数学八年级下册第二次月考(含答案)
安徽省蚌埠市淮三角教育联盟2023-2024学年八年级下学期月考数学试题(含答案)
2023—2024学年第二学期淮三角教育联盟4月份学情调研八年级 数学一、单选题(本大题共10小题,每小题4分,共40分)1.下列二次根式中,是最简二次根式的是()ABCD2.下列方程中是一元二次方程的是()A .B .C .D .3.函数中自变量x 的取值范围是( )A .B .C .D .且4.下列实数运算中正确的是( )ABC .D5.a 是方程的一个根,则代数式的值是()A .2024B .2023C .2022D .20216.下列一元二次方程中,能求出实数根的是()A .B .C .D .7.一元二次方程的两根分别是,,若,则b 的值为()A .2B .C .4D .8.新能源汽车节能、环保,越来越受消费者喜爱.中汽协称,我国新能源汽车近两年来高速发展,连续8年位居全球第一,销量持续爆发式增长,2022年销量约为136万辆,到2024年销量达到680万辆.若年平均增长率相同设为x ,则可列方程为()A .B .C .D .9.如图,在大正方形纸片中放置两个小正方形,已知两个小正方形的面积分别为,,重叠部分是一个正方形,其面积为2,则空白部分的面积为( )2221x x x +=-20ax bx c ++=223250x xy y --=(1)(2)1x x ++=y =21x -≤<2x ≥-1x ≠2x ≥-1x ≠7=-=(24=3=±210x x +-=2202622a a --2460a a -+=210b b ++=24890x x -+=22430m m ++=250x bx --=1x 2x 124x x +=2-4-2680(1)136x -=2136(1)680x +=2136136680x +=136(12)680x +=118S =212S =A .6B .16C .D .10.若关于x 的一元二次方程的解是,,则关于y 的方程的解为( )A .B .2C .或2D .以上都不对二、填空题(本大题共4小题,每小题5分,共20分)11__________.12.在实数范围内分解因式:__________.13.若两个不等实数m 、n 满足条件:,,则的值是__________.14.对于两个不相等的实数a 、b ,我们规定:符号表示a 、b 中的较大数,如:.按照这个规定,方程的解为__________.三、解答题(本大题共9题,共90分)15.(本题8分)计算(1);(2.16.(本题8分)解方程:(1);(2)(配方法).17.(本题8分)关于x的一元二次方程有一个根是5,求k 的值及方程的另一个根.18.(本题8分)已知:,.(1)填空:__________,__________;(2)求的值.19.(本题10分)观察下列各式并按规律填空:168-20axbx c ++=11x =23x =-2(1)(1)0a y b y c -+-+=2-2-248x -=23210m m --=23210n n --=22m n +Max{,}a b Max{2,4}2--=-21Max{,}x x x x +-=)(2221--÷4(3)3x x x -=-22860x x -+=230x x k -+=12x =+12y =-x y +=xy =22x xy y -+…(1_________.(2)按此规律第n 个等式可以表示为__________.(3)请证明(2)中等式.20.(本题10分)如图中,,,.点P 从A 开始沿边AB 向点B 以的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动,问:经过几秒,的面积等于21.(本题12分)已知关于x 的一元二次方程.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为,,且满足,求实数m 的值.22.(本题12分)2022年9月,教育部正式印发《义务教育课程方案》,《劳动教育》成为一门独立的课程,某学校率先行动,在校园开辟了一块劳动教育基地;一面利用学校的墙(墙的最大可用长度为15米),用长为30米的篱笆,围成矩形养殖园如图1,已知矩形的边CD 靠院墙,AD 和BC 与院墙垂直,设AB 的长为.(1)当围成的矩形养殖园面积为时,求BC 的长;(2)如图2,该学校打算在养殖园饲养鸡、鸭、鹅三种家禽,需要在中间多加上两道篱笆作为隔离网,并与院墙垂直,请问此时养殖园的面积能否达到?若能,求出AB 的长;若不能,请说明理由.23.(本题14分)阅读与思考请你阅读下列材料,并完成相应的任务.裂项法,是数学中求和的一种方法,是分解与组合思想在求和中的具体应用.具体方法是将求和中的每一项进行分解,然后重新组合,使之能消去一些项,最终达到求和的目的.我们以往的学习中已经接触过分数裂项求====ABC △90B ∠=︒6cm AB =8cm BC =1cm /s 2cm /s PBQ △28cm ?222(1)20x m x m +-++=1x 2x ()2121218x x x x -=-m x 2100m 2100m和.例如:.,.(1__________;(2__________.(3)利用根式裂项求解.2023—2024学年第二学期淮三角教育联盟4月份学情调研八年级 数学参考答案一、单选题(本大题共10小题,每小题4分,共40分)1~5BDDBA6~10ACBDC二、填空题(本大题共4小题,每小题5分,共20分)1112.413.14.或三、解答题(本大题共9题,共90分)15.(本题8分)解:(1)原式……2分……3分.……4分(2)原式分1111111111132334452334452510++=-+-+-=-=⨯⨯⨯1======)1++ (x x 1091-1()3413=---113=--+-5==……2分……3分……4分16.(本题8分)解:(1)……2分,……3分或,,……4分(本题解法不唯一,其他方法酌情给分)解:(2)方程变形得:,……2分配方得:,即,……3分解得:,;……4分17.(本题8分)解:设方程的另一个根为a ,……1分由题意,得:,,……5分,,……7分即:方程的另一个根为,.……8分(本题解法不唯一,其他方法酌情给分)18.(本题8分)(1;1……4分(2)解:原式,……6分当,时,===()433x x x -=-4(3)(3)0x x x ---=()()4130x x --=410x -=30x -=114x ∴=23x =22860x x -+=243x x -=-2441x x -+=2(2)1x -=13x =21x =53a +=5a k =2a ∴=-10k =-2-10k =-2()3x y xy =+-x y +=1xy =原式……7分.……8分19.(本题10分)解:(1)分(2……5分(3)证明:左边右边……9分……10分20.(本题10分)解:设点P ,Q 运动的时间为,则,,则,……1分的面积等于,,即,……5分解方程得,,,……9分经过或时,的面积等于.……10分21.(本题12分)(1)解:,……3分若方程有实数根,则,……5分解得;……6分(2)由根与系数的关系可知:,,……7分,,……9分231=-⨯4=(1n =+(1n =====+=(1n =+(04)s t t <≤cm AP t =2cm BQ t =()6cm BP t =-PBQ △28cm ()1162822PBQ S BP BQ t t ∴=⋅=-⨯=△2680t t -+=12t =24t =∴2s 4s PBQ △28cm ()()22Δ[21]4284m m m =--+=--840m --≥12m ≤-()1221x x m +=--2122x x m =+()2121218x x x x -=- ()2121212418x x x x x x ∴+-=-()()2224(1)42182m m m ∴--+=-+整理得:,解得,,……11分,.……12分22.(本题12分)(1)解:设AB 的长为,则矩形的宽,……1分由题意得:,……3分解得,,……4分墙的最大可用长度为15米,,,……5分即BC 的长为;……6分(2)解:不能,理由如下:……7分设AB 的长为,则矩形的宽,由题意得:,……9分整理得:,,……11分该方程没有实数根,此时养殖园的面积不能达到.……12分23.(本题14分)解:(1.……3分(2……7分(3)解:原式......11分 (13)分28200mm --=110m =22m =-12m ≤-2m ∴=-m x ()1302BC x =-()1301002x x ⨯-=110x =220x = 015x ∴<≤10x ∴=10m m x ()130m 4BC x =-()1301004x x ⋅-=2304000x x -+=2Δ(30)414007000=--⨯⨯=-< ∴∴2100m -)11=++-+ )11=+.……14分2022。
八年级(下)第二次月考数学试卷
八年级(下)第二次月考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(3分)下列变形中不正确的是()A.由a>b得b<aB.若a>b,则ac2>bc2(c为有理数)C.由﹣a>﹣b得b>aD.由﹣x<y得x>﹣2y3.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后点A的对应点的坐标为(﹣2,5),则点B的对应点的坐标为()A.(﹣1,3)B.(﹣1,﹣1)C.(5,3)D.(5,﹣1)4.(3分)若关于x的分式方程有增根,则m的值为()A.1B.2C.﹣1D.﹣25.(3分)如图,直线y=x+2与直线y=ax+4相交于点P(m,3),则关于x的不等式x+2<ax+4的解集为()A.x>1B.x<1C.x>3D.x<36.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64二、填空题(每题3分,满分18分,将答案填在答题纸上)7.(3分)要使分式无意义,则x的取值范围是.8.(3分)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.9.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为.10.(3分)已知m+n=3,则m2﹣n2+6n=.11.(3分)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.12.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)因式分解:m3﹣m;(2)解不等式组:.14.(6分)先化简,再从﹣2<x≤2中选一个合适的整数作为x的值代入求值.15.(6分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD 求证:(1)△ABC≌△BAD;(2)OA=OB.16.(6分)小明解方程﹣=1的过程如下:解:方程两边乘x,得1﹣(x﹣2)=1.①去括号,得1﹣x﹣2=1.②移项,得﹣x=1﹣1+2.③合并同类项,得﹣x=2.④解得x=﹣2.⑤所以,原分式方程的解为x=﹣2.⑥请指出他解答过程中的错误,并写出正确的解答过程.17.(6分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC关于点C成中心对称的格点三角形A1B1C;(2)将图2中的△ABC绕着点C按逆时针方向旋转90°,画出经旋转后的三角形A2B2C.四、(本大题共3小题,每小题8分,共24分)18.(8分)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:这样的分式就是假分式;再如:这样的分式就是真分式,假分数可以化成1+(即1)带分数的形式,类似的,假分式也可以化为带分式.如:.解决下列问题:(1)分式是(填“真分式”或“假分式”);假分式可化为带分式形式;(2)如果分式的值为整数,求满足条件的整数x的值;(3)若分式的值为m,则m的取值范围是(直接写出答案).19.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.20.(8分)阅读材料:根据多项式乘多项式法则,我们很容易计算:(x+2)(x+3)=x2+5x+6;(x﹣1)(x+3)=x2+2x﹣3.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+5x+6=(x+2)(x+3);x2+2x﹣3=(x﹣1)(x+3).通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子x2+2x ﹣3分解因式.这个式子的二次项系数是1=1×1,常数项﹣3=(﹣1)×3,一次项系数2=(﹣1)+3,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:x2+2x﹣3=(x﹣1)(x+3).利用这种方法,将下列多项式分解因式:(1)x2+7x+10=;(2)x2﹣2x﹣3=;(3)y2﹣7y+12=;(4)x2+7x﹣18=.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)求证:△BOC≌△ADC;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?22.(9分)疫情复学返校之前,为方便快速筛查体温异常学生,某校准备购买A,B两种型号的额温枪,已知每支A型额温枪比每支B型额温枪贵50元,买1支A型额温枪和2支B型额温枪共500元.(1)每支A型、B型额温枪的价格各是多少元?(2)该校欲购进A,B型额温枪共100支,且A型额温枪的数量不少于B型额温枪的数量,购买的总金额不超过17600元,则共有哪几种购买方案?(3)在(2)的条件下,若购买A型额温枪m支,写出购买总费用w(元)与m的表达式,并求出w的最小值.六.(本大题共12分)23.(12分)如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a、b满足|a﹣2|+=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=°;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且P A>AE,探究∠APC与∠PCB 的数量关系?写出你的结论并证明.。
