太阳能自动跟踪系统的设计

合集下载

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计引言:太阳能光伏发电已经成为可再生能源中最受关注的一种技术。

光伏发电效率受到太阳光照的影响,传统的固定光伏发电系统效率较低。

为了优化光伏发电系统的效率,设计了一种单轴太阳能光伏发电自动跟踪控制系统,能够根据太阳位置自动调整光伏板的角度,最大限度地提高太阳能的利用效率。

一、系统工作原理:该单轴太阳能光伏发电自动跟踪控制系统由光敏电阻、测量电路、控制电路和执行机构组成。

光敏电阻负责感应太阳光照强度,传递给测量电路进行电信号转换。

控制电路接收到转换后的信号,并与事先设定的峰值进行比较。

然后,根据比较结果来控制执行机构,使光伏板按需自动调整角度。

二、光敏电阻的选择:光敏电阻是该系统中最重要的一个元件,因为它直接影响到系统的准确度和稳定性。

在选择光敏电阻时,需要考虑以下因素:光敏电阻的特性曲线、光敏电阻的响应时间、光敏电阻的阻值范围等。

一般建议选择具有较高灵敏度和稳定性的光敏二极管。

三、测量电路设计:测量电路的作用是将光敏电阻的电信号转换为适合控制电路处理的电信号。

测量电路一般由信号放大器、滤波器和模数转换器构成。

信号放大器用于放大光敏电阻产生的微弱电信号,滤波器用于去除噪声和杂散信号,模数转换器用于将模拟信号转换为数字信号。

在设计过程中,需要合理设置放大系数和滤波参数,以确保测量电路的准确性和稳定性。

四、控制电路设计:控制电路是系统的核心部分,其功能是根据光敏电阻测量电路输出的信号,与事先设定的峰值进行比较,并根据比较结果来控制执行机构进行角度调整。

控制电路一般由比较器、运算放大器和逻辑电路构成。

比较器用于将输入信号与参考信号进行比较,运算放大器用于放大比较结果的差别,逻辑电路用于判断角度调整方向,并控制执行机构的运动。

五、执行机构设计:执行机构是该系统中最关键的部分,其功能是根据控制电路的指令,使光伏板按需自动调整角度。

常见的执行机构有两种:电动执行机构和气动执行机构。

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。

其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。

然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。

因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。

本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。

然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。

在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。

在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。

本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。

也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。

通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。

二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。

当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。

这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。

光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。

光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。

不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。

光伏电池的结构设计也是影响光伏发电效率的重要因素。

太阳能电池板追日自动跟踪系统的研究

太阳能电池板追日自动跟踪系统的研究

太阳能电池板追日自动跟踪系统的研究1.引言近年来,由于环境污染和化石能源的消耗,太阳能作为一种清洁、可再生的能源逐渐受到了广泛关注。

太阳能电池板作为太阳能利用的重要组成部分,具有将阳光能转化为电能的能力。

然而,由于太阳的运动轨迹以及天气等因素,太阳能电池板的效率常常受到一定程度的限制。

因此,设计一种能够实现自动追踪太阳的系统,成为提高太阳能电池板效率的有效途径。

2.太阳能电池板追日自动跟踪系统的原理太阳能电池板追日自动跟踪系统通过控制电机的转动,使太阳能电池板始终朝向太阳。

系统主要由光敏电阻、测量装置、控制器和电机组成。

当太阳光照射到光敏电阻上时,光敏电阻产生电信号,并通过测量装置转换为相应的角度信息。

控制器通过比较实际角度与太阳位置的偏差,控制电机旋转,使太阳能电池板调整到正确的角度。

3.系统参数设计与优化为确保系统的准确性和稳定性,需要对系统的参数进行设计与优化。

首先需要选取合适的测量装置,以确保可以准确地测量太阳能电池板的角度。

传感器的选取应考虑其分辨率、精度和抗干扰能力等因素。

其次,需要合理设计控制器的算法,以保证系统的精度和灵敏度。

控制器应对太阳位置变化做出快速而准确的响应,从而实现对太阳能电池板运动的精确控制。

最后,还需对电机的选型和驱动方式进行优化,以确保电机可以在恶劣环境下稳定运行。

4.系统性能测试与分析在完成系统参数设计与优化后,需要进行系统性能测试与分析。

测试时可以在不同天气条件下观测太阳能电池板的追踪效果,并对实际追踪角度与理论角度之间的差异进行比较。

此外,还可通过测试太阳能电池板的电能输出情况,以评估系统的效率和稳定性。

通过对测试结果的分析,可以进一步改进系统设计,提高追日自动跟踪系统的性能和可靠性。

5.应用前景与展望太阳能电池板追日自动跟踪系统具有重要的应用前景和发展空间。

随着太阳能的广泛应用,对太阳能电池板效率的要求也越来越高。

追日自动跟踪系统可以帮助太阳能电池板始终追踪太阳,最大程度地提高电能转换效率,从而提高整个太阳能发电系统的综合效能。

《2024年太阳能自动跟踪系统的设计与实现》范文

《2024年太阳能自动跟踪系统的设计与实现》范文

《太阳能自动跟踪系统的设计与实现》篇一一、引言随着环境保护和可再生能源的日益重视,太阳能的利用成为了全球关注的焦点。

太阳能自动跟踪系统作为一种提高太阳能利用效率的重要手段,其设计与实现显得尤为重要。

本文将详细阐述太阳能自动跟踪系统的设计原理、实现方法和应用前景。

二、系统设计目标本系统的设计目标是为了提高太阳能的利用率和发电效率,通过自动跟踪太阳的运动,使太阳能电池板始终面向太阳,从而最大限度地接收太阳辐射。

同时,系统应具备操作简便、稳定可靠、成本低廉等特点。

三、系统设计原理太阳能自动跟踪系统主要由传感器、控制系统和执行机构三部分组成。

传感器负责检测太阳的位置,控制系统根据传感器的数据控制执行机构进行相应的动作,使太阳能电池板能够自动跟踪太阳。

1. 传感器部分:传感器采用光电传感器或GPS传感器,实时检测太阳的位置。

光电传感器通过检测太阳光线的强度和方向来确定太阳的位置,而GPS传感器则通过接收卫星信号来确定地理位置和太阳的位置。

2. 控制系统部分:控制系统是太阳能自动跟踪系统的核心部分,负责接收传感器的数据,并根据数据控制执行机构的动作。

控制系统采用微处理器或单片机等控制器件,通过编程实现控制算法。

3. 执行机构部分:执行机构主要负责驱动太阳能电池板进行动作。

常见的执行机构有电机、齿轮、导轨等,通过控制执行机构的动作,使太阳能电池板能够自动跟踪太阳。

四、系统实现方法1. 硬件实现:太阳能自动跟踪系统的硬件主要包括传感器、控制系统和执行机构。

传感器和执行机构的选择应根据实际需求和预算进行选择,而控制系统的硬件则需根据所采用的微处理器或单片机等器件进行设计。

2. 软件实现:软件实现主要包括控制算法的编写和系统调试。

控制算法的编写应根据传感器的数据和执行机构的动作进行编程,通过控制算法实现太阳能电池板的自动跟踪。

系统调试则需要对整个系统进行测试和调整,确保系统的稳定性和可靠性。

五、应用前景太阳能自动跟踪系统的应用前景广阔,可以广泛应用于太阳能发电、太阳能热水器、太阳能干燥等领域。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。

