最新高一下学期数学教案设计
下学期高一数学第一章解三角形全章教案 必修5
下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
高一下学期数学教学工作计划范文(通用3篇)
高一下学期数学教学工作计划范文(通用3篇)【篇1】高一下学期数学教学工作计划为了做好这学期的数学教学工作,结合学校二轮课改要求和十六字方针特作计划如下:一、工作目标:高一下学期的工作是第二册课本教学任务;二、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。
爱因斯曾经说过:兴趣是最好的老师。
激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:1.转变教师的教学方式转变学生的学习方式教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和对话中实现师生的共同发展,努力建立互动的师生关系。
本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2.发挥备课组的集体作用集体备课,教案要求统一。
每次备课都有一个主题,然后集体讨论,补充完善。
同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。
教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3.详细计划,保证练习质量教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4.加强辅导工作对已经出现数学学习困难的学生,教师的个别辅导十分重要。
教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
高中数学教案设计(精选12篇)
高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高中高一数学教案
高中高一数学教案
教学内容:线性方程组
教学目标:学习线性方程组的概念和解法,能够应用线性方程组解决实际问题。
教学重点:线性方程组的概念、解法和应用。
教学难点:多元线性方程组的解法。
教学准备:教案、教材、黑板、彩色粉笔、作业本。
教学过程:
一、导入(5分钟)
教师通过提问或举例等方式引导学生回顾线性方程的概念和解法,为引入线性方程组做铺垫。
二、学习线性方程组(15分钟)
1. 介绍线性方程组的概念和形式。
2. 讲解线性方程组的解法:代入法、消元法等。
三、实例讲解(15分钟)
教师通过几个实例讲解线性方程组的具体解法,引导学生掌握解题技巧。
四、练习与巩固(15分钟)
提供一些练习题让学生进行巩固和练习,鼓励学生独立解题。
五、拓展应用(10分钟)
引导学生应用线性方程组解决一些实际问题,培养学生的应用能力。
六、总结与评价(10分钟)
让学生总结本节课的重点内容,并对学生的表现进行评价和点评。
七、布置作业(5分钟)
布置相关作业,巩固学生的知识点。
教学反思:教师要注重引导学生掌握线性方程组的基本概念和解法,激发学生学习数学的兴趣和动力,培养学生的思维能力和解决问题的能力。
高一下学期数学教学计划江苏4篇
高一下学期数学教学计划江苏4篇高一下学期数学教学计划江苏篇1一、指导思想以学校年工作计划为指导,以贯彻新课程理念,推动课程改革为中心,认真落实教育教学工作精神。
以培养学生创新精神和实践能力、发展学生个性为目标,开展教学改革实验,探索学科教学新模式,开展校本的教学特点,不断提高自身素质。
狠抓数学教育,推进我校数学教育的发展。
二、基本情况分析1、183班共54人,男生25人,女生29人;本班相对而言,数学尖子生约4人,中上等生约36人,差生约14人。
2、184班共54人,男生23人,女生31人;本班相对而言,数学尖子生约5人,中上等生约34人,差生约15人。
三、教材分析1、教材内容:数学必修三:统计、算法初步。
数学必修四:三角函数、向量及其应用及和、差、倍、分三角公式及其应用。
2、算法思想是现代人应具备的一种数学素养;统计与算法在现代生活中使用相当广泛;三角函数是中学数学的最重要的基本概念,它是描述周期现象的重要数学模型,在数学和其他的领域中有着重要的作用。
是进一步学习高等数学的基础;向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,有着极其丰富的实际背景。
3、教材重点:通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律问题中的作用。
4、教材难点:使学生在学习三角恒等变化的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变化的工具性作用。