2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)
第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。
2011-2012学年辽宁省沈阳市134中学八年级(下)月考数学试卷(含答案)
2011-2012学年辽宁省沈阳市134中学八年级(下)月考数学试卷一、选择题:1.若m<n,则下列不等式中正确的是()A.m﹣3>n﹣3B.3m>n C.﹣3m>﹣3n D.>2.当分式的值为零时,x的值为()A.3B.﹣3C.0D.3或﹣33.下列图形一定相似的是()A.两个矩形B.两个等腰梯形C.有一个内角相等的两个菱形D.对应边成比例的两个四边形4.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定5.已知△ABC的三边长分别为:6cm,7.5cm,9cm,△DEF的一边长为4cm,当△DEF 的另两边长是下列哪一组时,这两个三角形相似()A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cm 6.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是()A.AM:BM=AB:AM B.AM=ABC.BM=AB D.AM≈0.618AB7.下列各组中的四条线段a,b,c,d成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=18.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙1.4米,BD长0.55米,则梯子长为()A.3.85米B.4.00米C.4.40米D.4.50米9.某市今年共有5万人参加研究生考试,为了了解5万名考生的成绩从中抽取1000名考生的英语成绩进行统计分析,以下说法正确的有()个.①5万名考生为总体②调查采用抽样调查方式③1000名考生是总体的一个样本④每名考生的英语成绩是个体.A.4B.3C.2D.110.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数二、填空题:11.分解因式:2(x+1)2﹣12(x+1)+18=.12.若,则=.13.已知关于x的不等式组无解,则a的取值范围是.14.在△ABC中,∠B=35°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为.15.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,BD=9,AD=4,那么CD =;AC=.16.使分式方程产生增根的k的值为.17.两个相似三角形的相似比为2:3,它们面积的差是25,那么较大三角形的面积是.18.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为米.19.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB 等于cm2.20.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是.21.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.则住宅楼的高度为米.22.一组数据4,0,1,﹣2,2的标准差是.23.如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是.三、解答题:24.先化简再求值:,其中x=.25.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.26.矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM,E是垂足.①求△ABM的面积;②求DE的长;③求△ADE的面积.27.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495元.如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?28.某广告公司将一块广告牌制作任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的,现由徒弟先做1天,师徒再合作2天完成.(1)师徒两人单独完成任务各需几天?(2)若完成后得到报酬540元,按各人完成的工作量计算报酬,该如何分配?29.为了让学生了解文明礼仪知识,增强文明意识,养成文明习惯.某中学在“文明日照,从我做起”知识普及活动中,举行了一次“文明礼仪知识”竞赛,共有3000名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行了统计.请你根据上面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)求频率分布表中的m、n;(2)补全频率分布直方图;(3)你能根据所学知识确定“众数”、“中位数”在哪一组吗?(不要求说明理由)频率分布表:组别分组频数频率150.5~60.560.08260.5~70.590.12370.5~80.515m480.5~90.5240.32590.5~100.5n0.28合计频数分布直方图:2011-2012学年辽宁省沈阳市134中学八年级(下)月考数学试卷参考答案与试题解析一、选择题:1.若m<n,则下列不等式中正确的是()A.m﹣3>n﹣3B.3m>n C.﹣3m>﹣3n D.>【分析】根据不等式的性质分析判断.【解答】解:A、若m<n,根据不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以m﹣3>n﹣3不正确;B、3m>n中,m<n两边没有同时乘以3,所以不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,故﹣3m>﹣3n正确;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以>不正确.故选:C.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.当分式的值为零时,x的值为()A.3B.﹣3C.0D.3或﹣3【分析】根据分式的值为零的条件得到x2﹣9=0且x2﹣4x+3≠0,然后解方程,再把方程的解代入不等式进行检验.【解答】解:∵分式的值为零,∴x2﹣9=0且x2﹣4x+3≠0,解方程x2﹣9=0得x=3或﹣3,当x=3时,x2﹣4x+3=0,当x=﹣3时,x2﹣4x+3≠0,∴x=﹣3.故选:B.【点评】本题考查了分式的值为零的条件:当分式的分子为零,分母不为零时,分式的值为零.3.下列图形一定相似的是()A.两个矩形B.两个等腰梯形C.有一个内角相等的两个菱形D.对应边成比例的两个四边形【分析】根据相似图形的定义,四条边对应成比例,四个角对应相等,对各选项分析判断后利用排除法解答.【解答】解:A、两个矩形,对应角相等,都是直角,但四条边不一定对应成比例,故本选项不符合题意;B、两个等腰梯形,四个角不一定对应相等,边也不一定对应成比例,所以不一定相似,故本选项不符合题意;C、两个菱形,有一个角相等,则其它角也对应相等,而四条边都相等,所以对应成比例,所以相似,故本选项符合题意;D、对应边成比例,对应角不一定相等,所以不一定相似,故本选项不符合题意.故选:C.【点评】本题主要考查相似图形的定义,熟练掌握矩形、等腰梯形、菱形的性质是解题的关键.4.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S1>S2,故选:A.【点评】本题利用了正方形的性质和等腰直角三角形的性质求解.5.已知△ABC的三边长分别为:6cm,7.5cm,9cm,△DEF的一边长为4cm,当△DEF 的另两边长是下列哪一组时,这两个三角形相似()A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cm【分析】根据三边对应成比例的三角形相似,即可求得.注意△DEF中为4cm边长的对应边可能是6cm或7.5cm或9cm,所以有三种情况.【解答】解:设△DEF的另两边为xcm,ycm,若△DEF中为4cm边长的对应边为6cm,则:,解得:x=5,y=6;若△DEF中为4cm边长的对应边为7.5cm,则:,解得:x=3.2,y=4.8;若△DEF中为4cm边长的对应边为9cm,则:,解得:x=,y=;故选:C.【点评】此题考查了相似三角形的判定:三边对应成比例的三角形相似.解此题的关键要注意△DEF中为4cm边长的对应边不确定,答案不唯一,要仔细分析,小心别漏解.6.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是()A.AM:BM=AB:AM B.AM=ABC.BM=AB D.AM≈0.618AB【分析】根据黄金分割的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比,据此判断即可.【解答】解:∵点M将线段AB黄金分割(AM>BM),∴AM是较长的线段,根据黄金分割的定义可知:AB:AM=AM:BM,AM=AB≈0.618AB,BM=AB.故选:C.【点评】本题主要考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的倍,较长的线段=原线段的倍,难度适中.7.下列各组中的四条线段a,b,c,d成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】如果两条线段的乘积等于另外两条线段的乘积,我们就说这四条线段叫做成比例线段.【解答】解:A、×3≠×2,故错误;B、4×10≠5×6,故错误;C、2×=×,故正确;D、2×3≠1×4,故错误.故选:C.【点评】考查了比例线段的概念.注意相乘的时候,让最大的和最小的相乘,剩下的两条再相乘,看它们的积是否相等.8.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙1.4米,BD长0.55米,则梯子长为()A.3.85米B.4.00米C.4.40米D.4.50米【分析】根据梯子、墙、地面三者构成的直角三角形与梯子、墙、梯上点D三者构成的直角三角相似,利用相似三角形对应边成比例解答即可.【解答】解:因为梯子每一条踏板均和地面平行,所以构成一组相似三角形,即△ABC∽△ADE,则=设梯子长为x米,则=,解得,x=4.40.故选:C.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.9.某市今年共有5万人参加研究生考试,为了了解5万名考生的成绩从中抽取1000名考生的英语成绩进行统计分析,以下说法正确的有()个.①5万名考生为总体②调查采用抽样调查方式③1000名考生是总体的一个样本④每名考生的英语成绩是个体.A.4B.3C.2D.1【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.【解答】解:①5万名考生的英语成绩是总体,故错误;②正确;③1000名考生的英语成绩是总体的一个样本,故错误;④正确.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B、了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C、调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D、了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题:11.分解因式:2(x+1)2﹣12(x+1)+18=2(x﹣2)2.【分析】首先提取公因式2,然后利用完全平方公式即可分解.【解答】解:原式=2[(x+1)2﹣6(x+1)+9],=2[(x+1)﹣3]2,=2(x﹣2)2.故答案是:2(x﹣2)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于把(x+1)当作一个整体分解因式.12.若,则=.【分析】根据两内项之积等于两外项之积把比例式转化为乘积式,然后整理即可得解.【解答】解:∵=,∴3y=5(x﹣y),整理得,5x=8y,∴=.故答案为:.【点评】本题考查了比例的性质,熟记“据两内项之积等于两外项之积”,把比例式转化为乘积式是解题的关键.13.已知关于x的不等式组无解,则a的取值范围是a≥3.【分析】先求出不等式组的解集,利用不等式组的解集是无解可知,x应该是“大大小小找不到”,所以可以判断出a≥3.【解答】解:解关于x的不等式组,得,∵不等式组无解∴大大小小找不到,即a≥3.故答案为:a≥3.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,不等式组是x>3,x<3时没有交集,所以也是无解,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.14.在△ABC中,∠B=35°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为55°或125°.【分析】分两种情况考虑:当∠BCA为锐角和钝角,将已知的积的恒等式化为比例式,再根据夹角为直角相等,利用两边对应成比例且夹角的相等的两三角形相似可得出△ADB∽△CDA,由相似三角形的对应角相等,利用直角三角形的两锐角互余及外角性质分别求出两种情况下∠BCA的度数即可.【解答】解:当∠BCA为锐角时,如图1所示,∵AD2=BD•DC,∴=,又AD⊥BC,∴∠ADB=∠CDA=90°,∴△ADB∽△CDA,又∠B=35°,∴∠CAD=∠B=35°,∠BCA=∠BAD,在Rt△ADB中,∠ADB=90°,∠B=35°,∴∠BAD=55°,则∠BCA=∠BAD=55°;当∠BCA为钝角时,如图2所示,同理可得△ADB∽△CDA,又∠B=35°,可得∠CAD=∠B=35°,则∠BCA=∠CDA+∠CAD=125°,综上,∠BCA的度数为55°或125°.