但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。

跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。

光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。

光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。

而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。

该系统适用于各种需要跟踪太阳的装置。

该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。

系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。

跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。

太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。

上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。

太阳能自动跟踪发电控制系统开发与设计

太阳能自动跟踪发电控制系统开发与设计

太阳能自动跟踪发电控制系统的开发与设计摘要:当前,由于技术条件限制,光伏发电的转换效率很低,严重制约了太阳能发电的发展与普及,因此,在现有条件下,寻求一种实用的方式去提高太阳能的发电效率是非常必要的。

实践证明,太阳能的发电效率和太阳能电池板与太阳光线的角度有很大关系,太阳能发电中,太阳能电池板实时和太阳光线保持垂直能在很大程度上提高太阳能的发电效率。

本文针对如何提高太阳能发电效率的问题,提出了采用自动跟踪的方法,让自动跟踪系统对太阳的运动轨迹作出实时判断,从而使太阳能电池板实时和太阳光线保持垂直,提高光伏转换效率。

关键词:太阳能;自动跟踪;发电控制系统;开发与设计中图分类号:tk511 文献标识码:a 文章编号:1.引言地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题。

同时,太阳能也是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。

但是,太阳能的利用有它的缺点:一是能流密度较低,日照较好的,地面上1平方米的面积所接受的能量只有1千瓦左右。

往往需要相当大的采光集热面才能满足使用要求,从而使装置地面积大,用料多,成本增加。

二是受大气影响较大,给使用带来不少困难。

本文设计一种基于gps定位及太阳方位计算的的太阳自动跟踪装置,该装置能自动跟踪太阳的运动,保证太阳能设备的能量转换部分所在平面始终与太阳光线垂直,提高设备的能量利用率。

与此同时加以风力发电机辅助发电给蓄电池充电,进而在夜间给路灯提供电源。

2 太阳能自动跟踪系统硬件设计2.1 太阳能自动跟踪系统的机械构成及工作原理太阳能自动跟踪系统的机械结构由太阳能电池板、减速电机、齿轮传动机构、基座等构成。

基座主要支撑和固定太阳能自动跟踪器。

当太阳照射角度发生变化时,垂直方向(y)和水平方向(x)的减速电机就会相应的通电转动,通过齿轮机构传动使太阳能电池板始终与太阳光线垂直,即获取到最大的太阳光照能量。

整个装置由机械部分和控制部分组成。

《2024年太阳能电池板追日自动跟踪系统的研究》范文

《2024年太阳能电池板追日自动跟踪系统的研究》范文

《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的不断进步和环保意识的日益增强,太阳能作为一种清洁、可再生的能源,其利用效率与效益日益凸显。

太阳能电池板作为太阳能利用的核心设备,其性能的优化与提升成为研究的重要方向。

其中,太阳能电池板追日自动跟踪系统(以下简称“跟踪系统”)的研究与应用,对于提高太阳能的利用率和转换效率具有重要意义。

本文旨在探讨太阳能电池板追日自动跟踪系统的原理、设计及其实验结果,以期为相关研究与应用提供参考。

二、系统概述太阳能电池板追日自动跟踪系统是一种利用传感器和控制系统,实现对太阳运动轨迹实时追踪的系统。

该系统能够根据太阳的位置变化,自动调整太阳能电池板的朝向,使电池板始终面向太阳,从而提高太阳能的利用率和转换效率。

该系统主要由传感器模块、控制模块和执行模块等部分组成。

三、系统原理1. 传感器模块:传感器模块负责实时监测太阳的位置信息。

通常采用光电传感器或GPS定位系统等设备,实时获取太阳的位置数据。

2. 控制模块:控制模块是系统的核心部分,负责接收传感器模块传输的太阳位置信息,根据预设的算法计算出太阳能电池板需要调整的角度,并发出控制指令。

3. 执行模块:执行模块根据控制模块发出的指令,驱动电机等设备,实现对太阳能电池板的自动调整。

四、系统设计1. 硬件设计:硬件设计主要包括传感器、控制器和执行器等设备的选择与配置。

传感器应具备高精度、低噪声的特点,控制器应具备快速响应、高稳定性等特点,执行器应具备高精度、低能耗的特点。

2. 软件设计:软件设计主要包括传感器数据的采集与处理、控制算法的设计与实现等。

软件应具备实时性、准确性、可靠性等特点,能够实现对太阳能电池板的精确控制。

五、实验结果与分析通过实验验证,太阳能电池板追日自动跟踪系统能够实时监测太阳的位置信息,并根据计算结果自动调整太阳能电池板的朝向。

实验结果表明,该系统能够有效提高太阳能的利用率和转换效率,与固定安装的太阳能电池板相比,具有显著的优越性。

一种太阳能电池自动跟踪系统的设计

一种太阳能电池自动跟踪系统的设计
东西 0- 6  ̄ o 3 0, 南北 一 8 o + 8  ̄ 10 ~ 1 0
8 3 0I
图 3 1 统 总框 图 - 系
p C
( )东 西或 南北 传 感器 电信 号差 大 于 0 V 时 陈 - 、 . 2 列跟踪 . 否则 不跟踪 ( 、 到异 常情 况像 自然灾 害 时 . 四) 遇 能够 采取 相应 的保护措 施 , : 如 遇冰雹 时 , 列走 到垂 直状 态 ; 阵 台风暴
图 3 2所 示 。 —
这 样 就 把 MC 一 I的 串行 端 口 (XD和 R D) S5 T X 转
负载
换成标准的 R 一3 S 2 2接 口 .只要 用 一 根 通 信 电 缆将 该 通 信 端 口与 P C机 的 C M E连 接 起 来 。 写 好 通信 软 O I 编 件 . 者就 可 以通信 了 二 本 系统 主要 工作 都 在无人 端 f 位 V ) 行 。 下 L进 外接 一 通 信接 V 的有人 端f 位V ) I 上 t主要完 成 如 下功 能 : ( ) 在接 收 到无 人端 的告 警信 号 时 , 制 指示 灯 一 、 控 亮 并发 出告 警信 号 , 由打 印机 打印 出相 应 的信 息 。
O 本 系统 的上位机是 配有 C M1 C M2口的 O 和 O ( ) 九 、本系 统不 考虑 风 力发 电机及 油机 的 故 障处 C M 口 P C机 。 由于 R 一 3 S 2 2采 用 负 逻 辑 . : 辑 1 … V 即 逻 :5 理。 均视为 理想状态 。 1V; 5 逻辑 0+ V + 5 :5 1V。而 MC 一 1 片机 的输 入 、 S5 单 输 3 总体 系统结构 及控 制过程 简 述 、 出电平均 为 1 L电平 . T 两者 的 电气规 范不 一致 。 以为 所

