共聚合反应

合集下载

自由基共聚合反应

自由基共聚合反应
自由基共聚合反应涉及到复杂的化学反应机理,通过研究自由基共聚合反应的动力学过 程,可以深入了解聚合反应的机理和动力学行为。
反应条件优化
通过对自由基共聚合反应的动力学研究,可以优化聚合反应的条件,提高聚合效率和产 物的性能。
动力学模型建立
基于自由基共聚合反应的动力学研究,可以建立反应动力学模型,用于预测聚合反应的 过程和结果。
特点
自由基共聚合反应具有高分子化合物 的多样性、可调控性和功能性等特点 ,广泛应用于高分子合成领域。
自由基共聚合反应的重要性
合成高分子材料
自由基共聚合反应是合成高分子 材料的重要手段之一,通过调节 单体种类和聚合条件,可以获得 具有特定性能和用途的高分子材 料。
促进高分子科学的
发展
自由基共聚合反应的研究有助于 深入了解高分子化合物的结构和 性能,推动高分子科学的发展。
链引发
链引发是自由基共聚合反应的起 始步骤,涉及到引发剂的分解和
自由基的产生。
引发剂在加热或光照条件下分解, 产生自由基活性中心,这些自由 基能够与单体分子结合,形成单
体自由基。
链引发阶段需要能量输入,以克 服活化能垒,启动聚合反应。
链增长
链增长是自由基共聚合反应的核心步 骤,涉及单体分子在自由基活性中心 上的加成反应。
材料科学
新材料开发
01
自由基共聚合反应可以用于开发新型高分子材料,如功能性高
分子、生物相容性高分ቤተ መጻሕፍቲ ባይዱ等。
复合材料
02
通过自由基共聚合反应可以将两种或多种材料结合在一起,制
备出具有优异性能的复合材料。
高分子膜
03
利用自由基共聚合反应可以制备高分子膜,用于分离、过滤和
渗透等应用。

高分子化学教材第五章连锁共聚合反应

高分子化学教材第五章连锁共聚合反应

高分子化学教材第五章连锁共聚合反应5.1共聚物的命名和分类连锁聚合反应中,由一种单体进行的聚合反应称为均聚反应,所得聚合物称为均聚物;而由两种或两种以上单体参与的聚合反应称为共聚反应,所得聚合物称为共聚物或共聚体;两种单体的共聚称为二元共聚,两种以上单体的共聚称为多元共聚。

共聚合反应是高分子合成工业中广泛应用的一种方法,改变单体种类、改变单体间相对量和结构单元间连接方式可以控制共聚物的性能,以适应实际需要,因此共聚合反应为新型材料的开发开辟了广阔的途径;共聚合反应还可以扩大使用单体的X围,有些单体本身不能发生均聚合反应,不能形成均聚物,但却可以和适当的其它单体进行共聚合,因而扩大了制造聚合物的原料来源。

另外,研究共聚合反应和共聚理论可以了解聚合物结构与性能之间的关系,测定各种单体和不同活性中心(活性种)的反应能力,为高分子设计提供实践和理论依据。

本章主要讨论由两种单体共聚合的二元共聚体系。

5.1.1共聚物的分类根据两种单体的结构单元在共聚物分子链中的排布方式,可将共聚物分为五类:1.无规共聚物:共聚物分子链中两种结构单元M1和M2的排列次序是无规的,M1或M2连续的单元数不多,有一个到几十个不等,按一定的几率分布。

M1M1M2M1M1M1M2M1M2M2M2M1M2苯乙烯和丙烯腈、氯乙烯和乙酸乙烯酯的自由基共聚就属于这一类型。

2.交替共聚物:共聚物分子链中两种结构单元轮番交替地排列着。

M1M2M1M2M1M2M1M2M1M2M1M2M1M2苯乙烯和马来酸酐的自由基共聚合属于这一类型。

3.嵌段共聚物:共聚物分子链中两种结构单元各自排列成段,两种均聚物链段又相互连接,每段可由几百至几千结构单元组成。

M1M1M1M1M2M2M2M2M1M1M1M1M2M2M2M2嵌段共聚物可分为二嵌段型(AB型)、三嵌段型(ABA型或ABC型)以及多嵌段型(-[AB]n-型)。