5、教材关键:理解概念,熟练、牢固掌握三角函数的图像及性质;数形结合,灵活理解向量的含义及能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
6、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下一阶段的学习做准备。
四、教学要求1、了解算法的初步知识和几个典型的算法案例;使学生体会算法的基本思想、基本特征。
2、了解最基本的获取样本数据的方法,学会几种从样本数据中的提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
高一数学教案的三维目标5篇
高一数学教案的三维目标5篇最新高一数学教案的三维目标1有理数教案(三维目标,精讲预设,教学反思)《有理数》教学开篇精讲稿1.如果把数学比作一个成长中的生气勃勃的人,把问题比作人身体的一个重要的器官,那你将用什么器官比喻问题的重要性呢2.“问题是数学的心脏”,是一切科学发现与发明的源泉.在数学学习中,明确提出问题比解决问题有同等甚至是更高的价值.因此在进入初中数学学习的时候,同学们要重视发现和明确提出数学问题,把这看作是提升自身数学能力的最重要的途径.3.看到《有理数》这一章的标题,你想到的第一个问题是什么?接下来你又会明确提出什么问题呢?4.“有理数”这个名词有点怪,难道还有“无理数”吗?” 这个问题提得好!既然有“有理数”,当然会有“无理数”.要回答什么是“有理数”的问题,一个途径就是先回答“什么是无理数的问题”.5.我们在小学所学的数中,就有无理数,那就是无限不循环小数.有限小数、无限循环小数都是有理数. 大家想一想下面的问题:①有限小数、无限循环小数与分数是什么关系?②整数能不能化成分数的形式?③由此你能不能联想出有理数的“理”是什么?也就是说,什么样的数是有理数?1.1正数和负数一.教学目标知识与技能:了解正数和负数是怎样产生的,会识别正数和负数,理解0表示的量的意义;学会用正数和负数表示相反意义的量; 过程与方法:在形成负数概念的过程中,培养观察、归纳与概括能力. 情感、态度与价值观:通过师生合作,联系实际,感受数学与生活的联系,激发学生学习数学的热情.重点难点重点:形成负数概念;学会用正数和负数表示相反意义的量. 难点:负数的意义及0的内涵.二.精讲预设: 1.其实,在进入初中之前,我们就有同学初步学习过“负数”概念,知道什么是正数和负数,但在跨入初中数学的大门的时候,我们还是要隆重地引入负数概念,因为它是我们建立有理数概念不可缺少的基础.2.什么叫做正数?什么叫做负数?负数的概念是建立在什么基础上的?你能换一种方式解释负数这个概念吗?请注意,给概念下定义的表达方式:……叫做…….3.①把0以外的数分成正数和负数,起源于什么?②表示相反意义的量,数的性质(正与负)是怎样规定的?有几种方式?③表示相反意义的量,要特别注意量的表达,也就是一定不能忽略单位!否则就不是量,而是数了.④正数可以省略“+”号,负数可以省略“—”号吗?为什么? 4.还记得我在前面明确提出的关于“问题”在数学学习中地位的话吗?请你明确提出关于“正数和负数”的概念与应用的问题,我们来开一次“数学记者招待会”.三.教学反思 1.这次尝试着从无理数的概念入手,“曲线教学”,一步到位,导出有理数的概念,从后续效果上看,还是比较成功的.这一点在今后的教学中还可以延续.2.在学生自主学习与尝试展示的过程中,采用事前精心设计的连续追问的方式,可以起到打通思维,贯通知识,加深理解的作用.1.2.1 有理数一.教学目标知识与技能:理解有理数的意义;能把有理数按要求分类;了解0在分类中作用. 过程与方法:初步了解分类的思想方法,能正确地对有理数进行分类. 情感、态度与价值观:在体系中理解知识的内涵,在分类中了解概念之间的联系,在学生的头脑中初步建立起对立与统一的思考方法. 重点难点重点:理解有理数的分类方法. 难点:掌握有理数的两种分类,避免混淆.二.精讲预设 1.在罗列出所学过的有理数,并对有理数给出定义之后,明确提出“你能把所有的这些有理数作出分类吗?” 的问题.2.在让学生充分尝试对有理数作出分类之后,讲解数学学习的效益与分类讨论的标准问题. 数学学习的效益,不但体现在数学知识与数学方法的掌握上,更体现在对数学数学思想方法的理解与利用上,这才是数学学习最重要的价值所在. 分类讨论就是一种重要的数学学习方法.在分类时首先要确定分类的`标准,其次要注意遵循不重复、不遗漏的原则.3.在解把有理数填入汇编圈的习题时,会出现哪些问题?原因何在?怎么解决?①在画汇编圈时忽略省略号; ②在填分数汇编时,把遗漏有限小数和无限循环小数; ③把无限循环小数误成分数.、补充分类练习,采用《鼎新教案》P10例2,以加深学生对分类讨论的理解三.教学反思 1.这是学生在初中数学学习中第一次接触分类思想,课本在这方面的处理太过简略,几乎到忽略不计的地步.为了弥补教材的不足,有必要加以补充. 2.因为有理数的概念在本章教学的开篇就与学生进行过比较深入的讨论,因此本节教学的重点还是以放到对分类的标准与原则上为宜,在这方面对学生进行训练的后续教学效益应该是比较高的,今后还应坚持.1.2.2数轴一.