轴电流传感器,监测发电机大轴电流变化,以判断发电机轴瓦绝缘、以及定子是否电流平衡等状况。单片机实时监测轴电流传感器的变化值,该值与大轴电流呈线性变化关系,经滤波、数值变换处理后,确认轴电流超过整定值后,输出报警或跳闸信号。 2、技术参数

三、 安装工艺 1. 仪表安装:仪表安装于各机组自动制柜上方。A1、A2、B1、B2分别对应传感器1、3、2、4,报警接点接入监控系统。设置报警值0.5A ,未设置跳闸出口。 2. 传感器安装:轴电流传感器安装在能反应大轴电流的静止部分,即发电机大轴接地碳刷上方,经外部支架与发电机机架固定,将分半传感器合抱在大轴上,连接合缝处(用塞尺测量对接间隙小于0.1mm ),用螺栓将传感器与支架固定牢靠。

配置发电机相间短路的后备保护

配置发电机相间短路的后备保护 2010-02-14 21:18:36 作者:loveg来源:电机维修网浏览次数:35 网友评论 0 条(1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (2)发电机、发电机-变压器组的母线故障,而该母线没有母线差动保护或保护拒动时。 (3)当连接在母线上的电气元件(如变压器、线路)故障而相应的保护或断路器拒动时。发电机的后备保护方式有:低电压启动的过电流保护、复合电压启动的过电流保护、负序电流以及单元件低压过电流保护和阻抗保护。 1)低电压启动的过电流保护。发电机低压启动的过流保护的电流继电器,接在发电机中性点侧三相星形连接的电流互感器上,电压继电器接在发电机出口端电压互感器的相间电压上,在发电机投入前发生故障时,保护也能动作。低电压元件的作用在于区别是过负荷还是由于故障引起的过电流。 2)复合电压启动的过电流保护。复合电压启动是指负序电压和单元件相间电压共同启动过电流保护。在变压器高压侧母线不对称短路时,电压元件的灵敏度与变压器绕组的接线方式无关,有较高的灵敏度。 3)负序电流和单元件低压过流保护。发电机负序电流保护采用两段式定时限负序电流保护,由于不能反应三相对称短路,故加设单元件低压过流保护作为三相短路的保护;对于发电机-变压器组,宜在变压器两侧均设低压元件。两段式定

时限负序保护的灵敏段作为发电机不对称过负荷保护,经延时作用于信号。定时限负序电流保护作为发电机不对称短路的后备保护,它和单元件电压过流共用时间元件。 4)阻抗保护。发电机-变压器组阻抗保护一般接在发电机端部,阻抗元件一般为全阻抗继电器。但阻抗元件易受系统振荡及发电机失磁等的影响。阻抗元件的阻抗值整定,应与线路距离保护的定值配合,动作时间与所配合的距离保护段时间相配合。阻抗保护应有可靠的失压闭锁装置。由于动作时间较长,不设振荡闭锁装置。

轴电压测量及注意事项

发电部关于#1发电机轴电压测量的说明 一、发电机轴电压测量目的: 发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。所以在运行中,测量检查发电机组的轴及轴承间的电压是十分必要的,对于检修机组判定轴瓦绝缘是否良好具有重要意义。根据《电力设备预防性试验规程- DL/T 596—1996》,轴电压应小于10V。京海电厂#1发电机运行期间未进行轴电压测量,为了对近2年运行期发电机轴瓦绝缘情况准确判断,建议在B修前对#1发电机轴电压进行测量,发现问题,根据测量结果并在检修期内消除轴瓦隐患,有利于发电机长期稳定运行。 二、产生轴电压的原因 1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。 2.高速蒸汽产生的静电 由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。 为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 三、发电机结构特点 我厂330MW发电机由东方汽轮发电机厂生产。发电机冷却方式为水氢氢。在发电机进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。

涂料、溶剂对人体危害及防止措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 涂料、溶剂对人体危害及防止措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3965-36 涂料、溶剂对人体危害及防止措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 涂料及溶剂通过呼吸道、皮肤、眼粘膜等侵人人体,影响人体的内脏和神经系统,造成急性或慢性中毒。涂料中的颜料及填料,许多是金属氧化物或金属盐类,如含铅化合物红丹、铬黄等均对人体有害。 在涂装作业中,为了防止操作人员中毒,应采取如下措施: 1)在涂装车间中必须安装强力通风装置,以便把涂料中挥发出的溶剂和喷涂时产生的漆雾抽离工作环境,这既可避免火灾危险,又可防止操作人员吸人有害物质而中毒。 2)操作人员在调配漆和涂装作业时,必须戴口罩、防护帽、手套、穿工作服和皮鞋,或在必要时穿戴包括防毒面具在内的劳保服装,以防止吸入有毒溶剂,