4.接枝共聚物:一种支链型聚合物,即在一种聚合物主链上接上另一种聚合物链作为支链所形成的共聚物,而主链或支链本身也可以是共聚物。

共聚合反应-化工

共聚合反应-化工

④ 共聚物的聚合度很大,其组成由链增长反应所
决定,链引发和链终止对共聚物组成无影响。
⑤ 稳态,链引发和链终止速率相等,自由基 总浓度不变,两种链自由基 ( M1•和M2 • ) 相互转变速率相等,两种自由基浓度不变。
以M1、M2代表两种单体,以~M1•、~M2• 代 表两种链自由基。二元共聚时就有2种链引 发、4种链增长、三种链终止。
共聚物中M1和M2单元的摩尔分数:
[M1 ] f1 1 f2 [M1 ] [M 2 ]
d [M1 ] F1 1 F2 d [M1 ] d[M 2 ]
则共聚方程式可以转化为以摩尔分数的形式 :
r1 f1 f1 f 2 F1 r1 f12 2 f1 f 2 r2 f 2 2
M1和M2两种单体单元有规则的交替分布:
(3) 嵌段共聚物(block copolymer)
M1和M2两种单体单元各自组成长序列链段相互连结而成
(4) 接枝共聚物(graft copolymer) 以一种单体形成的分子链为主链,在主链上连接一条或多条 另一单体形成的支链
共聚物的命名
在两单体名称之间以横线相连,并在前面冠以“聚”字, 或在后面冠以“共聚物” ,例如: 聚苯乙烯-丁二烯 或 苯乙烯-丁二烯共聚物
-d[M1] / dt = k11[M1*][M1] + k21[M2*][M1] M2仅消耗于反应(II)和(IV): -d[M2] / dt = k12[M1*][M2] + k22[M2*][M2] 两种单体的消耗速率比等于两种单体进入共聚物的速率比, 共聚物组成d[M1]/d[M2]:
d [M1] = d [M2]
聚苯乙烯-g-聚甲基丙烯酸甲酯 或 苯乙烯-甲基丙烯酸甲酯接枝共聚物

第二章第六节链式共聚合聚合反应1

第二章第六节链式共聚合聚合反应1

F1-f1曲线特征:其F1-f1曲线为一对角线。

ii/ r1<1, r2 < 1: 在这种情形下,两种单体的自聚倾向小于共聚 倾向,在共聚物分子链中不同单体单元相互连接 的几率>相同单体单元连接的几率,得到无规共 聚物。 F1-f1曲线特征:其显著特征是F1-f1曲线与对角 线相交,在此交点处共聚物的组成与原料单体投 料比相同,称为恒分(比)点。把F1=f1代入摩尔 分数共聚方程可求得恒分点处的单体投料比。
根据假设(2),由于单体仅消耗于链增长反应: -d[M1] / dt = k11[M1*][M1] + k21[M2*][M1] -d[M2] / dt = k12[M1*][M2] + k22[M2*][M2] 由于单体的消耗全部用于共聚物的组成,因此共聚物分子中 两单体单元的摩尔比等于两种单体的消耗速率之比: d[M1] k11[M1*][M1] + k21[M2*][M1]
i/ 对于均聚来说,无共轭作用的单体的增长速率 常数大于有共轭作用的单体; ii/ 对于共聚来说,无共轭稳定性的自由基容易与 有共轭作用的单体反应,而有共轭作用的自由基 与无共轭作用的单体发生反应困难。(故苯乙烯 与醋酸乙烯酯不能很好地共聚)。 共聚时,都有共轭稳定作用的单体或者都无共 轭稳定作用的单体容易反应。

3. 补充单体保持单体组成恒定法 由共聚方程式求得合成所需组成F1的共聚物对 应的单体组成f1,用组成为f1的单体混合物做起始 原料,在聚合反应过程中,随着反应的进行连续 或分次补加消耗较快的单体,使未反应单体的f1保 持在小范围内变化,从而获得分布较窄的预期组 成的共聚物。