教学目标知识与技能:了解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点表示的数. 过程与方法:通过对数轴的学习体会数形结合的数学思想. 情感、态度与价值观:通过对数轴的直观认识,对数形结合思想的体会,认识不同事物之间的内在关系,感受数学与生活的联系. 重点难点重点:数轴的概念. 难点:数轴的画法与应用. 二.精讲预设 1.画数轴注意事项歌诀直线要直切勿曲,原点方向单位齐;右为箭头左出头,无限延伸要留意; (长度) 正负分布须对称,位置长度要适宜.数轴画在格子中,舒展大方贵清晰. (数) (原点)(单位长度) 2.在数轴上表示有理数的方法歌诀先画数轴要素全,数点描成实心圆;注意方向与距离,负数分数思虑全; 点在线上勿飘起,数据标在点上面.3.应用归类.明确提出问题,组织学生完成.三.教学反思 1.数轴是学生所接触的数形结合的第一个实例,因为对数轴概念的理解的不足,也因为教学中对数轴画法的练习设计数量偏少,导致形形色色的画法上的问题.对此一方面要在后续教学中加以弥补,另一方面在修改导学案的时候要对这一环节予以加强. 2.在数轴上表示分数与小数,尤其是负分数与负小数时,学生出现了较多的错误,方向性的错误有,距离上的错误更多.对此要反复加以强调与来练习.1.2.3相反数一.教学目标知识与技能:借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系,给出一个数,能说出和写出它的相反数. 过程与方法:经历操作、对比,发现、明确提出、解决问题的过程,从形和数两个不同的侧面来理解相反数的意义,领会数形结合的思想,培养分析问题与解决问题的能力. 情感、态度与价值观:让学生充分参与问题的解决过程,体验参与的快乐与成就感. 重点难点重点:相反数的概念. 难点:相反数的识别与理解.二.精讲预设 1.如何理解“两点关于原点对称”? 位置关系,数量关系.2.如何理解互为相反数的概念? “只有符号不同”,什么必须相同?3.怎样表示一个数的相反数? 在一个数的前面添上“—”时,要注意哪些问题?①如果数不带符号,直接在数的前面添加“—”号; ②如果数本身带有符号,首先要用括号将这个数括起来,再在括号前前面; ③如果数是几个数的和或差的形式,参照第②条处理;4. 的相反数怎样表示? 的相反数怎样表示? 的相反数呢?你能明确提出更复杂的问题并自身解决吗?这里面的规律是什么?三.教学反思1.相反数是相对简单的概念,对于这个简单的知识,通过从形到数的认识过程,可以培养学生的数学认识能力,对此如果重视不够,将是一个损失.2.相反数的表示方法其实是一个有一定难度的问题,解决的最好方法不是直接教给学生要注意什么,而是与学生一起探讨解决的方法.让学生参与解决问题的过程,也许是解决问题的最有效的方法.1.2.4 绝对值一.教学目标知识与技能:理解绝对值的意义,会求一个数的绝对值;会比较两个有理数的大小. 过程与方法:通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.通关对有理数大小比较的学习,体验数形结合的数学思想. 情感、态度与价值观:在充分的参与中体验数学的美与价值. 重点难点重点:绝对值的意义;有理数的大小的比较. 难点:绝对值的意义与两个负数的大小比较.二.精讲预设 1.串讲相反数和绝对值问题提纲:①相反数的几何意义是什么?(借助数轴解释相反数) ②在数轴上表示互为相反数的两个点的异同点分别是什么?③什么叫做数的绝对值?数的绝对值是什么? ④依据绝对值的定义,怎样求一个数的绝对值?⑤求绝对值的方法体现了什么数学思想方法?(分类讨论)⑥求一个数的绝对值时要注意哪些问题?2.有理数大小比较的方法讲解提纲:⑴试用分类讨论的方法分解有理数大小的比较问题:①比较两个正数的大小; ②比较正数和0的大小; ③比较0和负数的大小; ④比较正数和负数的大小; ⑤比较两个负数的大小.⑵上述问题中,真正需要解决的问题是什么?怎么解决?解决的程序是什么⑶解决一般的有理数大小问题的思维与表达程序是什么?(先分类,后表述) 一看能不能直接比较大小? 二看需不需化简后再比较大小? 三要注意比较结果的表达要求(答案保持数的原有形式与排列顺序).三.教学反思1.诱导学生分析相反数的几何意义的共同特征,从而引出绝对值的概念,借助于知识之间的联系,使新知识在“出场”的时候,就与学生建立起“亲密”的联系.这一点是本节教学的亮点之一.高一数学教案的三维目标2数学课堂教学三维目标的具体内容和层次划分请阐述数学课堂教学三维目标的具体内容和层次划分知识与技能掌握应用,既是课堂教学的出发点,又是课堂教学的归宿。
下学数学教案模板高中
下学数学教案模板高中
学科:数学
年级:高中
课时:1课时
教学目标:
1. 了解一元二次方程的定义和性质;
2. 掌握解一元二次方程的一般方法;
3. 能够应用解一元二次方程的知识解决实际问题。