太阳能自动跟踪系统的设计与实践

太阳能自动跟踪系统的设计与实践

1 引 言 .
方 面 也 应 该 抓 住 机 遇 , 进 行 相 应 的基 础 池充 电,进而在夜间给路灯提供 电源 。
传统 的燃料 能源正在一天天减 少,
研究和应用开 发,为开设相关 的专业做
2 太阳能自动跟踪 系统硬件设计 . 2 i 太 阳能 自动跟踪系统 的机械 构 . 太 阳能 自动跟踪系统 的机械结构 由 太 阳能 电池板 、减速 电机 、齿轮传动机
描述 的硬 件 电路 实现 。
【 Al r op rt nNisI ls rga 6 t aC roai . o IFahP ormme e ] e o rUsr
Gu d . 0 . i e 2 09
其在 目前 的多媒体娱乐市场上 具有 很高
的 竞 争 力 ,并 且 应 用 前 景 广 泛 。用 基 于
文设计一种太 阳能自动跟踪 系统,其 能根据 太阳相 对地球运动轨迹的规律 ,控制太 阳能板 自 实时跟踪太 阳方位 ,保 持太阳能电池板始终与太 阳入射 光线垂直 , 动
从而保持较高的太阳能利用率 。本文重 点叙述太阳能 自动跟踪控制系统的硬件与软件设计与实践的内容。
【 关键词 】太阳能; 自 动跟踪 ;G S P ;单 片机
政策 ( T )续延2 6 。太 阳能光伏 发 位计算的 的太 阳 自动跟踪装置 ,该装置 动作等 。 IC -年 电和风 电在我 国是一个新兴事物 ,光 伏 能 自动跟踪太 阳的运动 ,保证太阳 能设 产业让 国内企 业看 到了机遇 ,而 且该产 备的能量转换部分 所在平面始终与太 阳
[] t aC roainNisI S f r vlpr s 5AJr op rt . o I ot eDeeo e e o wa

《2024年太阳能电池板追日自动跟踪系统的研究》范文

《2024年太阳能电池板追日自动跟踪系统的研究》范文

《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的进步和人类对可再生能源需求的日益增长,太阳能作为清洁、可再生的能源受到了广泛关注。

太阳能电池板作为太阳能利用的核心设备,其效率的提高对于推动绿色能源发展具有重要意义。

追日自动跟踪系统作为一种能够提高太阳能电池板光电转换效率的技术,近年来得到了广泛的研究和应用。

本文旨在研究太阳能电池板追日自动跟踪系统的原理、设计及其应用,以期为太阳能利用技术的发展提供理论支持和实践指导。

二、追日自动跟踪系统的基本原理追日自动跟踪系统基于太阳能电池板对太阳辐射的响应,通过传感器和控制系统实现自动跟踪太阳的运动轨迹,以达到最大化光电转换效率的目的。

系统主要包括以下几个部分:太阳位置传感器、控制单元、驱动单元和太阳能电池板。

太阳位置传感器负责实时监测太阳的位置,将太阳的位置信息传递给控制单元。

控制单元根据太阳的位置信息,结合预设的算法,计算出太阳能电池板需要调整的角度,并发出控制信号给驱动单元。

驱动单元根据控制信号驱动太阳能电池板进行相应的旋转和调整,使其始终保持最佳的光照角度。

三、追日自动跟踪系统的设计1. 硬件设计:追日自动跟踪系统的硬件设计主要包括传感器、电机和控制电路等部分。

传感器负责监测太阳的位置和环境光强等信息;电机用于驱动太阳能电池板的旋转和调整;控制电路则负责将传感器信号转换为控制信号,驱动电机进行相应的动作。

2. 软件设计:软件设计是追日自动跟踪系统的核心部分,主要包括控制算法和控制系统软件等。

控制算法负责根据太阳的位置信息和预设的规则,计算出太阳能电池板需要调整的角度;控制系统软件则负责将控制算法的输出转换为电机驱动信号,实现对太阳能电池板的精确控制。

