太阳能电池及硅切片技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池简介
太阳能电池根据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。
(1)硅太阳能电池
硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
单晶硅太阳能电池转化效率最高,技术也最为成熟,理想转化效率略大于30%,在实验室最高的转化效率为23%,最近实验室转化效率可以达到24.7%,常规地面用商业用直拉单晶硅太阳能电池转化效率可达到18%,期望不久可以达到20%以上。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,弱光特性较差,生产工艺复杂,大幅度降低其成本很困难,为了降低成本,发展多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。
多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为16%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。
非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。(2)多元化合物薄膜太阳能电池
多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。
硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。
砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs 电池的普及。
铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。
(3)聚合物多层修饰电极型太阳能电池
以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。
(4)纳米晶太阳能电池
纳米TiO2晶体化学能太阳能电池是新近发展的,优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。
此类电池的研究和开发刚刚起步,不久的将来会逐步走上市场。(5)有机太阳能电池
有机太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的。
多晶硅太阳电池的出现主要是为了降低成本,其优点是能直接制备出适于规模化生产的大尺寸方型硅锭,设备比较简单,制造过程简单、省电、节约硅材料,对材质要求也较低。晶界及杂质影响可通过电他工艺改善。
晶体硅太阳能电池所用硅材料主要是铸造多晶硅片与单晶硅片,但原料都来自于多晶硅材料。由于目前各个国家都在大力发展新能源和光伏产业,预计来5—10年内光伏产业的发展将呈现爆发式增长。目前晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,并且随着多晶硅价格的回落,晶体硅发电在光伏发电中占有率保持在75%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。预计在2015年太阳能多晶硅需求将接近3O万吨,而到2020年需求将突破5O万吨。同期半导体多晶硅需求的增加也将保持5%一6%的增长。预测,2015年全球多晶硅的需求量达到31.6万吨, 2020年多晶硅的需求量将达到53.8万吨。
硅片切割技术
作为一种取之不尽的清洁能源,太阳能的开发利用正引起人类从未有过的极大关注。商业化太阳能电池采用的是无毒性的晶硅,单晶和多晶硅电池的特点是光电转换效率高、寿命长且稳定性好。硅片是晶体硅光伏电池加工成本中最昂贵的部分, 随着半导体制造技术的不断成熟完善,硅片制造成本不断降低。硅片切割是太阳能光伏电池制造工艺中的关键部分, 太阳能电池所用硅片的切割成本一直居高不下,要占到太阳能电池总制造成本的30%以上。所以降低这部分的制造成本对于提高太阳能对传统能源的竞争力至关重要。
目前硅片的切割方法都是围绕如何减小切缝损失、降低切割厚度、增大切片尺寸及提高切割效率方面进行的。为了进一步提高硅片的实际利用率, 将硅片表面进行绒面化处理, 产生一些绒面高度深, 表面均匀的倒金字塔结构, 增加入射光的反射次数, 减少光的反射损失, 从而提高光的实际利用率。
太阳能硅片切割方法主要有: 外圆切割、内圆切割和磨料线切割和电火花切割(WEDM )等。80年代中期之前的硅片切割都是由外圆切割机床或者内圆切割机床完成的, 这两种切割方法在那时的研究已经达到了鼎盛时期, 相当多功能的全自动切片机相继商品化, 生产主要分布在瑞士、德国、日本、美国等地方。90年中后期以来, 多线切割技术逐渐走向成熟,其切缝损失小、切割直径大、成片效率高、适合大批量硅片加工, 在国内外太阳
能电池的硅片切割上, 得到广泛的应用。WEDM 经过近半个世纪的发展, 技术已经十分成熟, 达到了相当高的工艺水平, 是一种非接触、宏观加工力很小的加工方式, 理论上采用WEDM 切割, 硅片的厚度可以达到很薄。
2.1外圆切割
外圆切割机主要有卧式和立式两种, 由主轴系统、冷却循环系统、工业机控制系统、电磁旋转工作台等组成, 其中主轴系统是它的核心系统, 刀片安装在主轴上面, 一般是在钢质圆片基体外圆部分电镀一层金刚石磨粒, 可以单刀切割或者多刀切割。切割时由于刀片太薄容易产生变形和侧向摆动, 导致硅片的切缝较大(1 mm左右) , 晶面不平整, 且切割硅片的直径也不能太大(100 mm以内) 。
2.2内圆切割
内圆切割机与外圆切割机相类似, 内圆切割时, 圆盘型刀片外圆张紧, 利用内圆刃口边切割硅锭。但它的刀片是在基体的内圆部分电镀一层金刚石磨粒, 外圆部分有多个小孔, 安装固定在刀盘上面, 通过刀盘上的专用机构张紧, 刃部钢性得到增强, 切割阻力及外力引起的对刃口的振动减小。其刀片稳定性好、晶向可以调节、机床技术成熟、切割的硅片表面粗糙度小、切缝可以缩小到300 μm左右,切割硅料直径主要为Φ150 mm-200 mm,最大达到了Φ300 mm。但由于刀片高速旋转会产生轴向振动,刀片与硅片的摩擦力增加,切割时会产生较大的残留切痕和微裂纹,