教学重点:
1. 一元二次方程的定义和性质;
2. 解一元二次方程的一般方法。
教学难点:
1. 能够灵活运用解一元二次方程的知识解决实际问题。
教学准备:
1. 教学课件;
2. 教学习题。
教学过程:
1. 导入(5分钟):通过一个实际问题引入一元二次方程的相关概念,激发学生的学习兴趣。
2. 讲解(15分钟):讲解一元二次方程的定义和性质,以及解一元二次方程的一般方法,示范几道例题。
3. 练习(20分钟):学生进行相关练习,巩固所学知识,解决一元二次方程的问题。
4. 总结(5分钟):梳理一元二次方程的解题方法和注意事项,强调解题思路和技巧。
5. 课堂小结(5分钟):概括本节课的重点内容,提出下节课预习任务。
教学反思:
通过本节课的教学,学生对一元二次方程的概念和解题方法有了初步的了解和掌握。
在今后的教学中,要注重引导学生多进行实际问题的应用训练,提高他们的解题能力和综合素质。
高一数学下学期教学计划
高一数学下学期教学计划高一数学下学期教学计划(精选12篇)日子在弹指一挥间就毫无声息的流逝,又迎来了一个全新的起点,不妨坐下来好好写写计划吧。
计划到底怎么拟定才合适呢?以下是店铺收集整理的高一数学下学期教学计划,仅供参考,欢迎大家阅读。
高一数学下学期教学计划篇1一、上学期教学回顾高一共四个教学班,共计160余人。
杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。
其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。
学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。
期末由王山任(三)班、(四)班的数学老师。
上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。
二、本学期的措施及打算1.一周学习早知道。
明确目标更能确定努力的方向。
为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。
不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。
2.落实每周测试过关制。
周测内容与一周学习目标及一周的讲授内容紧密相连。
未尽力而又没有过关的学生将按事先说明的措施给予处罚。
以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。
做到让学生每周学习过程精细化。
3.根据学生学力状况进行分层次的培优补差。
三、教学进度安排周次,学习内容目标要求1. 必修4 第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化2. 军训3. 第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。
4. 第5节:余弦函数,第6节:正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质5. 第7节:xAsiny的图像,第8节:同角的基本关系。
图像变换规律,同角三角函数的基本关系及其运用。
章节复习,章节过关测试。
6. 第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算7. 第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。
高中数学下学期教案模板
高中数学下学期教案模板
主题:数学下学期教案
教学目标:
1. 熟练掌握下学期所学数学知识点。
2. 培养学生解决数学问题的思维能力和实际运用能力。
3. 培养学生良好的数学学习习惯和自学能力。
教学内容:
1. 几何学:三角形的性质,直线与圆的性质,平面向量。
2. 概率论:随机事件,条件概率,排列组合。
3. 数列与数学归纳法:等差数列、等比数列,递推数列,数学归纳法。
教学重点难点:
1. 三角形的相似性质的掌握和应用。
2. 概率论中的条件概率的理解和计算方法。
3. 数学归纳法的理解和应用。
教学方法:
1. 讲授:向学生讲解知识点,并示范解题方法。
2. 练习:让学生进行相应的练习,巩固所学知识。
3. 实践:引导学生应用所学知识解决实际问题。
教学评估:
1. 日常作业:布置相关数学作业进行日常评估。
2. 小测验:进行定期小测验检验学生对知识点的掌握程度。
3. 期中期末考试:进行期中期末考试,检验学生对整个学期数学知识的掌握水平。
教学资源:
1. 教科书:参考教科书上的相关知识点。
2. 网络资源:利用互联网资源进行教学辅助。
3. 数学工具:尺规、计算器等数学工具的利用。
教学安排:
每周三节数学课,一节理论课,一节练习课,一节实践课。
教学反馈:
定期收集学生的学习情况反馈,并根据学生反馈做出相应调整。