四、追日自动跟踪系统的应用追日自动跟踪系统在提高太阳能电池板光电转换效率方面具有显著的优势。

通过实时监测太阳的位置,并调整太阳能电池板的姿态,使太阳能电池板始终保持最佳的光照角度,从而提高其光电转换效率。

新型太阳能自动跟踪系统设计与实验说明书

新型太阳能自动跟踪系统设计与实验说明书

Design and Experiment of a New Solar AutomaticTracking SystemLili Cheng1 and Bin Wang21Institute of Technology , Jilin University, 130012, Changchun, China2CRRC Qishuyan Institute Co.,Ltd, 213011, Changzhou, ChinaAbstract—A new type of solar photovoltaic power generation automatic tracking system was designed in this paper. First of all, based on the principle of dual-axes tracking and the law of the sun trajectory, a novel parallel solar tracking mechanism was devised. The mechanism of automatic tracking system uses3-DOF parallel structure and can track the sun all-round. Secondly, the control algorithm is studied by the mathematical model of parallel tracking mechanism and proposed the tracking strategy of the photoelectric tracking and sun trajectory tracking.In the sunny day, the sunlight is detected by photoelectric sensor and with the photoelectric tracking mode. In the rainy days, according to the calculation of the solar altitude angles and azimuth, the automatic tracking is used the construction of the data base and look-up table to track sun by software control method. Finally, the generating capacity of automatic tracking system experiment is carried on research. The experimental results show that the designed parallel tracking mechanism has a good performance and stable operation, also can realize all-round automatic tracking. The power generation of the new automatic tracking system has more power than two axes tracking 14.1%.Keywords-automatic tracking; parallel mechanism; photoelectric tracking; sun trajectory trackingI.I NTRODUCTIONAs an effective way to improve the utilization of solar energy, solar automatic tracking system has been paid attention to by the countries all over the world. Solar automatic tracking means that during the process of solar radiation, the solar panel's surface is always perpendicular to the solar rays and more solar radiation energy is obtained in a limited area [1,2]. The sun energy acceptance rate is different with another tracking method. At present, the tracking mechanism can be divided into single axis tracking, two axis tracking, polar axis tracking and parallel tracking, and so on [3]. Two axis tracking is the mainstream method at present. It can automatically track the sun in two directions of horizontal and pitch. It also can achieve larger power output. In recent years, the parallel mechanism has large stiffness, stable structure, high accuracy, and easy to realize real-time motion control, so it has been gradually applied to the solar automatic tracking. The typical 3-DOF parallel sphere tracking mechanism is proposed by Professor Zhang Shunxin in Hebei University of Technology [4]. The parallel spherical tracking mechanism has the characteristics of compact structure, high stiffness and large working space. It can achieve a comprehensive tracking and greatly efficiency of acceptance.The existing tracking mechanism is driven directly by the motor. A heavier solar panel will be used a large motor drive which makes the power consumption of its own increase and the effective output power generation decrease [5,6]. In order to solve the problem of sun tracking mechanism, a novel solar automatic tracking system was designed this paper. The tracking system can reduce the power loss of its own and increase the output effective power generation. Therefore, it can improve the efficiency of tracking device and achieve the purpose of automatic tracking.II.D ESIGN OF N EW S OLAR T RACKING M ECHANISMA.The Working Principle of a New Parallel AutomaticTracking MechanismThe new solar tracking system mainly includes support mechanism, limiting mechanism, drive mechanism and parallel steering mechanism. The supporting mechanism is composed of a tripod support at the bottom, a triangular platform at the top and a universal joint fixed on it. The driving mechanism passes the torque to the gear through the stepping motor. Then the gear-rack passes are meshed through the steel wire which the position and the posture of the solar energy plate are changed arbitrarily. Three sets of limit rod in triangular platform and the solar panel tray are made up the limiting mechanism. The upper of three sets limit rod is connected a spherical hinge to the solar plate tray. The 3 spherical hinges are fixed on the solar panel tray and formed a triangle. The steering mechanism is composed of 3 spherical hinges in the solar plate tray edge of the 120 degrees angle and formed a triangle. The hinged thin steel wire is fixed on the rack by the guide wheel. The three-dimensional model is shown in Fig.1.The working principle of the mechanism is that the stepping motor is powered on, then the thin steel wire connected with the gear is driven by a gear-rack mechanism, so the tray movement is influenced by the guide wheel. The coordinated movement of the three fine wire ropes makes the attitude of the solar panel change arbitrarily. The azimuth angle can reach 360 degrees, and the pitching angle also can reach 110 degrees. Therefore, the full range tracking can be realized.2nd International Conference on Control, Automation, and Artificial Intelligence (CAAI 2017)1.Triangle support2.Rack3.Thin steel wire4.Stepping motor5.Motor bracket6.Triangular platform7.Guide wheel8.Guide rail9.Gear 10.Limit connecting rod 11.Universal coupling 12.Spherical hinge 13. Solar panel trayFIGURE I. THE NEW SUN TRACKING MECHANISM MODELB. Modeling of New Parallel Automatic Tracking Mechanism In order to facilitate the establishment of a mathematical model, the new parallel tracking mechanism was designed in this paper. The mechanism can be divided into fixed platform and moving platform. The platform is composed of three stepping motors, gear-rack and guide wheel. The moving platform is composed of solar panel tray and universal coupling. The 3 spherical hinges are arranged at the edge of the solar panel tray at 120 degrees intervals, and the three fixed points of the 3 spherical hinges are also arranged in a positive triangle.When the parallel tracking mechanism is in motion, the three rope lengths are respectively 1l , 2l , 3l , and the position positive solution equation of the parallel tracking mechanism is[7]:According to the parallel sun tracking mechanism of positive solutions of the conditions, 1l , 2l , 3l are known, so the three unknowns are corresponding three independent equations. Through solving formula, the parallel tracking mechanism output equations of position α, β, B z can beobtained.22212222222223(cos )(sin )(cos sin sin )cos )(sin sin cos )222(cos sin sin )cos )(sin sin cos )222B B l r R z r R r rl z R r rl z βββαβαβαββαβαβαβ⎧⎪=-+-⎪⎪=-+++⎨⎪⎪=-++-⎪⎩III.R ESEARCH ON C ONTROL S YSTEM OF N EW S OLART RACKING S YSTEMAfter completing the mathematical modeling of the solar automatic tracking mechanism, it is necessary to design the control system, including the design of the hardware system and software system. This paper is proposed a control strategyof combining the photoelectric tracking with sun trajectory tracking based on the solar automatic tracking in any weather condition. The tracking mode is mainly depended on the trajectory tracking and sun trajectory tracking is supplemented. In a sunny day, a photosensitive diode is used to accomplish the light intensity detection. Cloudy or cloudy time is calculated by software to calculate the trajectory of the sun. Collaborative control of hardware and software enables real-time and accurate tracking of the sun. The workingprinciple of the control system is shown in Fig. 2.FIGURE II. THE WORKING PRINCIPLE OF THE NEW SOLARAUTOMATIC TRACKING CONTROL SYSTEMThe new principle of automatic solar tracking controlsystem is that the three ropes length displacement are calculated according to the kinematics equation of the 3-DOF parallel mechanism, then the controller will transmit control signals to the three shafts drive board, so the stepper motor can drive actuator motion. When the sun shines on the photoelectric sensor, the sensor is judged according to the information of the sunlight to see whether the threshold of the photoelectric sensor is set. If the threshold is set, the system is automatically switched from mode control to photoelectric tracking module. If the threshold of the sensor is not reached, the system will automatically switch to sun trajectory tracking module. According to the local latitude, the solar altitude angle and azimuth angle are calculated on the basis of the sun trajectory algorithm, and then the database is set up to store the information of the solar trajectory into the controller. When cloudy or dark clouds, the solar altitude angle and azimuth information are queried from the database in the current time., at and then the telescopic rope length is calculated by the controller. It can control the stepper motor movement through the program and make the solar panel reach the expected position. The combination of photoelectric tracking and sun trajectory tracking, the system can accurately track the solar rays all day and automatically.A. The Hardware Circuit Design of Control SystemThe hardware of the automatic tracking control system is mainly composed of MCU controller, stepping motor, motor drive, photoelectric sensor, light intensity detection circuit and so on. Among them, the MCU is the control component, the stepping motor is the executive part, and the photoelectric sensor is the feedback control component. The hardware design of the control system is shown in Fig. 3.FIGURE III. THE HARDWARE DESIGN BLOCK DIAGRAM OFCONTROL SYSTEMThe control system constructs the application system based on MCU controller as the core. The modular thought of hardware circuit is designed for each unit circuit, and then the synthesis of the hardware circuit is carried out. Each circuit unit is combined to a complete hardware circuit by the function demands. The analog and digital signals are acquired through the peripheral circuit of the MCU control system, and input to the MCU control. After dealing with the MCU, the corresponding action of execution unit can control the whole system.B.The Software Design of Control SystemThe software design of the automatic tracking system mainly includes the main control module, the photoelectric tracking module, the sun trajectory tracking module and the maximum power point tracking algorithm program design. The design of control system software adopts the idea of modular. All modules were designed and then combined to a complete module, so it is easy to program, but also can be easily modify error in a module. The overall design is shown in Fig. 4.FIGURE IV. THE SOFTWARE DESIGN BLOCK DIAGRAM OFCONTROL SYSTEMThe program is composed of photoelectric tracking module and sun trajectory tracking module. Firstly, the photoelectric signal is converted into an electric signal through the light intensity detecting circuit according to the photoelectric sensor. According to the comparison of the preset reference voltage and the ends sensor voltage, if the ends sensor voltage is greater than the reference value, it can output high level. The stepper motor control will be not moved at this time. If it is less than the reference value, it can output low level. Then, the stepper motor control will be action by the MCU. Secondly, the solar altitude and azimuth are calculated according to the local latitude and the time. The angle of calculation will be built the data base, and then the solar elevation and azimuth are inquired every time from the library table. The MCU will send a pulse signal and direction signal to the stepper motor. The solar panel is corrected by one direction so as to complete a tracking. The solar panel is corrected by one direction so as to complete a tracking.FIGURE V. THE POWER TEST PROCESS OF TWO AXIS TRACKINGFIGURE VI. THE POWER TEST PROCESS OF NEW AUTOMATICTRACKING SYSTEMIV.E XPERIMENTAL RESEARCH AND ANALYSIS The test starts at 8:00 am and ends at 18:00 pm with a total of 10 hours of testing. Compared to the power of the two tracks, the result is shown in Fig. 7. In this experiment, one area of Jinhua as an example, the same power of solar panels (20W) is used in this test. The power comparison test is carried on the new solar automatic tracking system and two axis tracking system in different time on the same day. Test conditions: temperature 15-28 ℃, cloudless weather. The experiments are shown in Fig. 5 and Fig. 6.FIGURE VII. COMPARISON OF POWER GENERATION BETWEEN NEW AUTOMATIC TRACKING AND TWO AXIS TRACKINGFig.7 shows that the average power of the two axes tracking is about 11.6W all day long. The average power of the new solar automatic tracking is about 13.5W all day long. The new automatic tracking power is 14.1% higher than the traditional two axes tracking all day long. The experimental results show that the power generation of the new solar automatic tracking is better than the two axes tracking.V.C ONCLUSIONS1. The designed new solar automatic tracking system can coordinate movement with each other without interference when three motors turn .2. The whole power generation of the new solar automatic tracking system is 14.1% more than traditional two axis tracking system.Compared with the traditional two axis tracking system, the designed new parallel solar tracking system is effective in generating more power in this paper. Its economy is obvious, and the utilization of the sun is high.A CKNOWLEDGEMENTThis research was financially supported by the National Science Foundation.R EFERENCE[1]Ardehali M M, Shahrestani M, Charles C. Energy simulation of solarassisted absorption system and examination of clearness index effects on auxiliary heating[J]. Energy Conversion and Management, 2007, 48(3): 864-870.[2]CHEN Jianbin, SHEN Huiping, DING Lei, et al. Newest progresses onthe two-axis tracking system study of the solar energy photovoltaic [J].Machinery Design & Manufacture, 2010(8): 364-266.[3]YOU Jinzheng, ZOU Lixin, ZHOU Tong et al. Design of AutomaticSolar Tracking System[J]. 2009,19(5):139-142.[4]ZHANG Shunxin, SONG Kaifeng, FAN Shuncheng, et al. Study on thenew two-axes solar tracker based on spherical parallel mechanism[J].Journal of Hebei university of technology, 2003, 32(6):44-48.[5]Sokolov A, Xirouchakis P. Dynamics analysis of a 3-DOF parallelmanipulator with R-P-S joint structure[J]. Mechanism and Machine Theory, 2007, 42 (5): 541-557.[6]LU Kaijiang, NIU Lufeng, LIU Yaru, et al. Research on SingularConfiguration and Workspace of 3-RPS Parallel Mechanism[J]. Journal of agricultural machinery, 2007, 38(5):143-146.[7]HE Xinsheng, GAO Chunfu, WANG Bin, et al. Positional PostureAnalysis and Experimental Research on A New Sun Auto-tracking Mechanism[J]. Opt. Precision Eng., 2012, 20(5): 1048-1054。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。