故答案为:55°或125°【点评】此题考查了相似三角形的判定与性质,直角三角形的性质,以及外角的性质,利用了分类讨论的思想,其中相似三角形的判定方法有:两对对应角相等的两三角形相似;三边对应成比例的两三角形相似;两边对应成比例且夹角相等的两三角形相似.15.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,BD=9,AD=4,那么CD=6;AC=2.【分析】由于CD⊥AB,那么∠CDA=∠CDB=90°,根据直角三角形的性质可得∠A+∠ACD=90°,∠B+∠BCD=90°,而∠ACB=90°,那么∠A+∠B=90°,再根据同角的余角相等可得∠B=∠ACD,∠A=∠BCD,从而可证△ACD∽△CBD,于是=,易求CD,在Rt△ACD中,利用勾股定理可求AC.【解答】解:∵CD⊥AB,∴∠CDA=∠CDB=90°,∴∠A+∠ACD=90°,∠B+∠BCD=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠B=∠ACD,∠A=∠BCD,∴△ACD∽△CBD,∴=,∴CD2=AD•BD,∵AD=4,BD=9,∴CD=6,在Rt△ACD中,AC2=AD2+CD2=52,∴AC=2.【点评】本题考查了相似三角形的判定和性质、勾股定理,解题的关键是证明△ACD∽△CBD,求出CD.16.使分式方程产生增根的k的值为±6.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+3)(x﹣3)=0,得到x=3或﹣3,然后代入整式方程算出k的值.【解答】解;方程两边都乘(x+3)(x﹣3),得x﹣3+x+3=k,∵原方程有增根,∴最简公分母(x+3)(x﹣3)=0,∴x=3或﹣3,当x=3时,k=6,当x=﹣3时,k=﹣6.【点评】增根问题可按如下步骤进行:①让最简公分母为0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.两个相似三角形的相似比为2:3,它们面积的差是25,那么较大三角形的面积是45.【分析】先根据相似三角形的性质求出其面积的比,再设较小的三角形的面积为4x,则较大的三角形的面积为9x,由它们面积的差是25即可求出x的值,进而得出结论.【解答】解:∵两个相似三角形的相似比为2:3,∴其面积的比等于4:9,设较小的三角形的面积为4x,则较大的三角形的面积为9x,∵它们面积的差是25,∴9x﹣4x=5x=25,解得x=5,∴较大三角形的面积=9×5=45.故答案为:45.【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.18.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为10米.【分析】利用相似三角形对应线段成比例,求解即可.【解答】解:1米长的标杆测得其影长为1.2米,即某一时刻实际高度和影长之比为定值,所以墙上的2米投射到地面上实际为2.4米,即旗杆影长为12米,因此旗杆总高度为10米.【点评】本题考查的是相似形在投影中的应用,关键是利用相似比来解题.19.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB 等于48cm2.【分析】根据相似三角形的性质,先证△DOE∽△BOA,求出相似比为,故面积比为,=4S△DOE.即可求S△AOB【解答】解:∵在▱ABCD中,E为CD中点,∴DE∥AB,DE=AB,在△DOE与△BOA中,∠DOE=∠BOA,∠OBA=∠ODE,∴△DOE∽△BOA,相似比为=,故面积比为,=4S△DOE=4×12=48cm2.即S△AOB故答案为:48.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质.关键是明确相似三角形的面积比等于相似比的平方.20.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是小李.【分析】根据图形可知,小李的射击不稳定,可判断新手是小李.【解答】解:由图象可以看出,小李的成绩波动大,∵波动性越大,方差越大,成绩越不稳定,∴新手是小李.故填小李.【点评】考查了方差的意义:波动性越大,方差越大,成绩越不稳定.21.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.则住宅楼的高度为20.8米.【分析】过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.【解答】解:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴=,=,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.故答案为:20.8.【点评】本题考查的是相似三角形的应用,解答此题的关键是将实际问题转化为数学问题进行解答;此题需要转化为相似三角形的问题,利用相似三角形的判定与性质求解.22.一组数据4,0,1,﹣2,2的标准差是2.【分析】先算出平均数,再根据方差公式计算方差,求出其算术平方根即为标准差.【解答】解:数据4,0,1,﹣2,2的平均数为=[4+0+1﹣2+2]=1方差为S2=[(4﹣1)2+(0﹣1)2+(1﹣1)2+(﹣2﹣1)2+(2﹣1)2]=4∴标准差为2.故填2.【点评】计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根,注意标准差和方差一样都是非负数.23.如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB.【分析】已知△ADC和△ACB中有一个公共角,我们可以再添加一个角,从而利用有两组角对应相等的两个三角形相似来判定其相似.【解答】解:∵∠DAC=∠CAB,∴当∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB时,均可得出△ADC∽△ACB.故答案为:∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB【点评】这是一道开放性的题,答案不唯一.三、解答题:24.先化简再求值:,其中x=.【分析】先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.【解答】解:原式===﹣,当x=时,原式=﹣=﹣.【点评】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.25.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.【分析】(1)位似图形对应点连线所在的直线经过位似中心,如图,直线AA′、BB′的交点就是位似中心O;(2)△ABC与△A′B′C′的位似比等于AB与A′B′的比,也等于AB与A′B′在水平线上的投影比,即位似比为3:6=1:2;(3)要画△A1B1C1,先确定点A1的位置,因为△A1B1C1与△ABC的位似比等于1.5,因此OA1=1.5OA,所以OA1=9.再过点A1画A1B1∥AB交O B′于B1,过点A1画A1C1∥AC交OC′于C1.【解答】解:(1)如图.(2)△ABC与△A′B′C′的位似比为1:2.(3)如图【点评】本题考查位似图形的意义及作图能力.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.26.矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM,E是垂足.①求△ABM的面积;②求DE的长;③求△ADE的面积.【分析】①由M是BC的中点可得BM长度,那么△ABM的面积=×AB×BM,把相关数值代入即可求解;②由勾股定理易得AM长,可证得△ADE∽△MAB,那么利用对应边比等于相似比可求得DE长;③由相似可得AE的长,那么△ADE的面积=×AE×DE,把相关数值代入即可求解.【解答】解:①∵M是BC的中点,BC=6,∴MB=3,∵AB=4,∴△ABM的面积=×AB×BM=×4×3=6;②∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠DAE=∠AMB,∵DE⊥AM,∴∠DEA=90°,∴△ADE∽△MAB,∵AB=4,BM=3,∴AM=5,∴AE:MB=AD:AM=DE:AB,∴AE=3.6,DE=4.8.③△ADE的面积=×AE×DE=×3.6×4.8=8.64.【点评】解决本题的关键是利用相似三角形对应边成比例的性质求得所求三角形的长与宽.27.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495元.如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?【分析】设甲厂每天处理垃圾x吨,分别求出甲、乙两场分别处理1吨垃圾需要的费用,然后根据每天用于处理垃圾的费用不得超过7370元,可得出不等式,解出即可.【解答】解:设甲厂每天处理垃圾x吨,由题知:甲厂处理每吨垃圾费用为=10元,乙厂处理每吨垃圾费用为=11元.则有10x+11(700﹣x)≤7370,解得:x≥330,答:甲厂每天处理垃圾至少330吨.【点评】此题考查了一元一次不等式的知识,解题关键弄清题意,找出合适的不等关系,列出不等式,再求解,难度一般.28.某广告公司将一块广告牌制作任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的,现由徒弟先做1天,师徒再合作2天完成.(1)师徒两人单独完成任务各需几天?(2)若完成后得到报酬540元,按各人完成的工作量计算报酬,该如何分配?【分析】工作量常用的等量关系:工作时间×工效效率=工作总量.本题等量关系为:师工作量+徒工作量=1.【解答】解:(1)设徒弟单独完成任务需x天,则师需天,依题意得解得x=6经检验,x=6是原方程的解∴=4答:师傅需要4天,徒弟需要6天.(2)师傅完成的工作量=,∴徒弟完成的工作量为,故每人各得报酬270元,答:每人各得270元.【点评】本题考查工作量常用等量关系.分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.29.为了让学生了解文明礼仪知识,增强文明意识,养成文明习惯.某中学在“文明日照,从我做起”知识普及活动中,举行了一次“文明礼仪知识”竞赛,共有3000名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行了统计.请你根据上面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)求频率分布表中的m、n;(2)补全频率分布直方图;(3)你能根据所学知识确定“众数”、“中位数”在哪一组吗?(不要求说明理由)频率分布表:。
北师大版2021-2022学年八年级数学下册第二次月考测试题(附答案) (2)
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
2022-2023学年广东省汕头市八年级下册数学第2次月考模拟卷(含解析)
2022-2023学年广东省汕头市八年级下册数学第2次月考模拟卷一、选择题。
(本大题10小题,每小题3分,共30分)1.(3分)下列标志中,既是轴对称图形又是中心对称图形的为( )A.B.C.D.2.(3分)若x>y,则下列式子中错误的是( )A.x﹣5>y﹣5B.>C.x+5>y+5D.﹣5x>﹣5y 3.(3分)不等式x﹣2>2﹣3x的解集是( )A.x>1B.x<1C.x>D.x<4.(3分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)5.(3分)如图,∠BAC=90°,AD⊥BC,∠BAD=30°,则∠C的度数是( )A.30°B.40°C.50°D.60°6.(3分)如图,在△ABC中,∠C=90°,∠B=15°,AC=1,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则AD的长为( )A.1.5B.C.2D.7.(3分)如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离都相等,则满足条件的油库位置有( )个.A.1B.2C.3D.48.(3分)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2 9.(3分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )A.x>0B.0<x<1C.1<x<2D.x>210.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当AP=AQ时,点P、点Q运动的时间是( )A.4秒B.3.5秒C.3秒D.2.5秒二、填空题。
2023-2024学年广东省惠州市小金茂峰学校八年级(下)月考数学试卷(含答案)
2023-2024学年广东省惠州市小金茂峰学校八年级(下)月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式是最简二次根式的是( )A. aB. 12C. 13D. 532.若二次根式x−1有意义,则x的取值范围在数轴上表示正确的是( )A. B. C. D.3.下面能作为直角三角形三边长的一组数是( )A. 8,15,17B. 7,12,15C. 12,15,20D. 12,18,224.下列计算正确的是( )A. 2×3=6B. (−7)2=−7C. 18=36D. 5−3=25.实数在数轴上对应的点的位置如图所示,计算|a−π|+|2−a|的结果为( )A. π+2B. π−2C. 2−πD. π−2)的值应在( )6.估计5×(2−15A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间7.如图,在数轴上,以单位长度为边长画正方形,以正方形对角线长为半径画弧,与数轴交于点A,则点A 表示的数为( )A. 2B. 1+2C. 2+2D. 3−28.用a,b,c作为三角形的三边,其中不能构成的直角三角形的是( )A. b2=(a+c)(a−c)B. a:b:c=3:2:7C. a=9,b=16,c=25D. a=6,b=8,c=109.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5m,则小巷的宽为( )A. 2.4mB. 2mC. 2.5mD. 2.7m10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是( )A. 46B. 6C. 42D. 26二、填空题:本题共6小题,每小题3分,共18分。