7.2.1三角函数的定义+教学设计2023-2024学年高一下学期数学人教B版(2019)必修第三册
教学设计题目三角函数的定义第 1 课时内容和内容解析内容本节内容主要包括三角函数的定义,根据定义求任意角的三角函数,判断三角函数在各象限的符号。
内容解析三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学和物理、天文等其他学科的基础。
整体上任意角三角函数知识体系的建立,与其他基本初等函数类似,强调以周期变换为背景,构建从从抽象研究对象(即定义三角函数概念)到研究它的性质图像再到实际应用的过程。
学情分析学生在以前学习基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,而三角中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,而是角与x,y直接对应,无需计算。
目标和目标解析目标1.通过分析问题情境中摩天轮离地面高度问题,体会用坐标定义任意角三角函数的必要性,体会由特殊到一般的归纳思想,发展数学抽象和逻辑推理的学科素养;2.经历任意角三角函数定义的产生过程,理解任意角三角函数的定义,发展逻辑推理的学科素养;3.会运用定义求任意角的三角函数值、会判定给定三角函数值的符号,发展数学运算的学科素养.目标解析1、学生能如了解基本初等函数的背景那样,了解三角函数是刻画现实世界中“周而复始”变化规律的数学工具;2、学生能根据定义得出三角函数在各象限取值的符号规律。
教学重点1.任意角三角函数的定义;2.依据定义求三角函数值;3.判定三角函数值的符号.教学难点任意角三角函数定义的建构过程以及三角函数的对应关系。
教学方法分析本节课以新课标教学理念为知道,倡导积极主动、勇于探索的学习方式,采用情境导入借助多媒体的运用,让学生理解三角函数的背景及定义的构建过程。
教学过程设计教师活动与任务设计学生学习活动与任务解决设计意图或评价目标环节一创设情境任务一、情境导入本章导语中提到“天津之眼”的天津永乐桥摩天轮,设其半径为r m,中心离地面高度为,从水平位置B点出发,设半径AB转过的角度为,一、学生独立思考完成,展示答案:,,并作解释说明,进而猜想:.二、师生共研当点B在水平位置上方时,任意角三角函数定义的建构过程是本节课的难点,如何自然地引入坐标,使学生体会到用坐标定义的必要性和问题1:当时,B 点离地面的高度h如何表示?当呢?猜想当角为任意角时,h与之间的关系式如何表示?问题2:随着摩天轮的转动,角从最初的锐角推广到任意角,对任意角,该如何定义呢?这就是本节要学习的内容,任意角三角函数的定义.上述问题的猜想是否合理呢?我们共同分析:问题3:上述式子中,我们能否找到一个量替代,使上述形式更简单?它的绝对值与相等,在水平位置上方为正,下方为负.,当点当点B在水平位置下方时,,所以,结合猜想,得到,即.三、学生活动:学生思考后回答,引入直角坐标系,用点B的纵坐标y替代,所以.合理性是设置该问题情境的原因,并且通过摩天轮周而复始的旋转,让学生感受三角函数的背景就是周而复始的运动。
高一数学复习教案通用5篇
高一数学复习教案通用5篇高一数学复习教案通用5篇高一数学教案怎么写。
如果教师有一份明确的说课稿,将会大大提升教学效率,提升课堂活跃性,提升学生学习兴趣。
下面小编给大家带来关于高一数学复习教案,希望会对大家的工作与学习有所帮助。
高一数学复习教案(篇1)高一第一学期是初中向高中的重要转折点,学生能否在短期内快速适应高中英语学习是摆在我们面前的重要任务,特制定高一英语教学计划如下:一、指导思想以学校工作计划为指导思想,全面贯彻落实新课程改革和素质教育的精神,落实学科教学常规,营造良好的教研氛围,不断改革课堂教学,探究科学有效的教学形式。
针对高一新生普遍英语底子差,基础薄的实际,打算在高一起始阶段的英语教学中,本着低起点,爬坡走,抓习惯的原则,长期不懈地抓好学生的学习英语的的兴趣和习惯养成。
在本学期的英语教学中,要坚持以下理念的应用:1、坚定不移地突出学生主体,让学生成为学习的主人。
2、面向全体学生,关注每个学生的情感,激发他们学习英语的兴趣,帮助他们建立学习的成就感和自信心。
3、尊重个体差异,让学生在老师的指导下构建知识,提高技能,磨练意志,活跃思维,展现个性,发展心智和拓展视野;4、让学生在使用英语中学习英语,让他们在使用和学习英语的过程中,体味到轻松和成功的快乐。
二、工作重点全面做好初高中衔接工作初中和高中在教学对象、教学内容、教学要求、教学方式和学习方式方面均存在着一定的差异,因此,帮助高一新生了解这些差异,引导他们尽快适应高中的学习与生活,是摆在新学期高一教师面前的迫在眉睫的任务。
具体来说我们要做好以下工作:知识衔接(词汇补充、语法回顾)。
在开新课之前,拿出一周左右的时间搞好高初中之间的词汇衔接和语法衔接,为开新课做好准备。
1、培养习惯,打好基础。
培养基础与指导学法是一致的,培养习惯的过程也是打下扎实基础的过程。