但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。

跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。

光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。

光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。

而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。

该系统适用于各种需要跟踪太阳的装置。

该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。

系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。

跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。

太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。

上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。

基于步进电机细分驱动的太阳能自动跟踪系统的设计

基于步进电机细分驱动的太阳能自动跟踪系统的设计

个 相 同 的驱 动模 块 。传 感 器 模 块 包 括 四象 限探 测
器 、信 号处 理 电路 和 D 换 电路 。太 阳光 线 垂直 转 照射 四象 限探测器 时 ,它 四个 象 限的输 出 电流 等 ; 当发生偏 移时 ,四个象 限 的电流不 等 ,通 过 四
象 限探测 器 的这 种特 点检测 太 阳光是否 直射 太 阳能 电池板 。信号 处理 电路负责 信号 采集放 大 ,把 电流
1 太 阳能 自动 跟 踪 系 统 的 设 计
11 太 阳运 行 规律 .
o 1 (2 t  ̄ 5 1 一) = 式 中 :£ 天 当 中的时刻 。 是一
() 4
由式 ()一 ()可 计 算 出太 阳高 度 角 和 方 位 1 4
角 ,以 此进 行 两 个 角度 的双 轴 跟 踪 ,来 实 现太 阳 能 自动跟 踪 。
和 太 阳能 电池 板 。单 片机 是整 个 跟踪 系统 的 核心 , 负 责 运 算 和控 制 。 时钟 模 块 主 要 把全 年 每 天 的时
间 提 供 给单 片机 。驱 动 模 块 包 括光 电 隔离 、步 进
图2

四 象 限 探 测 器 示 意 图
阳运 动 的两 个偏 移 量 由式 ()算 出 , 由此 可 测 出 5同 太 阳 的方位 ,从 而起 到 跟 踪 的 作用 。 四象 限探 测 器 能 在东 西 方 向 ( 位 角方 向)和 南 北方 向 ( 度 方 高
为 了提 高 太 阳 能 电 池 板 对 光 能 的 采 集效 率 .
收 稿 日期 :0 1 0 — 1 2 1 - 5 1
。 ) m 避