且避免皮肤接触涂料和溶剂。 3)操作人员穿戴的工作服必须是由不产生静电的混纺棉布制成的。 4)操作人员使用的防毒面具,要选择适合溶剂种类的吸收罐。防毒具应个人专用。最好使用有空气导管的防毒面具,以便能把新鲜空气送到操作人员面部。 5)进行粉末涂装时,穿戴的工作服的袖口、襟部及裤腿均要扎紧,以防止粉尘进入而接触皮肤。 6)若发生涂料或溶剂溅到面部,特别是溅到眼中,应及时用水冲洗,而后马上到医疗部门处理。 7)衣柜位置要和涂装区分开,并应具有良好的密封性,以防止柜内个人衣物被污染。 8)涂装车间要常备急救药品,要公布医生所写的紧急处理条例。 9)涂装结束后清洗喷枪和工具时,应尽量不使涂料和溶剂接触皮肤。工作完毕后,要用温水和肥皂洗净手脸,并应经淋浴。 请在这里输入公司或组织的名字

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

一起水轮发电机轴电流超标故障的分析与处理过程

一起水轮发电机轴电流超标故障的分析与处理过程 金华峰1,2,伏虹润1 (1.大唐国际彭水水电开发有限公司,重庆市彭水县,409600;2.重庆大学电气工程学院) 概要:观察分析了彭水水电站3#发电机轴电流的变化特点,推断出故障原因后,经返厂处理后消除缺陷。目前天津阿尔斯特水轮发电机组在国内投运的较多,可供同类型机组在处理轴电流时参考。 关键词:轴电流;超标;分析;处理 0 引言 乌江彭水水电站设计单机容量350MW,水轮发电机组采用天津阿尔斯通公司生产的三相立轴双导半伞式、单路径向密闭自循环无风扇空冷同步发电机。发电机转子轴分为三段,即上端轴、转子中心体、下端轴,上端轴由轴身、滑转子组成,下端轴为三段焊接而成。由于发电机上端轴采用阿尔斯通公司新型滑转子结构,有别于常见的轴领结构,从而对发电机轴电流的防护提出了新的课题。 1 发电机轴电流运行情况描述 彭水水电站自2008年2月机组陆续投产以来,3#和5#发电机在运行期间有不同程度的轴电流存在。轴电流的大小随发电机输出功率的增加而增大,且在零功率输出加励磁工况下即有轴电流存在,此时3#机轴电流为0.42A,5#机轴电流为0.42A。在输出功率为300MW时3#机轴电流为1.36A,5#机轴电流为1.05A.在输出功率相同工况下,不存在轴电流的大小随发电机运行时间的增加而增大的现象。严重影响机组安全运行。针对3号机组进行现场机验,发现3号机组轴电流与发电机定子磁场关系密切,定子电流越大轴电流越大,再从机组状态监测数据发现,3号机组上导摆度超标,达到0.35mm,以上两因素表明3号机组存在定转子磁场旋转中心严重偏移缺陷,并且3号机组投产以来转子绝缘一直偏低,500V绝缘测试表测试绝缘值为0,因此需进一步采取综合措施限制轴电流的上升,保证机组的安全运行。 表1 3号机组轴电流记录