八年级月考数学试题(含答案)
月考八年级数学试卷考试时间:120分钟 满分:120分 姓名:_______ 班级:_______一、选择题(每题3分,共30分)1.能将三角形面积平分的是三角形的( )A 、 角平分线B 、 高C 、 中线D 、外角平分线2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 4.一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC +∠DOB =( ) A 、900 B 、1200 C 、1600 D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个8.若三条线段中a =3,b =5,c 为奇数,那么由a , b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定 9.若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷(含答案)
2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷一、选择题:本题共14小题,共38分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示,四边形ABCD是平行四边形,可以记作( )A. ▱ABDCB. ▱ABCDC. ▱ACBDD. ▱ADBC2.为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为( )A. 被抽取的200名学生的身高B. 200C. 200名D. 初三年级学生的身高3.现有长为5、5、7的三根木棍,要想钉一个平行四边形的木框,则选用的第四根木棍的长度应该为( )A. 5B. 7C. 2D. 124.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是( )A. 0B. −1C. −1.5D. −25.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )A. 18°B. 36°C. 72°D. 144°6.如图表示光从空气进入水中前、后的光路图,若按如图建立平面直角坐标系,并设入水前与入水后光线所在直线的表达式分别为y1=k1x,y2=k2x,则关于k1与k2的关系,正确的是( )A. k2<0<k1B. k1<0<k2C. k1<k2<0D. k2<k1<07.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是( )A. y=7.6x(0≤x≤20)B. y=7.6x+76(0≤x≤20)C. y=7.6x+10(0≤x≤20)D. y=7.6x+76(10≤x≤30)8.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集是( )A. x≤2B. x>2C. x≥2D. x<29.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,330°)的目标是( )A. 目标AB. 目标CC. 目标ED. 目标F10.温室效应导致地球异常增温,人类正在积极探讨直接从大气中分离二氧化碳的碳捕集与封存技术,有效应对气候变化.气象部门数据显示某地2024年2月气温比常年同期偏高,如图反映该地某日的温度变化情况.下列说法错误的是( )A. 3时的温度最低B. 这一天的温差是12℃C. 从15时到24时温度整体呈下降趋势D. 这一天有两个时刻的温度为0℃11.如图,在大水杯中放了一个小水杯,两个水杯内均没有水.现向小水杯中匀速注水,小水杯注满后,以同样的速度继续注水,则大水杯的液面高度ℎ(cm)与注水时间t(s)的大致图象是( )A. B. C. D.12.在证明命题“平行四边形对边相等”时,嘉淇给出如下证明过程:已知:四边形ABCD是平行四边形,求证:AB=CD,AD=BC.证明:连结AC,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠DAC=∠BCA,∠DCA=∠BAC,∵⋯,∴△ADC≌△CBA,∴DA=BC,DC=BA.其中省略的内容,可以表示为( )A. AC=CAB. ∠B=∠DC. ∠CAB=∠BD. AD=AC13.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )A. B.C. D.14.对于题目:“甲、乙两人登山过程中,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示.乙提速后,乙的登山速度是甲登山速度的3倍,并先到达山顶等待甲.根据图象所提供的信息,求甲、乙两人距地面的高度差为50米的登山时间”,甲答:4分钟;乙答:9分钟;丙答:15分钟.对于以上说法,正确的是( )A. 甲对B. 甲、乙合在一起对C. 甲、乙、丙合在一起对D. 甲、乙、丙合在一起也不对二、填空题:本题共3小题,共10分。
安徽省宿州市泗县2023-2024学年八年级下学期月考数学试题(含答案)
八年级数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
1.下列各式从左到右的变形中,为因式分解的是( )A .B .C .D .2.若把分式中的和同时扩大3倍,则分式的值( )A .扩大3倍B .扩大6倍C .缩小9倍D .不变3.下列关于的方程:①;②;③;④,其中是分式方程的有()A .1个B .2个C .3个D .4个4.若,则多项式的值为( )A .2B .C .5D .65.如图,,将绕点顺时针旋转得到,旋转角为.若点落在上,则旋转角的大小是( )A .B .C .D .6.在计算时,把运算符号“”看成了“+”,得到的计算结果是,则这道题的正确的结果是()()x a b ax bx -=-222623x y x xy=⋅211x x x x ⎛⎫+=+⎪⎝⎭()()2111y y y -=+-2xx y+x y x 11025x x --=40060030x x =-5142x x +=12a x x=1,2a b ab -==32232a b a b ab -+2-90,35AOB B ∠=︒∠=︒AOB △O A OB ''△αA 'AB α40︒50︒60︒70︒211m m m ⊗÷++÷mA .B.C .D .7.下列多项式不能用公式法因式分解的是( )A .B .C .D .8.如图,在中,平分.若,则的长为()A .4B .8C .D .9.如图,是由平移得到的,则点的坐标为()A .B .C .D .10.有甲、乙两块边长为的正方形试验田.负责试验田的杨师傅将试验田的形状进行了调整(如图):沿甲试验田的一边在试验田内修了宽的水池,又在邻边增加了宽的田地;沿乙试验田的一组邻边在试验田内均修了宽的小路.杨师傅在调整后的试验田上种植了某种小麦,其中甲试验田收获了小麦,乙试验田收获了小麦,对于这两块试验田的单位面积产量,下列说法正确的是()m1m1m -11m -2169x -2(1)4n +-244x x +-()2()21x y x y +-++Rt ABC △30,90,A C BD ∠=︒∠=︒ABC ∠2CD =AB A B C '''△ABC △C '()4,1()3.5,1()3.5,1.5()4,1.5m(8)a a >1m 1m 1m 200kg 150kgA .甲试验田的单位面积产量高B .乙试验田的单位面积产量高C .两块试验田的单位面积产量一样D .无法判断哪块试验田的单位面积产量高二、填空题(本大题共4小题,每小题5分,满分20分)11.若三角形的三边长分别为,则的取值范围是_______.12.若多项式是一个整式的完全平方,则的值为_______13.如果汽车公司某车间人天可生产个零件,那么人天可生产的零件数为_______个.14.如图,在中,是的平分线.若点分别是和上的动点(不与线段端点重合),则的最小值为_______.三、(本大题共2小题,每小题8分,满分16分)15.因式分解:.16.观察下列等式.第1个等式:,第2个等式:,第3个等式:,第4个等式:,3,1,5a -a ()219x a x +-+a a b c 2a 2c ABC △90,9,12,ACB AC BC AD ∠=︒==BAC ∠,P Q AD AC PC PQ +42436a a -12112311⎛⎫⨯+=- ⎪⎝⎭32112422⎛⎫⨯+=- ⎪⎝⎭52112533⎛⎫⨯+=- ⎪⎝⎭72112644⎛⎫⨯+=- ⎪⎝⎭第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:_______;(2)写出你猜想的第个等式(用含的等式表示),并证明你的猜想成立.四、(本大题共2小题,每小题8分,满分16分)17.某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,求每组预定的学生人数.18.先化简,再求值:,其中,且为整数.五、(本大题共2小题,每小题10分,满分20分)19.阅读下列材料,回答问题:因式分解:.解:原式.上述因式分解的方法可以称之为“配方法”.(1)应用:体会配方法的特点,仿照上述配方法的解题步骤因式分解:;(2)拓展:利用配方法求代数式的最小值.20.阅读理解:材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如:.类似的,我们可以将下列的分式写成一个整数与一个新分式的和.例如:.92112755⎛⎫⨯+=- ⎪⎝⎭n n 22212212x x xx x x x --+÷-+-12x -≤≤x 243x x ++24443x x =++-+()2441x x =++-2(2)1x =+-()()2121x x =+++-()()31x x =++24415x x +-2821x x -+52211333=+=()12111121;1111x x x x x x x x x x x -+++=+=+==+---材料2:为了研究字母和分式的值的变化关系,小明制作了表格,并得到数据如下:…01234……无意义10.50.30.25…请根据上述材料完成下列问题:(1)把分式写成一个整数与一个新分式的和的形式:_______,_______;(2)当时;随着的增大,分式的值如何变化?(3)当时,随着的增大,分式的值无限趋近一个数,请写出这个数,并说明理由.六、(本题满分12分)21.已知关于的分式方程.(1)若分式方程有增根,求的值;(2)若分式方程无解,求的值.七、(本题满分12分)22.如图,在中,的平分线交于点,点为上一点,连接,.(1)试说明是线段的垂直平分线;(2)若点在延长线上,连接,且满足.求证:.八、(本题满分14分)23.去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋的单价在去年的基础上均下降了20%,并按套(一件雨衣和一双雨鞋为一套)优惠销售,优惠方案:若一次性购买不超过5套,则每套打九折;若一次性购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为w 元,请写出w 关于a 的函数关系式;x 1xx4-3-2-1-1x0.25-0.3-0.5-1-8x x +=12x x +=-0x >x 1x x+1x >-x 231x x ++x 3211x mm x x -=+--m m ABC △BAC ∠BC D E AD ,BE CE ABE ACE ∠=∠AD BC P AD ,BP CP DP DE =BP CE ∥(3)在(2)的情况下,今年该部门购买费用不超过320元时,最多可购买多少套?参考答案一、1.D 2.D 3.B 4.A 5.D 6.A 7.C 8.C 9.D 10.A 10.[提示]由题意知甲实验田的面积为.甲试验田收获了小麦,甲试验田单位面积产量.由题意知乙实验田的面积为.乙试验田收获了小麦,乙试验田单位面积产量..,.,即.甲试验田的单位面积产量高.故选A .二、11. 12.或7 13. 14.14.[提示]如答图,作点关于对称的对称点,连接.是的平分线,点一定在边上.当与边垂直时,,此时值最小.,.()()()22111m a a a +-=- 200kg∴22200kg /m 1a =-22(1)m a - 150kg ∴22150kg /m (1)a =-()()()()222220011501200150503501(1)1(1)1(1)a a a a a a a a a --+-∴-==--+-+-8a > ()2503500,1(1)0a a a ∴->+->2220015001(1)a a ∴->--222001501(1)a a >--∴39a <<5-3ac b365Q AD Q 'CQ 'AD BAC ∠∴Q 'AB CQ 'AB PC PQ CQ +='90,9,12ACB AC BC ∠=︒== 15AB ∴===,即,,即的最小值为.三、15.解:原式.16.解:(1)(2).证明:左边,左边右边.原等式成立.四、17.解:设每组预定的学生数为人,由题意,得解得.是正整数,.答:每组预定的学生人数为22人.18.解:原式.