1 . 系统 总体 设计 2
』北 -

太阳能自动跟踪系统总体设计毕业论文.doc

太阳能自动跟踪系统总体设计毕业论文.doc

高等教育自学考试本科毕业论文三相异步电动机的控制和运行维护重庆科技学院高等教育自学考试本科毕业论文三相异步电动机的控制和运行维护考生姓名:吴艺超准考证号: 1112441636专业层次:本科指导教师:钱游院(系):机械与动力工程学院重庆科技学院二O一三年七月二十九日摘要近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。

特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。

由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。

电动机机应用广泛,种类繁多、性能各异,分类方法也很多。

并且随着科技的发展结构简单、运行可靠、重量轻、价格便宜的三相异步电动机越来越受到广大中小型企业的欢迎。

因此本课题所研究的三相异步电动机的控制和运行维护就显得尤为重要。

本文将围绕电动机的发展史、三相异步电动机工作原理、各种控制和日常的运行维护进行论述。

关键字发展史三相异步电动机工作原理控制运行维护Automatic tracing intelligent solarenergy system designAbstractIn recent years, with the development of power electronic technology, microelectronic technology and modern control theory, medium, small power motors in industrial and agricultural production and people's daily life are extremely extensive application. EspeciallyIn the township enterprises and household appliances, but also need to have a lot of, small power motor. Due to the development of the motor and the widespread application, its use, maintenance and maintenance work is more important application of motor machine widely, variety, the performance of different classification methods are many. And with the increasing of three-phase asynchronous motor technology development structure simple, reliable operation, light weight, low price and more by the vast number of small and medium enterprises welcome. So it is very important to control and operation of three-phase asynchronous motor the maintenance.In this paper, the development history, working principle, around the motor three-phase asynchronous motor control and daily operation and maintenance are discussed.Keywords history phase of working principle of asynchronous motor control operation and maintenance目录中文摘要 (I)英文摘要 .......................................................................................................................... I I 1 绪论 . (1)1.1 课题背景 (1)1.1.1能源现状及发展 (1)1.1.2我国太阳能资源 ................................................................................... 错误!未定义书签。

太阳光自动跟踪仪系统设计论文

太阳光自动跟踪仪系统设计论文

太阳光自动跟踪仪系统设计论文内蒙古科技大学本科生毕业设计说明书题目:太阳光自动跟踪仪系统设计以常规能源为基础的能源结构随着资源的不断耗用将愈来愈不适应可持续发展的需要,加速开发利用以太阳能为主体的可再生能源己成为人们的共识。

光伏发电系统可以直接将太阳光能转换为高品位能源—电能。

由于太阳在天空中的位置是不断变化的,为此本文采用了自动跟踪系统。

介绍了目前国内太阳跟踪器的发展现状,各类跟踪器的性能特点。

对目前跟踪器存在的问题进行了分析,提出了新型自适应复精度太阳跟踪平台和通过单片机控制步进电机的太阳跟踪平台的系列方案。

关键词:太阳能自动跟踪摘要 (I)Abstract (II)第一章绪论太阳能光伏发电概述 (1)1.1 开发新能源的迫切需要 (1)1.2 光伏发电的特点 (1)1.3 光伏发电的现状及发展前景 (2)1.4 光伏发电系统的简单介绍 (4)1.5 本课题研究目的及所做的工作 (5)第二章光伏电池的研究与分析 (6)2.1 光伏电池的原理 (6)2.1.1 光伏电池的光伏效应 (6)2.1.2 光伏电池的物理模型 (7)2.2 光伏电池的输出特性及其影响因素 (9)2.2.1 光伏电池的I-V和P-V特性曲线 (9)2.2.2 光伏电池的主要参数 (10)2.2.3 太阳的光照强度对光伏电池转换效率的影响 (11)2.2.4 温度对光伏电池输出特性的影响 (12)第三章光伏发电系统中聚光器的研究与设计 (13)3.1 聚光比 (13)3.2 典型聚光器的性能分析 (14)3.2.1抛物面反射镜的聚光性能 (14)3.2.2复合抛物面(CPC)聚光器 (16)3.2.3折射式菲涅尔聚光器 (17)3.3 聚光器的选择和开发 (19)3.3.1 聚光器的选择 (19)3.3.2 CPC聚光器的实际应用设计 (20)第四章光伏电池最大功率点的跟踪 (22)4.1 最大功率点跟踪及其实现目标 (22)4.2 常用最大功率点跟踪方法比较 (22)4.2.1 电压反馈法 (22)4.2.2 扰动法 (23)4.2.3 电导增量法 (25)4.3 最大功率点控制方法的选择及改进—断续扰动法 (26)第五章自动跟踪系统 (27)5.1 自动跟踪器的研究概况 (27)5.1.1 国内太阳能自动跟踪器的研究现状 (27)5.1.2 目前太阳能自动跟踪器所存在的问题 (29)5.1.3 新型跟踪平台的开发 (31)5.2 自适应复精度太阳跟踪平台 (31)5.2.1 太阳位置探测单元 (32)5.2.2 信号处理与控制单元 (34)5.2.3 动力单元 (37)5.2.4 实际电路 (39)5.3 通过单片机控制步进电机的太阳跟踪平台 (41)5.3.1 自动跟踪系统的工作原理 (41)5.3.2 传感器光敏二极管的工作过程 (41)5.3.3 步进电机及其特性 (44)5.3.4 基于单片机ADμC812控制的驱动电路 (46)5.3.5 自动跟踪的控制电路 (54)5.3.6 软件流程 (54)第六章蓄电池 (56)6.1 蓄电池的概念 (56)6.2 光伏发电系统蓄电池的选用 (56)6.3 铅酸蓄电池的电池反应 (57)6.4 铅酸蓄电池的充放电特性 (58)6.5蓄电池容量的设计及其充电特性 (60)6.5.1 蓄电池容量的设计 (60)6.5.2蓄电池的充电特性 (61)第七章结论 (62)参考文献 (63)致谢 (64)第一章绪论太阳能光伏发电概述1.1开发新能源的迫切需要人们很难想象,如果没有电人类的生活会变成什么样子。