断相时的负序电流

1.负序电流的定义:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了。 2.我国有关规程对发电机正常运行负序电流的规定:汽轮发电机的长期允许负序电流为6% ~ 8%发电机额定电流;水轮发电机的长期允许负序电流为12%发电机额定电流。3.该定值规定了发电机在正常运行时所能承受的负序电流数值,对于发电机额定电流为是10189A的话,在发电机正常运行时负序电流就不能超过10189*8%=815A,此值为负序电流的限值,而不是实际发电机正常运行时的负序电流值。 4.根据国标《继电保护和安全自动装置技术规程》(GB/T 14285-2006) 4.2.6.3 50MW及以上的发电机,宜装设负序过电流保护和单元件低压起动过电流保护。4.2.9对不对称负荷、非全相运行以及外部不对称短路引起的负序电流,应按下列规定装设发电机转子表层过负荷保护: 4.2.9.1 50MW及以上A值(转子表面承受负序电流能力的常数)大于等于10的发电机,应装设定时限负序过负荷保护。保护与4.2.6.3条的负序过电流保护组合在一起。保护的动作电流按躲过发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 4.2.9.2 100MW及以上A值小于10的发电机,应装设由定时限和反时限两部分组成的转子表层过负荷保护。 定时限部分:动作电流按发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 反时限部分:动作特性按发电机承受负序电流的能力确定,动作于停机。保护应能反应电流变化时发电机转子的热积累过程。不考虑在灵敏系数和时限方面与其它相间短路保护相配合。 5.根据国标《电力装置的继电保护和自动装置设计规范》(GB/T 50062-2008) (此规范适用于50MW及以下的发电机保护) 3.0.9 对不对称负荷、非全相运行以及不对称短路引起的转子表层过负荷,且容量为50MW、A值大于10的发电机,应装设定时限负序过负荷保护。保护装置的动作电流应按发电机长期允许的负序电流和躲过最大负荷下负序电流滤过器的不平衡电流值整定,并应延时动作于信号。

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损, 瓦温升高,将严重影响发电机的安全运行。轴电流产生的主要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功 功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发 方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏 情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我 们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦 之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以 后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验: (1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却 器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。 (2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发 电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发 电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功 条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。 从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质 有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电 流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢 磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁 场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无 功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为 纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)

发电机说明书..

RBC800G 系列数字式发电机保护装置 一 装置简介 1.1装置概述 RBC800G 系列数字式发电机保护装置采用高性能芯片支持的通用硬件平台,维护简便;全以太网通讯方式,数据传输快速、可靠;完全中文汉化显示技术,操作简捷。 基于防水、防尘、抗振动设计,可在各种现场条件下运行。 适用于容量为50MW 及以下的火力和水力发电机保护。 1.2装置主要特点 ? 摩托罗拉32位单片机技术,使产品的稳定性和运算速度得到保证 ? 保护采用14位的A/D 转换器、可选配的专用测量模块其A/D 转换精度更是高达24位,各项测量指标轻松达到 ? 配置以大容量的RAM 和Flash Memory ,可记录8至50个录波报告,记录的事件数不少于1000条 ? 可独立整定32套保护定值,定值切换安全方便 ? 高精度的时钟芯片,并配置有GPS 硬件对时电路,便于全系统时钟同步 ? 配备高速以太网络通信接口,并集成了IEC870-5-103标准通信规约 ? 尽心的电气设计,整机无可调节器件 ? 高等级、品质保证的元器件选用 ? 优异的抗干扰性能,组屏或安装于开关柜时不需其它抗干扰模件 ? 完善的自诊断功能 ? 防水、防尘、抗振动的机箱设计 ? 免调试概念设计 1.3功能配置 表1 本系列产品的型号及功能配置表 功能 RBC801G RBC802G 差动速断 √ 比率制动式差动 √ CT 断线闭锁差动 √ CT 断线告警 √ 定子过电压保护 定子接地保护 过负荷告警 √ 反时限过流保护 √ 横差保护 √ 失磁保护 √ 转子一点接地保护 √ 转子二点接地保护 √ 复合电压过流保护 √ 反时限负序过流保护 √ PT 断线告警 √ 发电机断水(开关量) √ 发电机热工(开关量) √ 发电机励磁事故(开关量) √ 主汽门关闭(开关量) √ 其它备用非电量开入 √ √ 遥控功能压板 √ √ GPS 对时 √ √ 远方管理 √ √ 二 技术参数 2.1 额定参数 2.1.1额定直流电压: 220V 或110V (订货注明) 2.1.2 额定交流数据: a) 相电压 3/100 V b) 线电压 100 V c) 交流电流 5A 或1A (订货注明)