要使分式有意义,必须,1122ABCS AB CQ AC BC=⋅='⋅△111591222CQ=⨯'⨯⨯⨯365CQ∴'=PC PQ+365()()()22249433a a a a a=-=-+112112866⎛⎫⨯+=-⎪⎝⎭2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭2122121122n n n nn n n n n n-+-=⨯==-=-+∴=∴x()()91200,91190,xx⎧+>⎪⎨-<⎪⎩21212299x<<x22x∴=()()()21121(1)2x x x xx x x+--=+⋅--111xx+=+-1111x xx x+-=+--21xx=-10,0,20x x x-≠≠-≠不能为.又,且为整数,只能为.当时,原式.五、19.解:(1)原式.(2)原式.,.代数式的最小值是5.20.解:(1) (2).由材料2的表格可知当时,随着的增大,的值逐渐变小.当时,随着的增大,分式的值逐渐变小.(3)分式的值无限趋近2,理由如下:,当时,随着的值的增大,的值逐渐减小并且无限趋近于0.x ∴1,0,212x -≤≤ x x ∴1-1x =-()21111⨯-==--2441115x x =++--2(21)16x =+-()()214214x x =+++-()()2523x x =+-228165(4)5x x x =-++=-+2(4)0x -≥ 2(4)55x ∴-+≥∴2821x x -+81x +312x +-1111x x x x x x+=+=+0x >x 1x∴0x >x 1x x+231x x ++()()211212311211111x x x x x x x x ++++==+=++++++∴1x >-x 11x +当时,随着的值的增大,的值无限趋近于2.六、21.解:(1)去分母,得.由分式方程有增根,得..把代入,得.解得.的值为.(2)去分母,得.①当分式方程有增根时,此分式方程无解,即时分式方程无解.②将上式整理,得.当,即时,分式方程无解.综上,若分式方程无解,的值为或.七、22.证明:(1)平分,.在和中,..是线段的垂直平分线.(2)是线段的垂直平分线,.在和中,...八、23.解:(1)设每双雨鞋元,则每件雨衣元.∴1x >-x 231x x ++()321x m x m -=-+10x -=1x ∴=1x =()321x m x m -=-+()13211m m -=⨯-+2m =-m ∴2-()321x m x m -=-+2m =-()213m x m -=-210m -=12m =m 2-12AD BAC ∠BAE CAE ∴∠=∠ABE △ACE △,,,BAE CAE ABE ACE AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABE ACE ∴△≌△,AB AC BE CE ∴==AD ∴BC AD BC BD CD ∴=BDP △CDE △,,,DP DE BDP CDE BD CD =⎧⎪∠=∠⎨⎪=⎩(SAS)BDP CDE ∴△≌△DBP DCE ∴∠=∠BP CE ∴∥x ()5x +根据题意,得.解得.经检验,是原分式方程的根,且符合题意..答:每件雨衣40元,每双雨鞋35元.(2)当时,.当时,.(3),购买的套数可超过5套.,解得.为正整数,.答:在(2)的情况下,今年该部门购买费用不超过320元时,最多可购买6套.4003505x x=+35x =35x =540x ∴+=05a ≤≤()()3540120%0.954w a a =+⨯-⨯=5a >()()()()()3540120%0.953540120%0.854830w a a =+⨯-⨯⨯++⨯-⨯⨯-=+320545>⨯ ∴4830320a ∴+≤1624a ≤a 6a ∴=。
八年级(下)学期 第二次月考数学试卷含答案
一、选择题1.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .632.如图,已知直线l //AB ,l 与AB 之间的距离为2.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且AB =CD =5.连接AC 、BC 、BD ,将△ABC 沿BC 折叠得到△A ′BC .下列说法:①四边形ABDC 的面积始终为10;②当A ′与D 重合时,四边形ABDC 是菱形;③当A ′与D 不重合时,连接A ′、D ,则∠CA ′D +∠BC A′=180°;④若以A ′、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为35或7.其中正确的是( )A .①②③④B .①③④C .①②④D .①②③3.如图,矩形ABCD 中,AB =23,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .43+3B .221C .23+6D .454.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A 3B .1C .32D .235.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.46.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 7. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④8.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .89.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.12.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).13.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,18.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=2CD;其中正确的是_____(填序号)19.如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=5,则BC的长为_______.20.如图所示,已知AB=6,点C,D在线段AB上,AC =DB =1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.三、解答题=,对角线AC,BD交于点O,21.如图,在四边形ABCD中,AB∥DC,AB ADAC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.23.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD =,试探索线段DF 与FC 的数量关系.24.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.25.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.26.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.27.如图平行四边形ABCD,E,F分别是AD,BC上的点,且AE=CF,EF与AC交于点O.(1)如图①.求证:OE=OF;(2)如图②,将平行四边形ABCD(纸片沿直线EF折叠,点A落在A1处,点B落在点B1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则CF OF=(直接填结果).28.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).29.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.30.已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,CF BA交PQ于点F,连接AF.过点C作//(1)求证:四边形AECF是菱形;AC ,AE=5,则求菱形AECF的面积.(2)若8【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线'EA,'AC与线段CE重合时,线段'AC长度最短,可以求出最小值.【详解】如图,连接EC,过点E 作EM ⊥CD 交CD 的延长线于点M.四边形ABCD 是平行四边形,6AD BC AD BC ∴==,,E 为AD 的中点,30BCD ∠=︒,330DE EA MDE BCD ∴==∠=∠=︒,,又 EM CD ⊥,133322ME DE DM ∴===, 3315363CM CD DM ∴=+== 根据勾股定理得: 22223153319.22CE ME CM ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭根据翻折的性质,可得'3EA EA ==,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,此时'AC = 3193. 【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.2.A解析:A【解析】【分析】①根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形; ③连结A′D ,根据折叠性质和平行四边形的性质得到CA′=CA=BD ,AB=CD=A′B ,∠1=∠CBA=∠2,可证明△A′CD ≌△A′BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A′D ∥BC ;④讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A′CBD =10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,于是得到结论.【详解】①∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10;故①正确;②∵四边形ABDC 是平行四边形,∵A′与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形,∴四边形ABDC 是菱形;故②正确;③连结A′D ,如图,∵△ABC 沿BC 折叠得到△A′BC ,∴CA′=CA=BD ,AB=CD=A′B ,在△A′CD 和△A′BD 中CA BD CD BA A D A D ==='⎧⎪'⎨⎪''⎩,∴△A′CD ≌△A′BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A′D ∥BC ,∴∠CA′D+∠BCA′=180°;故③正确;④设矩形的边长分别为a ,b ,当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A′CB =S △ABC =12×2×5=5, ∴S 矩形A′CBD =10,即ab=10,而BA′=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45,∴5当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=3,而CD=5,∴(a+b)2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为35或7.故④正确.故选A.【点睛】本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.3.B解析:B【解析】【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【详解】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB=ABBC3,∴∠ACB=30°,AC=2AB=43∵∠BCE=60°,∴∠ACE=90°,∴AE=22(43)6=221.故选B.【点睛】本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.4.D解析:D【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,此时,△ABE 的面积=23, 综上,△ABE 的面积的最大值是23;故选:D .【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.5.D解析:D【分析】连接OP ,由矩形ABCD 的可求OA=OD=52 ,最后由S △AOD =S △AOP +S △DOP 即可解答. 【详解】解:如图:连接OP∵矩形ABCD ,AB =3,BC =4∴S 矩形ABCD =AB×BC=12, OA=OC,OB=OD,AC=BD,225AC =AB +BC = ∴S △AOD =14S 矩形ABCD =3,OA=OD=52∴S △AOD =S △AOP +S △DOP =()111532222OA PE OD PF PE PF +=⨯+= ∴PE+PF=2.4故答案为D .【点睛】本题考查了矩形的性质,正确的做出辅助线和运用数形结合思想是解答本题的关键..6.D解析:D【分析】由题意得出条件证明△ABC ≌△DAF,根据对应角相等可推出②正确;由F 是AB 中点根据边长转换可以推出④正确;先推出△ECF ≌△DFA 得出对应边相等推出ADFE 为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD 是等边三角形,∴∠BAD=60°,AB=AD ,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∴AD=EF,∵FD=AC,∴四边形属ADFE为平行四边形,∵AD≠DF,∴四边形ADFE不是菱形;故①说法不正确;∴AO=12 AF,∴AO=12 AC,∵AE=AC,则AE=4AO,故③说法正确,故选D.