大学毕业设计论文 太阳能 自动跟踪 系统设计

大学毕业设计论文 太阳能 自动跟踪 系统设计

摘要人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。

太阳光线自动跟踪装置解决了太阳能利用率不高的问题。

本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。

第一,机械部分设计:机械结构主要包括底座、主轴、齿轮和齿圈等。

当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。

第二,控制部分设计:主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。

系统采用光电检测追踪模式实现对太阳的跟踪。

传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。

当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。

关键词太阳能;跟踪;光敏电阻;单片机;步进电机AbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.First, the mechanical part is designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Second, control system part is designed.Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords Solar energy Tracking Photosensitive resistance SCM Stepping motor目录1绪论 (1)1.1课题来源 (1)1.2课题背景 (1)1.2.1能源现状及发展 (1)1.2.2我国太阳能资源 (1)1.2.3目前太阳能的开发和利用 (2)1.2.4太阳能的特点 (2)1.3课题研究的目的 (2)1.4研究课题的意义 (2)1.4.1新环保能源 (2)1.4.2提高太阳能的利用率 (3)1.5太阳能利用的国内外发展现状 (3)1.6太阳追踪系统的国内外研究现状 (4)1.7论文的研究内容 (5)1.8论文结构 (5)2太阳能自动跟踪系统总体设计 (5)2.1太阳运行的规律 (5)2.2跟踪器机械执行部分比较选择 (6)2.2.1立柱转动式跟踪器 (6)2.2.2陀螺仪式跟踪器 (7)2.2.3齿圈转动式跟踪器 (7)2.2.4本课题的机械设计方案 (8)2.3跟踪方案的比较选择 (8)2.3.1视日运动轨迹跟踪 (9)2.3.2光电跟踪 (9)2.3.3视日运动轨迹跟踪和光电跟踪相结合 (11)2.3.4本设计的跟踪方案 (12)3机械设计部分 (13)3.1太阳能自动跟踪系统机械设计方案 (13)3.2第一齿轮转动计算 (13)3.2.1材料选择 (13)3.2.2尺寸计算 (13)3.2.3校核计算 (14)3.2.4齿根弯曲疲劳强度验算 (15)3.3第二齿轮转动计算 (17)3.3.1材料选择 (17)3.3.2尺寸计算 (17)3.3.3校核计算 (17)3.3.4齿根弯曲疲劳强度验算 (19)3.4轴瓦校核计算 (20)3.4.1大轴瓦校核计算 (20)3.4.2小轴瓦校核计算 (22)3.5键联接计算 (24)3.5.1主轴与大齿轮的键联接 (24)3.5.2小轴与齿圈的键联接 (25)3.5.3步进电机1输出轴与小齿轮1的联接 (25)3.5.4步进电机2输出轴与小齿轮2的联接 (25)3.6抗风性分析 (26)3.6.1底座上螺钉校核 (26)3.6.2轴校核 (26)4自动跟踪系统设计 (27)4.1系统总体结构 (27)4.2光电转换器 (28)4.2.1光电转换电路 (28)4.3单片机及其外围电路 (29)4.3.1 AT89C51单片机 (29)4.3.2外围电路 (31)4.4步进电动机及驱动电路 (32)4.4.1步进电动机介绍 (32)4.4.2步进电机的主要特性 (32)4.4.3步进电机的选择 (33)4.4.4驱动电路 (34)4.5系统的实现 (35)4.5.1光敏电阻光强比较法 (35)4.5.2光敏电阻光强比较法的工作过程 (36)4.5.3系统的流程图 (37)5结论 (39)5.1结论 (39)5.2展望 (39)致谢 (40)参考文献 (41)附录1 (43)附录2 (50)1绪论1.1课题来源模拟生产实际课题:太阳能自动跟踪系统设计。

一种太阳能自动跟踪系统的设计

一种太阳能自动跟踪系统的设计
中 图分 类 号 : TK5 3 4 l . 文 献标 志码 : A D0I1 . 9 9 j is . 6 1 9 6 2 1 . 4 0 7 : 0 3 6 /.s n 1 7 —6 0 . 0 2 0 . 1
近年 来 能源短 缺 问题 成 为世界 各 国面临 的世界性 难题 , 能源 开发 是 目前 的一个 研究 热点 . 新 在节 能环保 的主题 下 , 界各 国都 把 目光 转 向太 阳 能这 一 清 洁且 世 极具 开发 潜力 的能 源. 我 国 , 在 虽然 太 阳能可开 发利用
方 案 , 没计 出 了一 种 基 于 单 片 机 AT mea 6 的低 功 耗 硬 软 件 控 制 电路 . 论 分 析 与 试 验 结 果 表 明 , 系 统 能 够 精 确 并 g lL 理 该
地 自动 实 现 对 太 阳的 光 电 跟 踪 . 关 键 词 : 五 象 限 光 电检 测 ; 直 双 轴 ; T me a 6 单 片 机 ; 功 耗 垂 A glL 低
第 4 期
杨 克 立 , : 种 太 阳能 自动 跟 踪 系统 的设 计 等 一
资源非 常丰 富( 年约 1 0 每 70 0亿 吨标 准煤 当量 ) 但光 ,
伏 发 电产 业起 步较 晚 , 常是 采 用 太 阳 能 电池 板 固定 通 朝 南安装 的方 式对 太 阳能 进 行 采集 口 , 术 落 后 导致 ]技 其利 用率 不 高 , 及也 受 到 限 制. 普 在相 同 的条 件下 , 如

种太 阳 能 自动跟 踪 系统 的设 计
杨克立 , 李 强
( 中原 工 学 院 , 州 4 0 0 ) 郑 5 0 7

要 : 在 分 析 现 有 跟 踪 技 术 优 缺 点 的 基 础 上 , 出 了一 种 五 象 限 光 电 检 测 垂 直 双 轴 结 构 的新 型太 阳 能 自动 跟 踪 系统 提

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能双轴自动跟踪系统设计与研究一、引言近年来,随着全球对清洁能源需求的不断增加,太阳能作为一种绿色环保的能源形式,受到了广泛的关注和研究。