高一起始教学阶段,除重视基础知识的落实巩固,基本技能的培养训练外,最主要的是培养良好的学习习惯和正确的学习方法。
高一数学教学设计课件大全6篇
高一数学教学设计课件大全6篇高一数学教学设计课件大全6篇高一数学的课件很有意义的。
语文能力是学习其他学科和科学的基础,也是一门重要的人文社会科学,是人们相互交流思想等的工具。
下面小编给大家带来关于高一数学教学设计课件大全,希望会对大家的工作与学习有所帮助。
高一数学教学设计课件大全(篇1)时光飞逝,转眼间一学期已经结束,我的教学工作已落下帷幕,这一学期我担任的是高一年级7班与7班两个班的数学教学工作。
从入学情况来看这两个班的数学基础都不是很好。
只不过8班比7班的情况稍好一点。
为了让学生顺利的从初中数学学习过渡到高中数学学习,我与我们全体高一数学组的同们做了大量的工作如:每周集体备课发挥集体的力量,一个月进行两次周考一次月考,重抓学生的试卷分析,让学生在一次次的进步中找到学习数学的乐趣,从而树立信心。
回想半年的工作,感觉有成功也有不足,现本人就从政治思想方面、教育教学方面和工作考勤方面做如下总结:一、政治思想方面:本学期,本人认真学习新课改的教育理论,认真钻研课标,不断学习和探索适合自己所教学生的教学方法,本着:“以学生为主体”的原则,重视学生学习方法的引导,帮助学生形成比较完整的知识结构,同时本人积极参加校本培训,并做了大量的探索与反思。
并积极参与听课、评课,虚心向同行学习教学方法,博采众长,不断的提高自己的理论水平和教育教学水平,以适应教育的发展,时刻以做为一个优秀数学教师应该具备的条件来要求自己,努力做到更好。
二、教育教学方面:要提高教学质量,关键是把握住重要的课堂45分钟。
为了上好每一堂课,我坚持做到以下几点1、认真做到全面的备课新课改使得原来简单的写写教案,列列知识点就算是备课的方法再也不能适应新时期的教学的要求了,所以我们的备课要认真做到如下三个方面:⑴、备教材:认真钻研教材,对教材的基本思想、基本概念吃透,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
高一数学教案范文5篇
高一数学教案范文5篇对于高一的学生来说,高中数学还是有一定的难度的,老师应该怎么制作教案,带领他们尽快适应高中数学呢?今天在这给大家整理了(高一数学)教案大全,接下来随着一起来看看吧!高一数学教案(一)教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演变延伸.教学过程:一、问题情境1.复习对数函数的性质.2.回答下列问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的.定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是.(3)函数y=log (x2-6x+17)的值域.(4)函数的值域是_______________.例2 判断下列函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.751,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).2.函数y=lg( -1)的图象关于对称.3.已知函数(a0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与(方法)小结(1)借助于对数函数的性质研究对数型函数的定义域与值域;(2)换元法;(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学教案(二)教学类型:探究研究型设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.教学过程:一、片头(20秒以内)内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。
备课教案数学高中模板下册
备课教案数学高中模板下册
学科:数学
年级:高中
册数:下册
教学内容:函数的应用
时间:1课时
教学目标:
1. 了解函数的定义和性质;
2. 掌握函数的应用,能够解决实际生活中的问题;
3. 培养学生的逻辑思维能力和问题解决能力。
教学重点:
1. 函数的定义和性质;
2. 函数的应用。
教学难点:
1. 实际问题与函数的联系;
2. 如何利用函数解决实际问题。
教学准备:
1. 教材:高中数学下册;
2. 教学工具:黑板、彩色粉笔、投影仪。
教学过程:
1. 导入:通过一个生活中的例子引入函数的概念,让学生了解函数在实际生活中的应用。
2. 概念讲解:介绍函数的定义和性质,包括定义域、值域、奇偶性等。
3. 实例分析:通过几个实际问题,引导学生如何建立函数模型,并利用函数解决问题。
4. 练习与检测:布置相关练习作业,检测学生对函数的掌握程度。
5. 总结与拓展:对本节课的内容进行总结,并展开相关的拓展讨论,引导学生进一步理解