【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.7.A解析:A【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=2EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴EC.∴其中正确结论的序号是①②④⑤.故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.8.D解析:D【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×h CF的值即可.【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是12×CF×h CF,∵△ABC的面积是24,BC=3CF∴12BC×h BC=12×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是12×16=8,故选:D.【点睛】此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.9.A解析:A【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC == ∴22AB 222=+=∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 22====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EF DE DF =+此时四边形CEDF 是正方形即EF CD ==∴22EF 2==∴正确的个数是4个故选:A .【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.10.C解析:C【分析】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算结果总结规律,根据规律解答. 解:∵A 1、C 1分别为AB 、AC 的中点,∴A 1C 1=BC =13,同理,A 1B 1=12AC =7,B 1C 1=12AB =12, ∴△A 1B 1C 1的周长=7+12+13=32, ∴△A 1B 1C 1的周长=△ABC 的周长×12, 则△A 2B 2C 2的周长=△A 1B 1C 1的周长×12=△ABC 的周长×(12)2, …… ∴△A 8B 8C 8的周长=△ABC 的周长×(12)8=64×1256=14, 故选:C .【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题11.102-【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB2231+10在Rt△GOC中,M是OC的中点,则MG=12OC2∵BG≥BM−MG102,当B,M,G三点共线时,BG102,102.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E,F运动到AD,BC的中点时,MG最小是解决本题的关键.12.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=1 2EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DMF中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△DMF(ASA),∴EF=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=12EM=EF,∴∠FEC=∠ECF,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB∥CD,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°,∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF≌△DMF是解题关键.13.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG ≌△AEC ,∴∠ACE =∠AGB ,∵∠AKG =∠NKC ,∴∠CNG =∠CAG =90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.14.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∵BAD∠的平分线交CD于点E,∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.15.83或4433【分析】连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求3AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC交BD于O,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4,同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4344343-==; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''33=,DG''=2HG''433=, ∴BG''=BD-DG''=438343-= ∴BE''=83, 综上所述:BE 为83或434- 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.16.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.17.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠ 22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.18.①②③⑤【分析】根据三角形中位线定理得到EF =12AB ,EF ∥AB ,根据直角三角形的性质得到DF =12AC ,根据三角形内角和定理、勾股定理计算即可判断.【详解】 ∵E ,F 分别是BC ,AC 的中点,∴EF =12AB ,EF ∥AB , ∵∠ADC =90°,∠CAD =45°,∴∠ACD =45°,∴∠BAC =∠ACD ,∴AB ∥CD ,∴EF ∥CD ,故①正确;∵∠ADC =90°,F 是AC 的中点,∴DF =CF=12AC , ∵AB=AC ,EF =12AB , ∴EF =DF ,故②正确;∵∠CAD=∠ACD=45°,点F 是AC 中点,∴△ACD 是等腰直角三角形,DF ⊥AC ,∠FDC=45°,∴∠DFC=90°,∵EF//AB ,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED =∠FDE =22.5°,∵∠FDC =45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE ,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.19.4【分析】过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=12AD=12BC,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF为等腰直角三角形,可得BF=EF=FC=12BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=12FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.【详解】过点E作EM∥AD,交BD于M,设EM=x,∵AB=OB,BE平分∠ABO,∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,∴EM是△AOD的中位线,又∵ABCD是平行四边形,∴BC=AD=2EM=2x,∵EF⊥BC,∠CAD=45°,AD∥BC,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC为等腰直角三角形,∴EF=FC,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF为等腰直角三角形,∴BF=EF=FC=12BC=x,∵EM∥BF,∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 20.2【分析】分别延长AE ,BF 交于点H ,易证四边形EPFH 为平行四边形,得出点G 为PH 的中点,则G 的运动轨迹为△HCD 的中位线MN ,再求出CD 的长度,运用中位线的性质求出MN 的长度即可.【详解】解:如图,分别延长AE ,BF 交于点H ,∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分,∵点G 为EF 的中点,∴点G 为PH 的中点,即在P 运动的过程中,G 始终为PH 的中点,∴G 的运动轨迹为△HCD 的中位线MN ,∵CD=6-1-1=4,∴MN=12CD =2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;(2)根据菱形的性质得出OA的长,根据直角三角形斜边中线定理得出OE=12AC,在Rt ACE∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD∥,∴OAB DCA∠=∠,∵AC为DAB∠的平分线,∴OAB DAC∠=∠,∴DCA DAC∠=∠,∴CD AD AB==,∵AB CD∥,∴四边形ABCD是平行四边形,∵AD AB=,∴ABCD是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,CE故答案为(2.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)34;(2)y =4t +2;(3)存在,点M 的坐标为(1,0)或(2,0). 【分析】(1)因为BN ∥MP ,故当BN=MP 时,四边形BNMP 为平行四边形,此时点M 在点P 的左侧,求解即可;(2)y =12(BN +PA )•OC ,即可求解; (3)①当∠MQA 为直角时,则△MAQ 为等腰直角三角形,则PA =PM ,即可求解;②当∠QMA 为直角时,则NB +OM =BC =3,即可求解.【详解】(1)∵BN ∥MP ,故当BN =MP 时,四边形BNMP 为平行四边形.此时点M 在点P 的左侧时,即0≤t <1时,MP =OP ﹣OM =3﹣t ﹣2t =3﹣3t ,BN =t ,即3﹣3t =t ,解得:t =34; (2)由题意得:由点C 的坐标知,OC =4,BN =t ,NC =PO =3﹣t ,PA =4﹣OP =4﹣(3﹣t )=t +1,则y =12(BN +PA )•OC =12(t +t +1)×4=4t +2; (3)由点A 、C 的坐标知,OA =OC =4,则△COA 为等腰直角三角形,故∠OCA =∠OAC =45°,①当∠MQA 为直角时,∵∠OAC =45°,故△MAQ 为等腰直角三角形,则PA =PM ,而PA =4﹣(3﹣t )=t +1,PM =OP ﹣OM =(3﹣t )﹣2t =3﹣3t ,故t +1=3﹣3t ,解得:t =12,则OM =2t =1, 故点M (1,0);②当∠QMA 为直角时,则点M 、P 重合,则NB +OM =BC =3,即2t +t =3,解得:t =1,故OM =OP =2t =2,故点M (2,0);综上,点M 的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.23.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,。
2023-2024学年江苏省南通市重点中学八年级(下)月考数学试卷(5月份)(含答案)
2023-2024学年八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的( )A. 平均数B. 中位数C. 众数D. 方差2.一次函数y=43x+2的图象经过点(a,2),则a的值为( )A. ―1B. 0C. 1D. 23.数据2,1,1,5,1,4,3的众数和中位数分别是( )A. 2,1B. 1,4C. 1,3D. 1,24.若a―b+c=0,a≠0,则方程ax2+bx+c=0必有一个根是( )A. 1B. 0C. ―1D. 不能确定5.关于x的一元二次方程(a―1)x2+3x―2=0有实数根,则a的取值范围是( )A. a>―18B. a≥―18C. a>―18且a≠1 D. a≥―18且a≠16.已知关于x的一次函数为y=mx+4m―2,下列说法中正确的个数为( )①若函数图象经过原点,则m=12;②若m=13,则函数图象经过第一、二、四象限;③函数图象与y轴交于点(0,―2);④无论m为何实数,函数的图象总经过(―4,―2).A. 1个B. 2个C. 3个D. 4个7.如图,在平面直角坐标系中,直线y=x―2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x―2≤kx+b的解集是( )A. x≤1B. x<3C. x≤3D. x<18.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A. x 2+130x ―1400=0B. x 2+65x ―350=0C. x 2―130x ―1400=0D. x 2―65x ―350=09.O 是等边△ABC 内的一点,OB =1,OA =2,∠AOB =150°,则OC 的长为( )A. 3B. 5C. 7D. 310.如图,直线y =2x ―6与x 轴、y 轴分别交于A ,B 两点,C 在y 轴的正半轴上,D 在直线AB 上,且CB =10,CD =OD.若点P 为线段AB 上的一个动点,且P 关于x 轴的对称点Q 总在△OCD 内(不包括边界),则点P 的横坐标m 的取值范围为( )A. 13<m <23B. 23<m <45C. 23<m <125D. 43<m <125二、填空题:本题共8小题,共30分。