太阳能光伏系统的效率取决于太阳光的照射角度,而太阳能跟踪系统能够实时调整太阳能电池板的位置,以最佳角度接收太阳光,从而提高能源转化效率。

因此,对太阳能双轴自动跟踪系统的设计与研究具有重要意义。

二、太阳能双轴自动跟踪系统的工作原理太阳能双轴自动跟踪系统主要由光敏电阻、控制电路、电机、轴承和太阳能电池板等组成。

光敏电阻用于实时感知光照强度,然后通过控制电路对电机进行驱动,使太阳能电池板跟随太阳的运动。

该系统的工作原理如下:1. 光敏电阻感知:将光敏电阻安装在太阳能电池板的一侧,用于感知光照的强度。

电阻的电阻值与光照强度呈反比关系,因此可以通过电阻值来判断光照的强弱。

2. 控制电路驱动:利用控制电路对电机进行驱动,实现太阳能电池板的双轴自动跟踪。

控制电路根据光敏电阻感知到的电阻值来判断光照的强弱,并根据一定的算法计算出电机驱动的方向和速度,以实现太阳能电池板的准确跟随。

3. 电机驱动:太阳能双轴自动跟踪系统采用两个电机,分别用于水平轴和垂直轴的驱动。

电机通过与控制电路的配合,实现太阳能电池板的水平和垂直方向的旋转,使其能够跟随太阳的运动轨迹,并保持最佳接收太阳光的角度。

4. 轴承:太阳能电池板通过轴承连接到电机,以实现旋转。

轴承设计应具有较高的承载能力和较小的摩擦阻力,确保太阳能电池板的平稳运转。

三、太阳能双轴自动跟踪系统的设计要点1. 光敏电阻的选择:选择感光度高、响应速度快、稳定性好的光敏电阻,以确保系统能够准确感知光照强度变化。

2. 控制电路的设计:控制电路要能够准确判断光敏电阻感知到的光照强度,根据一定的算法计算出电机驱动的参数,并能够稳定、准确地驱动电机。

3. 电机的选用:选择符合系统需求的电机,应考虑电机的转速、转矩和功率等参数,并能够与控制电路进行良好的配合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能自动跟踪系统的设计
1引言
开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。

太阳能作为一种清洁无污染的能源,开发前景十分广阔。

然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。

目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。

据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。

所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。

目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。

所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。

双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。

图1 太阳能的收集装置现场
从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。

传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。

这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。

视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。

这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。

从主控单元类型上可以分为PLC控制和单片机控制。

单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。

而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

2系统硬件设计
本系统是以PLC主控单元的视日运动轨迹控制(程序控制)双轴自动跟踪系统,视日运动轨迹跟踪就是利用PLC控制单元相应的公式和算法,计算出太阳的实时位置:太阳方位角和太阳高度角,然后发出指令给执行机构,从而驱动太阳能跟踪装,以达到对太阳实时跟踪的目的。

图2 方位角高度角示意图(α-高度角β-方位角)
太阳在天空中的位置可以由太阳高度角和太阳方位角来确定(见图2)。

太阳高度角又称太阳高度、太阳俯仰角,是指太阳光线与地表水平面得之间的夹角。

太阳方位角即太阳所在的方位,是指太阳光线在地平面上的投影与当地子午线的夹角,可以近似看作是树立在地面上的直线在阳光下的阴影与正南方向的夹角。

太阳方位角和高度角的实时数值可以通过地理经纬度、时区参数利用公式计算出来。

主控单元是太阳能跟踪系统的核心部件,系统选用结构紧凑。

配置灵活、指令丰富的和利时LM PLC。

图3示出选用的配置包括LM 3108CPU模块和LM 3310扩展模块, 附表示出系统信号。

LM3108集成为数字量24DI和16DO,能满足要求,通讯集成有RS232和RS485两个通讯接口,RS232用于与上位文本显示器通讯,RS485可用于组网使用。

LM 3310为四通AI模块,可用于采集风速等保护数据。

配合和利时HD2400L文本显示器使用,能够监视运行状态、改变参数设置,以达到控制目的。

附表系统信号表
序号信号类型输入输出信号说明
1 DI 高度角原点限位
2 DI 高度角上限位
3 DI 高度角下限位
4 DI 方位角原点限位
5 DI 高度角东限位
6 DI 高度角西限位
7 AI 风速传感器
8 DO×2 高度角正/反转
9 DO×2 方位角正/反转
图3 系统控制元件选型
附表系统信号表
本文所设计跟踪调整装置其结构如图4所示。

它主要由底座、立轴、横轴、两台旋转电机、传动齿轮等组成。

其中旋转电机1驱动横轴,支撑太阳能电池板绕横轴运动,跟踪高度角运行。

旋转电机2驱动水平轴,以跟踪方位角变化。

图4 跟踪系统机械结构示意图
在一天的整个过程中,跟踪器能够获得最优的高度角和方位角,电池板能够接收到最大太阳日辐射量。

系统用一套公式由PLC计算出实际时刻太阳所在的高度角和方位角。

此公式根据所在的地理经度、纬度、时间以及时区,(时区用分钟表示,东区为正)从而得出太阳的高度角和方位角。

北京天安门为例:北纬:39.6°东经116.4°,时区480。

计算的得出高度角范围为90°~-90°,地平线以上为正,以下为负。

方位角正东为0°,正西为180°(-180°)其中,东南和西南为正,东北和西北为负。

系统根据实时太阳高度角和方位角与跟踪装置实际的高度角和方位角的差值,以及驱动装置的运转速度,计算出执行机构的跟踪运行时间。

最后通过程序执行驱动电机达到要求的位置,实现对高度角和方位角的跟踪。

3系统软件设计
跟踪模式的判断过程完全由软件实现,灵活度高,可以针对不同地区和不同的气候进行调整,从而提高光伏电站的发电效率。

还可以根据需要增加光强传感器、风力传感器等多传感装置,提高安全性和更高的控制要。

通过图5的程序控制,可以自动判断是否满足运行条件从而达到自动启动运行装置、自动停止、返回初始状态等控制。

增加风力传感器用于对系统的保护作用,当风力大于一定数值时,系统停止工作,复位到原点,风速满足工作条件时,系统自动开始工作。

太阳能电池板有两个自由度,控制机构对高度角和方位角两个方向进行调整。

当电池板转到尽头时,由于跟踪装置装了限位传感器,到限位触点时自动切断输出,电机停止工作。

4结束语
本文介绍了基于和利时LM PLC控制的双轴太阳能自动跟踪系统,系统采用视日运动轨迹跟踪方法设计,实现自动检测运行条件,达到实时跟踪太阳的效果。

以和利时PLC作为主控单元,由PLC程序通过算法计算出太阳实时位置与系统位置的角度差,再由旋转电机的运行速度计算出运行时间。

通过PLC程序的逻辑控制关系,驱动电机转动,达到自动跟踪太阳位置的功能。

因此使得该自动跟踪系统的准确性高、可靠性强,即使在天气变化比较复杂的情况下系统也能正常工作,提高太阳能的利用效率。

因为PLC具有很强的可编程性,客户可以根据自己的要求来修改编写控制程序,达到最佳的控制效果。

对于串、并联的大型光伏太阳能阵列系统的控制,可以通过LM PLC的通讯,组成通讯网络进行集中控制。

由此可见基于和利时LM PLC开发的太阳能自动跟踪系统具有精度高、能实时跟踪太阳变化、通讯组网方便等特点,能够满足客户的需求。

图5 控制系统流程图
更多请访问:中国自动化网()。

相关文档
最新文档