函数的应用。
教学反思:
通过本节课的教学,学生能够掌握函数的定义和性质,初步理解函数在实际生活中的应用,培养学生的解决问题的能力和思维能力。
在以后的教学中,需要进一步引导学生将函数应
用于更复杂的实际问题中,提高他们的数学建模能力。
同时,需要关注学生的学习兴趣,
设计更具吸引力的教学方法和内容,激发他们对数学学习的热情。
921总体取值规律的估计教学设计-2023-2024学年高一下学期数学人教A版
9.21总体取值规律的估计教学设计吴紫鑫1.实际问题我市政府为了减少水资源的浪费,计划对居民生活用水费用实施阶梯式水价制度,即确定一户居民月均用水量标准a,用水量不超过a的部分按平价收费超出a的部分按议价收费.问题1:现在我们调查了100组数据,为了确定用水量标准a,我们需要了解全市的用水情况。
那么我们是采用全面调查还是抽样调查合适?2.收集数据自主探究:阅读课本193页194页回答以下问题。
问题1:制作频率分布表、画频率分布直方图的步骤是什么?问题2:怎样求极差?极差为一组数据中最大值与最小值的差.样本观测数据的最大值为28.0t,最小值为1.3t,所以极差为:28.01.3=26.7问题3:如果将上述100个数据按组距为3进行分组,那么这些数据共分为多少组?26.7÷3=8.9.因此可以将数据分为9组.追问1:按组距为5进行分组,那么这些数据共分为多少组?问题4:组距为3时可以分为哪9组?[1.2,4.2),[4.2,7.2),…,[25.2,28.2]问题5:列频率分布表。
怎样求每组对应的频率?问题6:频率分布直方图中的纵坐标是什么?怎样求?并在坐标系中画出频率分布直方图。
追问1:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积总和为多少?例1.从某小区抽取100户居民用户进行月用电量调查,发现他们的用电量都在50~350 kW·h之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示.(1)直方图中x的值为?(2)在被调查的用户中,用电量落在区间[100,250)内的户数为?解.(1)根据频率和为1,可知:(0.002 4+0.003 6+0.006 0+x+0.002 4+0.0012)×50=1,计算得x=0.004 4.(2)(0.003 6+0.006 0+0.004 4)×50×100=70.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高一下学期数学教案设计【篇一】目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题【篇二】一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.五、教学重点和难点1.教学重点理解并掌握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六、教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。
让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.3.预期效果本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.七、教学流程设计(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课.设计意图自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.(二)新知探究1.让学生发现300角的终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系.设计意图由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.(三)问题一般化探究一1.探究发现任意角的终边与的终边关于原点对称;2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;3.探究发现任意角与的三角函数值的关系.设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值.(1).;(2).;(3)..喜悦之后让我们重新启航,接受新的挑战,引入新的问题.(五)问题变形由sin3000=-sin600出发,用三角的定义引导学生求出sin(-3000),Sin1500值,让学生联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.学生自主探究【篇三】高一下学期数学教案设计教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.。