沪科版八下数学月考试卷含答案
O F E D C BA 八年级第二学期 数学月考试卷 温温馨馨提提示示::各位同学,本试卷共23题,满分150分,时间120分钟。
一、选择题:(每小题4分,共40分) 1、下列几组数据中,能作为直角三角形三边长的是……………………………【 】 A 、2,3,4,B 、1,4,9C 、1,12,13D 、1,2,3 2、下列各数中,与3是同类二次根式的是……………………………………【 】 A 、50 B 、24 C 、27 D 、21 3、方程y 2=2y 的解是………………………………………………………………【 】 A 、y 1=2,y 2=0 B 、y 1=-2,y 2=0 C 、y 1=0,y 2=1 D 、y=2 4、下列一元二次方程中,有两个不相等实数根的方程是………………………【 】 A 、x 2+1=0 B 、(x +4)2=0 C 、x 2+2x +3=0 D 、x 2+2x -3=0 5、一个正多边形的内角和是1440°,那么这个正多边形的每个外角是………【 】 A 、30° B 、36° C 、40° D 、45° 6、如右下图,在□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则 四边形BCEF 的周长为…………………………………………………………【 】 A 、8.3 B 、9.6 C 、12.6 D 、13.6 7、下列交通标志中既是中心对称图形,又是轴对称图形的是…………………【 】(第7题)(第6题) 8、下列情况,不能..判断四边形ABCD 是菱形的是………………………………【 】 A 、AB=BC=CD=DA B 、AB //CD 且AC ⊥BD C 、AB //CD 且AC=BD D 、AB //CD 且AB=BC 9、已知三角形两边长是4和7,第三边是方程055162=+-x x 的根,则第三边长是【 】 A 、5 B 、11 C 、5或11 D 、6 10、在如图所示的正方形网格中,画有两个四边形,下列叙述正确..的是……【 】 A 、这两个四边形的面积和周长都不相同B 、这两个四边形的面积和周长都相同C 、这两个四边形的面积相同,但Ⅰ的周长小于Ⅱ的周长A. B. C. D. 班级姓名答题不超过此线5D 、这两个四边形的面积相同,但Ⅰ的周长大于Ⅱ的周长(第10题)二、填空题:(每题5分,计20分)11、在实数范围内分解因式:32-x = .12、如下图:在△ABC 中, AB=AC=5㎝,BC=6㎝,点E ,F 是中线AD 上的两点,则图中阴影部分的面积是 .13、已知方程02)21(2=--+x x 的两个根x 1和x 2,则2221x x +=___________(第12题) (第14题)14、如图,在梯形ABCD 中,AD ∥BC ,AD=CD ,E 、F 分别是AB 、BC 的中点,若∠1=35°,则∠D= .三、解答题(共90分)15、(8分)计算:62148)32(323⨯---+ 16、(8分)解方程:3)12)(2(=-+x x17、(8分)如图,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 的距离分别是 1 和 2 , 则正方形的边长是多少?18、(8分)如图,将矩形ABCD 沿对角线AC 折叠,B 点落在F ,FC 与AD 交于E 点,求证:ED=EF .L E B F19、(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品的单价每降低1元,其销量可增加10件(1) 求商场经营该商品原来一天可获利润多少元?(2) 要使商场经营该商品一天获利润2160元,则每件商品应降价多少元?20、(10分)已知:如图,在□ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE =12 cm ,CE =5 cm .求□ABCD 的周长和面积.21、(12分)已知关于x 的方程 kx 2-2 (k +1) x +k -1=0 有两个不相等的实数根,(1) 求k 的取值范围;(2) 是否存在实数k ,使此方程的两个实数根的倒数和等于0 ?若存在,求出k 的值;若不存在,说明理由.A E DC B22、(12分)已知:如图,在梯形ABCD 中,AD BC ∥,AB DC =.点E ,F ,G 分别在边AB ,BC ,CD 上,AE GF GC ==.(1)求证:四边形AEFG 是平行四边形;(2)当2FGC EFB =∠∠时,求证:四边形AEFG 是矩形.23、(14分)如图,在正六边形ABCDEF 中,对角线AE 、BF 相交于点M ,BD 、CE相交于点N .(1)观察图形,写出图中两个不同形状....的特殊四边形;(2)选择(1)中的一个结论加以证明.A B E F D C G八年级第二学期数学月考试卷参考答案(3) 选择题1~5DCADB 6~10BDCAD(4) 填空11、(x+3)(x-3) 12、6cm 2 13、3 14、110︒三、解答题15、12-23 16、25x , 1x 21-==17、5122=+=∴==∆≅∆CF BF BC AE BF BCF ABE ,得由 18、EF ED CED AEF D B F CD AB AF CED AEF =∴∆≅∆∴=∠=∠=∠==∠=∠,90,,19、(1)2000元(2)设每件商品应降价x 元, 则(100-x -80)(100+10x)=2160 解得82x 1==2,x20、周长39cm,面积60cm 221、(1)由k ≠0,∆=[-2(k+1)]2-4k(k -1)>0,得k>-31且k ≠0不存在且-,而k-)(--0,)(1212∴≠〉=∴=+=+∴=+=+ ,0k 311k 0k 1k 2x x x x x x x 1x 12212122、(1)是平行四边形得四边形提示:证AEFG AE GF ,//是矩形四边形是平行四边形)知四边形由(又)(AEFG 1 90EFG 180GFC EFG EFB 902190)180(212,2∴=∠∴=∠+∠+∠∠-=∠-=∠-=∠=∠∴∠=∠=AEFG EFB FGC FGC GCF GFC EFBFGC GC GF23、(1)矩形BCEF (或矩形ABDE ),菱形BNEM是矩形平行四边形,中,在正六边形是平行四边形四边形)(BCEF AFB AFE BFE AFB AFAB AFE BAF ABCDEF BCEF EF BC ∴=-=∠-∠=∠∴=∠∴==∠=∠∴ 903012030,120//2。
河北省保定市高碑店市2023-2024学年八年级下学期月考数学试题(含答案)
2023—2024学年度第二学期第二次阶段性教学质量监测八年级数学注意事项:1.本卷共有三个大题,26个小题,满分120分,考试时间120分钟.2.本次考试设卷面分.答题时,要书写认真、工整、规范、美观.一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.如果,那么下列结论错误的是( )A .B .C .D .3.下列从左边到右边的变形,属于因式分解的是( )A .B .C .D .4.如图,OP 平分,,于点D ,E 是射线OB 上的一个动点,若,则PE 的最小值为( )A .2B .3C .4D .55.下列因式分解中,正确的是()A .B .C .D .6.如图,在中,DE 是AC 的垂直平分线.若,的周长为8,则的周长为( )A .9B .10C .11D .12m n >22m n +>+22m n ->-22m n>22m n ->-()()2339x x x -+=-1414a a a ⎛⎫+=+ ⎪⎝⎭()()()4422m n m n m n m n -=++-()24222yz y z z y z yz z-+=-+AOB ∠60AOB ∠=︒PD OA ⊥6OP =()()22444x y x y x y -=-+()ax ay a a x y ++=+()()()()a x yb y x x y a b -+-=--()224923x x +=+ABC △2AE =ABD △ABC △7.不等式的解集在数轴上表示正确的是( )A .B .C .D .8.如果把分式中x ,y 的值都扩大为原来的3倍,那么分式的值( )A .扩大为原来的3倍B .缩小为原来的C .扩大为原来的9倍D .保持不变9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到的位置,,,,平移距离为4,则阴影部分的面积为( )A .20B .24C .25D .2610.下列各式中,能用公式法分解因式的有()①;②;③;④;⑤A .2个B .3个C.4个D .5个11有意义,则x 的取值应满足( )A .B .且C .D .且12.计算的结果为( )A .100B .150C .10000D .2250013.观察图中的函数图象,则关于x 的不等式的解集为()A .B .C .D .14.如图,将绕点C 按顺时针方向旋转得到.若点A 恰好在ED 的延长线上,,则的度数为( )A .B .C .D .2131x x +≥-x x y-13DEF △90B ∠=︒8AB =3DH =22x y --22114a b -+22a ab b ++222x x y -+-2214mn m n -+1x ≠2x >-1x ≠2x ≥-2x ≥-1x ≠221255012525-⨯+ax bx c >+2x <1x <2x >1x >ABC △90︒EDC △110ABC ∠=︒DCE ∠15︒20︒25︒30︒15.某商店购进了一批服装,每件的进价为200元,并以每件300元的价格出售.亚运会结束后,商店准备将这批服装降价处理,打x 折出售,且要使得每件衣服的利润率不低于,根据题意,可列出不等式( )A .B .C .D .16.将含有角的直角三角板OAB 按如图所示的方式放置在平面直角坐标系中,OB 在x 轴上.若,将三角板OAB 绕原点O 逆时针旋转,每秒旋转,则第2024秒时,点A 的对应点的坐标为( )A .B .C .D .二、填空题(本大题共3个小题,共10分,17小题2分,18小题4分,19小题4分,每空2分)17.已知是完全平方式,则m 的值为______.18.已知,则的值是______.19.定义一种运算,其规则为,其中a ,b 是有理数,则______.根据这个规则,计算______.(结果需化简)三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)因式分解:(1).(2).21.(本小题满分9分)在如图所示的平面直角坐标系中.5%3002002005%x -≥⨯3002002005%10x ⋅-≥⨯3002003005%10x ⋅-≥⨯()30020015%x ≥⨯+30︒4OA =60︒A'()2-()2--()2-()22436x mx ++2a b +=224a b b -+※1a b =※37=※()21x x +=※316x x -3223242x y x y xy -+-ABC △(1)若将先向右平移5个单位长度,再向下平移3个单位长度,得到.若点A ,B ,C 的对应点分别为,,,请画出平移后的,点,的坐标为______.(2)将绕点O 按逆时针方向旋转,画出旋转后对应的.22.(本小题满分9分)先化简,再求值:,其中.23.(本小题满分10分)计算:(1).(2).24.(本小题满分10分)从一个边长为a 的正方形中减掉一个边长为b 的正方形(如图1),然后将剩余的部分拼成一个长方形(如图2).(1)上述过程所揭示的因式分解的等式为______.(2)若,,求的值.(3)计算:.25.(本小题满分12分)某位数学老师在讲因式分解时,为了提高同学们的思维能力,他补充了一道这样的题;对多项式进行因式分解.一名学生的解答过程如下:ABC △111A B C △1A 1B 1C 111A B C △1A ABC △90︒222A B C △2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭260a a --=22121x x x x x+⋅++21424m m ---2291630x y -=346x y +=34x y -22222111111111123499100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⨯⨯-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()2242464a a a a +++++解:设.原式······························································第一步·······································································第二步···········································································第三步.·····································································第四步根据以上解答过程,回答下列问题.(1)这名学生第二步到第三步运用了因式分解的哪种方法?______.(填选项)A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)对第四步的结果继续因式分解得到的结果为______.(3)请你仿照以上方法,对多项式进行因式分解.26.(本小题满分13分)在中,,的度数记为.(1)操作与证明:如图1,若,D 为边BC 一动占,连接AD ,将线段AD 绕点A 按逆时针方向旋转至AE 的位置,连接DE ,CE 写出BD 和CE 的数量关系:______,______.(2)探究与发现:如图2,若,D 变为BC 延长线上一动点,连接AD ,将线段AD 绕点A 按逆时针方向旋转至AE 的位置,连接DE ,CE .