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

常用溶剂对人体危害

、石油醚 侵入途径:吸入、食入。 健康危害:其蒸气或雾对眼睛、粘膜和呼吸道有刺激性。中毒表现可有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。本品可引起周围神经炎。对皮肤有强烈刺激性。 急性毒性:LD5040mg/kg(小鼠静脉);LC503400ppm,4小时(大鼠吸入) 危险特性:其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。燃烧时产生大量烟雾。与氧化剂能发生强烈反应。高速冲击、流动、激荡后可因产生静电火花放电引起燃烧爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 二、正已烷 正己烷虽可经呼吸道、消化道、皮肤进入机体,但职业中毒仅见于经呼吸道吸收者。正已烷吸收入血有剂量-反应关系。大鼠暴露于浓度1800、3600、10800 和3600Omg/m3,6h后血**已烷半减期为1~2h;人接触360mg/m3,安静下4h血半减期为1.5h;生理负荷3h后,半减期为2h。人按触正已烷313.2~439.2mg/m3及其他溶剂,测定呼出气,平均吸收27.8%±5.3%,呼吸道存留5.6%±5.7%。 2.分布 正已烷在体内分布与器官的脂肪含量有关,主要分布于脂肪含量高的器官,如脑、肾、肝、脾、睾丸等。 3.转化 正已烷的生物转化主要在肝脏,微粒体细胞色素P450及细胞色素C直接参与其氧化代谢。代谢产物有2-已醇、3-已醇、2-已酮(甲基正丁基甲酮)、2,5-已二酮等。 【毒性】 正已烷属低毒类,但其毒性较新已烷大,且具有高挥发性、高脂溶性,并有蓄积作用。毒作用为对中枢神经系统的轻度抑制作用,对皮肤粘膜的刺激作用。长期接触可致多发性周围神经病变。 l.急性毒性 正已烷小鼠吸入LC为120~15Og/m3(2h),麻醉浓度为100g/m3 (lh)。大鼠经口LD50为24~29ml/kg。兔涂皮2~5ml/kg(4h),引起共济失调与躁动。人吸入单纯正已烷180Omg/m3,3~5min无刺激;2880mg/m3,l5min眼及上呼吸道有刺激;5040~720Omg/m3,lOmin,有恶心、头痛、眼及咽刺激;1800Omg/m3,lOmin,出现眩晕、轻度麻醉。经口中毒可出现恶心、呕吐等消化道刺激症状及急性支气管炎,摄入50g可致死。溅入眼内可引起结膜刺激症状。 2.慢性毒性 正已烷慢性毒作用主要为多发性神经病。神经传导速度减慢,甚至肌肉萎缩。严重者可引起肝肾损害。大鼠每日大入2.76g/m3,143天,仅有夜间活动减少,但体重、血象、血清蛋白与对照组无明显差异,处死后组织学检查见网状内皮系统有轻度反应,末梢神经有髓鞘退行性变、轴突轻度变性,腓肠肌肌纤维轻度萎缩。18000mg/m3,每周16h,共4周,周围神经运动传导速度明显下降,肌力降低。小鼠吸入360mg/m3,每周6天,经1年,未引起神经病;9OOmg/m3,引起轻度神经病; 180Omg/m3,出现步态不稳、肌萎缩。长期职业性低浓度接触正已烷的工人,可发生周围神经病,特点是隐匿性和进展缓慢。轻症者多为远端感觉型周围神经病;较重者出现运动型周围神经病;严重者可发生下肢瘫痪及肌肉萎缩,并可伴有自主神经功能障碍。正已烷可刺激皮肤,引起潮红、水肿、水疱、皮肤粗糙。正已烷无致癌活性。也未见致畸报告。 1.急性中毒

水轮发电机产品说明书-00SM

SF90-28/6800 S129-00SM 四川东风电机厂 有限公司水轮发电机 产品说明书 1. 总则 1.1 本说明书适用于SF90-28/6800水轮发电机。本发电机为立轴悬式结构,采用密闭自循环空气冷却器冷却的三相凸极同步水轮发电机。 1.2 本发电机的性能符合国家标准GB/T7894-2001《水轮发电机基本技术条件》及GB/T755-2000《旋转电机定额和性能》的规定。 1.3 本发电机由水轮机直接拖动。 2.基本规格、数据与参数 2.1 主要规格: 型号: SF90-28/6800 额定容量: 102857 kVA 额定功率: 90000 kW 额定电压: 13800 V 额定电流: 4303.2 A 额定功率因数: 0.875(滞后) 额定频率: 50 Hz 额定转速: 214.3 r/min 飞逸转速: 410 r/min 相数: 3 定子接法: Y 额定励磁电压: 285 V 额定励磁电流: 1100 A 励磁方式:自并激静止可控硅励磁 旋转方向:俯视顺时针 2.2 主要数据及参数 定子铁芯外径: Da = 6800 mm 定子铁芯内径: Di = 6060 mm