试判断BD 和CE 的数量关系,并说明理由.(3)判断与思考:在(2)的探究中,若,,D 为直线BC 上一点,当时,直接写出DE 的长.2023—2024学年度第二学期第二次阶段性教学质量监测八年级数学参考答案24a a b +=()()264b b =+++2816b b =++()24b =+()2244a a =++()()22661881x xx x --++ABC △AB AC =BAC ∠α60α=︒αBCE ∠=︒90α=︒α90α=︒3BC =1CD =1.A2.D 3.C 4.B 5.C 6.D 7.A 8.D 9.D 10.A 11.D 12.C13.D 14.C 15.B 16.A 17.18.419.;20.解:(1)原式.(2)原式.21.解:(1)如图,即为所求.点的坐标为.(2)如图即为所求.22.解:原式.6分23.解:(1)24±74-11x x +-()()()21644x x x x x =-=+-()()222222xy x xy y xy x y =--+=--111A B C △1A ()4,1222A B C △()()211221111a a a a a a a -+⎡⎤--=÷-⎢⎥-++⎣⎦22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--()11a a =-21a a=-22121x x x x x +⋅++()2211xx x x +=⋅+()11x x =+.(2).24.解:(1).(2)∵.∴.∵,∴.(3)原式.25.解:(1)C .(2).(3)设.原式.21x x=+21424m m ---2244m m +-=-12m =+()()22a b a b a b -=+-2291630x y -=()()343430x y x y +-=346x y +=345x y -=111111111111111111112233449999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⨯⨯-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 13243598100991012233449999100100=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 11011012100200=⨯=()42a +26x x y -=()1881y y =++21881y y =++()29y =+()2269x x =-+()223x ⎡⎤=-⎣⎦()43x =-26.解:(1);120.(2).理由:∵$将线段AD 绕点A 按逆时针方向旋转至AE 的位置,,∴,,∴,即.在和中,∴,∴.(3)DE.提示$:∵,,∴.由(2)可知,,∴,∴.由,可知共有两种情况.①当点D 在线段BC 上时,如图1,此时,.∵,∴.在中,,,∴②当点D 在线段BC 的延长线上时,如图2,此时,.∵,∴.在中,,,∴.综上所述,DE.BD CE =BD CE =α90CAB α=∠=︒AD AE =90DAE CAB ∠=∠=︒CAB CAD DAE CAD ∠+∠=∠+∠BAD CAE ∠=∠BAD △CAE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ≅△△BD CE =90BAC ∠=︒AB AC =180452BAC ABC ACB ︒-∠∠=∠==︒()SAS BAD CAE ≅△△45ACE ABD ∠=∠=︒90BCE ACB ACE ∠=∠+∠=︒1CD =312BD BC CD =-=-=BAD CAE ≅△△2BD CE ==Rt DCE △1DC =2CE =DE ===314BD BC CD =+=+=1801809090DCE BCE ∠=︒-∠=︒-︒=︒BAD CAE ≅△△4BD CE ==Rt DCE △1DC =4CE =DE ===。
江西省宜春市上高县锦阳中学2022-2023学年八年级下学期月考数学试题(含答案解析)
江西省宜春市上高县锦阳中学2022-2023学年八年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.3cm B.6cm5.为了方便体温监测,某学校在大门入口的正上方所示),测温仪离地面的距离测温并报告人体体温.当身高为BC=米),测温仪自动显示体温,此时小明头顶到测温仪的距离1.2A.0.5米B.1.2列结论:DM DA =①;EB ②平分AEC ∠;ABE ADE S S = ③;23.BE AE EC =⋅④其中结论正确的个数是()A .1B .2C .3D .4二、填空题三、解答题(1)求证:FP FB =.(2)如图2,当90BEC ∠=︒时,点F 与点C 刚好重合.求此时AP 的长.(3)如图3,连接CP ,在点P 运动过程中,当PBE △和PCE 面积相等时,则AP ______.(直接写出答案)参考答案:BE EF DF EF ∴+=+,即BF DE =.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.15.(1)直角三角形,见解析(2)3.5【分析】(1)由勾股定理的逆定理进行证明即可;(2)由勾股定理得222AB AP BP +=,设AP x =,列出方程求解即可.【详解】(1)ABC 是直角三角形,理由如下:在 ABC中,12,16,20AB AC BC ===,∵222121640020+==,∴222AB AC BC +=,∴ ABC是直角三角形,(2)设AP x =,则16BP CP x ==-.在Rt ABP 中,∵222AB AP BP +=,∴()2221216x x +=-,解得 3.5x =,∴AP 的长为3.5.【点睛】本题考查了勾股定理及其逆定理,解决本题的关键是熟练掌握勾股定理及其逆定理.16.(1)见解析(2)见解析【分析】(1)连接AC 交BD 于点O ,作直线OP 交CD 于点Q ,点Q 即为所求作;(2)连接AC 交BD 于点O ,连接AP 并延长,交BC 于点E ,作直线OE 交AD 于点F ,连接CF 交BD 于点Q ,点Q 即为所求作.【详解】(1)解:如图,点Q 即为所求作的点.∵四边形ABCD ,∴AO CO =,AB CD ,∴PAO QCO ∠=∠,∵=POA QOC ∠∠,∴PAO QCO ≌,∴AP CQ =;(2)解:点Q 即为所求作.∵四边形ABCD ,∴BO DO =,AD BC ∥,AO CO =,∴OFD OEB ∠=∠,∵DOF BOE ∠=∠,∴DOF BOE ≌△△,∴DF BE =,OE OF =,∵AO CO =,OE OF =,∴四边形AECF 为平行四边形,∴AE CF ,∴DFC DAE ∠=∠,∵AD BC ∥,∴DAE BEP =∠∠,∴DFQ BEP =∠∠,∵AD BC ∥,BPE PEC S S = ,BE CH ∴=,将ABP 翻折得EBP △,90A BEP ∴∠=∠=︒,AP 90BEF CHF ∴∠=∠=︒,BFE CFH ∠=∠ ,()AAS BEF CHF ∴ ≌,52BF CF ∴==,又2BE = ,225(2EF BF BE ∴=-=过点P 作PG BF ⊥于点G 222PG GF PF += ,。
河北省保定市高碑店市2023-2024学年八年级下学期月考数学模拟试题(含答案)
△ABC以点为圆心,为半径作圆弧,交C AC 分别以点和点为圆心,大于A C A .17A .215.如图,在中,ABC △则的周长是()DEC △A .8B .16二、填空题(本大题共3个小题,共17.请用“如果……那么……”的形式,写出19.如图,在中,边ABC △AB (1)的长度为_________.BC6321.(9分)如图,,过点作于点,过点作,AB CD AF CE ==B BE AC ⊥E D (9分)如图,在中,ABC △∠(1)尺规作图:作的角平分线ABC △(2)在(1)的条件下,若CD =23.(10分)如图,在中,ABC △(1)求证:是等腰三角形.AFG △(2)若,CE EF BAC =∠24.(10分)小明爸爸销售甲、乙两个品牌的羽绒服,牌羽绒服16件,销售额为图1如图2,过点作,交E EF BC ∥图2完成下面问题:21.证明:,,BE AC DF AC ⊥⊥ (2),90,30C A ∠=︒∠=︒.60ABC ∴∠=︒平分,BD ABC ∠,30ABD CBD ∴∠=∠=︒.2AD BD CD ∴==,2CD = .36AC CD ∴==23.解:(1)证明:平分,AD BAC ∠.BAD CAD ∴∠=∠,EG AD ∥,,BAD G CAD AFG ∴∠=∠∠=∠,G AFG ∴∠=∠,AF AG ∴=是等腰三角形.AFG ∴△(2),CE EF = .CFE C ∴∠=∠,,AFG CFE AFG CAD ∠=∠∠=∠ .C CAD ∴∠=∠平分,80,BAC AD ∠=︒ BAC ∠,40C CAD ∴∠=∠=︒.18060B BAC C ∴∠=︒-∠-∠=︒24.解:(1)设甲品牌羽线服的售价为元,乙品牌羽线服的售价为元.x y 依题意,得121624800,304566000,x y x y +=⎧⎨+=⎩解得1000,800.x y =⎧⎨=⎩答:甲品牌羽线服的售价为1000元,乙品牌羽线服的售价为800元.(2)设小刚爸爸购买甲品牌羽线服件.a 根据题意,得,()100080076000a a +-≤解不等式,得.2a ≤图1是等边三角形,ABC △60,ABC ACB A AB AC ∴∠=∠=∠=︒=又,EF AC ∥图2是等边三角形,ABC △.2AB BC AC ∴===图3是等边三角形,ABC △AB BC AC ∴===,AM BC ⊥ 12BM CM BC ∴==,6BE ∴=.33EN ∴=又,1DN = .27DE ∴=综上所述,的长为或.DE 2327。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版数学八年级下册第二次月考
考试时间:90分钟 满分 120分
姓名:__________ _ 班级:___________
一、单选题
1.(本题3分)二次根式12x -有意义,则应满足的条件是( )
A. 1=2x
B. 12x ≤
C. 1<2x
D. 12
x ≥
2.(本题3分)下列二次根式中属于最简二次根式的是( )
A. B. C. D.
3.(本题3分)比较大小的结果是( )
A. 前者大
B. 一样大
C. 后者大
D. 无法确定
4.(本题3分)下列计算正确的是( )
A.
+ B.
C. 3
D. =-2
5.(本题3分)下列三条线段中,能构成直角三角形的是:
A. 1,2,3
B. , ,
C. 1,2,
D. 2,3,5
6.(本题3分)下列运算错误的是
A. =
B. =
C. =
D. (22= 7.(本题3分)如图,有两棵树高分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,一共飞了多少米?( )
A. 41
B.
C. 3
D. 9
8.(本题3分)如图,在△ABC中,90,2
∠==,点D在BC上,
C AC
∠=∠, AD=则BC的长为()
2
ADC B
A.
1 B. 1 C. 1 D. 1
9.(本题3分)如果a,那么a的取值范围是()A. a0= B. a1= C. a1≤ D. a=0a=1
或
10.(本题3分)把根号外的因式移到根号内,得().
A. B. C. D.
11.(本题3分)下列计算正确的是()
A.
= B. =3
=﹣2 D.
C.
12.(本题3分)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()
A. B. C. 3 D. 2
二、填空题
13.(本题4分)计算
-_____.
2
14.(本题4,则x的取值范围是___.
15.(本题4分)计算:5√2−√8=______.
16.(本题4分)计算:2015·2016=________.17.(本题4分)如图,在Rt△ABC 中,∠C=90°,BC=3 cm,AC= 4 cm,按图中所示方法将△BCD沿BD折叠,使点C 落在AB边的C'点处,那么△ADC'的面积是________.
18.(本题4分)如图,已知圆柱的底面直径BC=6
,高AB=3,
π
小虫在圆柱表面爬行,从点C爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为___________.
三、解答题
19.(本题6分)计算:
(1
(2
20.(本题6分)已知√a−17+√17−a=b+8.(1)求a的值;
(2)求a2﹣b2的平方根.
21.(本题6分)已知x=2+√3,y=2-√3,求√x+√y
√x-√y √x-√y
√x+√y
的值.
22.(本题6分)已知a =
2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.
23.(本题8分)如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?
24.(本题8分)如图,已知在四边形ABCD 中,∠A=90°,AB=2cm ,
,CD=5 cm ,BC=4 cm ,求四边形ABCD 的面积.
25.(本题10分)已知:在△ABC中,∠B=30°,∠C=45°,AC=2.求:(1)AB、BC的长;
(2)△ABC的面积.
26.(本题10分)台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.
(1)该城市是否会受到这次台风的影响?为什么?
(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
答案第1页,总1页 参考答案
1.B
2.A
3.C
4.C
5.C
6.C
7.B
8.D
9.C
10.A
11.C
12.B
13
.2
14.x=2
15.3√2
16
17.32
cm 2 18.6√2
19.(1
)4+(2
20.(1)a=17;(2) ±15
21.2√33
22.3
23.7米,420元.
24.
2.
25.
(2)S △
26.(1)该城市会受到这次台风的影响(2)
3)6.5级。