定子铁芯长: lt = 1900 mm 气隙:δ = 22 mm 转子铁芯长: lp =1890 mm 定子绕组15℃时的电阻: R1(15) = 0.004 Ω 转子绕组15℃时的电阻: R2(15) = 0.1766 Ω 定子漏抗: Xe = 0.125 标么值 纵轴同步电抗: Xd = 1.0195 标么值 纵轴瞬变电抗: Xd′ = 0.3224 标么值 纵轴超瞬变电抗: Xd″ = 0.1977 标么值 横轴同步电抗: Xq = 0.6661 标么值 横轴超瞬变电抗: Xq″ = 0.1993 标么值 负序电抗: X2 = 0.1985 标么值 保梯电抗: Xp = 0.2579 标么值 定子绕组开路时、励磁绕组的时间常数:Tdo′=7.99 s 励磁绕组短路时、定子绕组的时间常数:Ta = 0.2334 s 短路比: fko = 1.113 (计算值) 效率:η = 98.2% (计算值) 3.主要结构 本发电机为立轴悬式结构,具有上、下两个导轴承,分别在上机架中心体和下机架中心体内。推力轴承位于上机架上方的推力油槽内。采用无风扇密闭自循环空气冷却系统。它主要由定子、转子、上机架、下机架、推力轴承、辅助接线、灭火水管、制动器管路、空气冷却器装置等组成,其结构特点分述于下: 3.1 定子 定子由机座、铁芯及定子绕组等组成。由于运输条件限制,定子分为四瓣。定子在工地组圆、叠片、下线及试验。定子在机坑外组圆、叠片后,用专用吊具吊入机坑内进行下线、试验等。

发电机负序电流保护

发电机负序电流保护 大容量的发电机,额定电流比较大,低电压启动的过电流保护,往往不能满足远后备灵敏度的要求。此外当电力系统发生不对称短路、断线、或负载不平衡等情况,发电机定子绕组中将产生负序电流,并将在转子铁芯、励磁绕组及阻尼绕组等部件上感应出倍频电压、电流,引起转子附加发热,危害发电机的安全运行 假设负序电流使转子发热是个绝热过程,则不使转子过热所允许的负序电流与持续时间的关系为 式中——在时间t内负序电流的均方根值(以发电机额定电流为基准的负序电流标幺值); ——流经发电机的负序电流; t——负序电流持续时间; A——发电机允许过热常数,其值与发电机型式和冷却方式有关。 1.定时限负序电流保护 (1) 原理接线对表面冷却的汽轮发电机和水轮发电机,大都采用两段式定时限负序过电流保护,其原理接线如图8—12所示。 图8—12 发电机负序电流及单项式低电压启动的过电流保护的原理接线图 (2) 负序电流的整定计算

1)启动电流的整定计算 动作于信号的保护部分(继电器3)按躲开发电机长期允许的负序电流和最大负荷时负序滤过器的不平衡电流整定,一般情况下取 动作于跳闸的保护部分(继电器4),保护的启动电流按下面两个条件整定。按转子发热条件整定,启动电流值为 式中A——发电机允许过热的时间常数。对非强迫式冷却的发电机,1s负序电流热稳定常数 对绕组内冷却的汽轮发电机,容量为200MW时,;对水轮发电机. T——值班人员有可能采取措施消除负序电流的时间,一般取120s,如值班人员在此时间内来不及消除产生负序电流的运行方式,则保护动作于跳闸。 对于表面冷却的发电机组,,代入上式后可得发电机的负序动作电 流. 动作于跳闸的负序动作电流还需与相邻元件的负序电流后备保护在灵敏度上相配合 式中——配合系数,取1.1; ——在计算运行方式下,发生外部故障时流过相邻元件(一般只考虑升压变压器的情况)的负序短路电流刚好与其负序电流保护的启动电流相等时,流经被保护发电机的负序短路电流(考虑有否分支系数)。 敏度校验 式中——被校验保护范围末端发生金属性不对称短路时,流过保护的最小负序电流。

相关文档
最新文档