6.2.5 自由基共聚反应 大多数具有使用价值的共聚反应都是自由基 共聚反应,这是由于: (1)能进行自由基共聚反应的单体多; (2)自由基共聚产物的组成控制比其它类型的共 聚反应更容易; (3)适宜单体对的种类多且便宜易得。

第5章共聚合反应

第5章共聚合反应

1 k 21 r2 k 22
∵ 1/r1 一种自由基和另一种单体反应 的速率常数与该自由基加成到本单体的 反应速率常数之比。 ∴ 称为单体相对活性。1/r是不同单体 与同一自由基的反应速率常数之比。
1/r1 大→M2活性大; 1/r2大→M1 活性大。
1/r1比较单体2的活性大小: 1/r2比较单体1的活性大小:
r1 = k11/k12,其中k11相当于单体M1的kp,如果已知r1和kp, 就可以求得k12,就可以比较自由基的相对活性。k12=k11/r1
高分子化学
第7章 共聚合
7.3-7.7
从取代基的影响看,单体活性与链自由基的活性次序恰 好相反,但变化的倍数并不相同。 取代基对自由基活性的影响比对单体影响大得多。 不难看出,苯乙烯的活性为醋酸乙烯酯活性的50~ 100倍,而醋酸乙烯酯自由基的活性则是苯乙烯自由基的 100~1000倍。 由此不难理解为什么醋酸乙烯酯的聚合速率远远大 于苯乙烯。 不同烯类单体之间的差别在于取代基的不同。取代基 的影响无非为共轭效应、极性效应和位阻效应三方面。
Mf1 (M dM)(f1 df 1 ) F1dM
(5-27)
整理,并略去dMdf1双重无穷小量,得到:
Mdf1 (F1 f1 )dM
积分得
高分子化学
f1 df dM M 1 ln M0 M M 0 f10 F1 f1 M
(5-28)
第5章 共聚合反应
5.3-5.4
0 M1 M1 f10 (1 C)f1 F1 M0 M C
(5-32)
高分子化学
第5章 共聚合反应
5.3-5.4
共聚产物需用平均组成表示。 共聚物中平均组成 F 与C的关系如下:

高分子化学第五章 共聚合

高分子化学第五章 共聚合

4. r1<1,r2 < 1,有恒比点非理想(曲线2)
恒比点
A
A
r1=0.6 r2=0.3
r1=0.5 r2=0.5
F1~f1 曲线
恒比点的计算:
定义:与对角线有交点A,恒比点,:
(F1)=(f1)A, d[M1]/d[M2] = [M1]/[M2], 恒比点组成:
[M1] 1 r2 , [M 2 ] 1 r1
k12[M 2 ]
k 22
k12[M 2 ]2 k 21[ M 1 ]
同除k12k21并令
[M1] • k11k 21[M1] k12k 21[M 2 ] [M 2 ] k12k 21[M1] k 22k12[M 2 ]
r1
k11 k12
r2
k 22 k 21
[M1] • r1[M1] [M 2 ] [M 2 ] [M1] r2[M 2 ]
r1≠r2。共聚曲线不再呈点对称型
5. r1>1,r2>1
苯乙烯(r1=1.38)与异戊二烯(r2=2.05)
讨论:
1) 存在恒比点其共聚物组成曲线类似于 r1>1,r2<1的那种情况,只是形状 和位置恰恰相反;
2) r1 > 1, r2 > 1,两单体均聚倾向大于共 聚,当r1, r2 比“1”大很多时,倾向于 “block”,链段的长短取决于r1 和r2的 大小,一般都不长。
Mayo-Lewis方程
Mayo-lewis方程
d[M1 ] [M1 ] r1[M1 ] [M 2 ] d[M 2 ] [M 2 ] [M1 ] r2 [M 2 ]
式中各项意义:
1. d[M1]/d[M2]: 瞬时形成的聚合物组成
2. [M1]/[M2]:瞬时单体组成

第五章 共聚合反应

第五章 共聚合反应

(5—4)
(5—5)
满足上述稳态假设的要求,须作两个条件:一是M1自由 基和M2自由基的引发速率分别等于各自的终止速率,即自 由基均聚中所做的稳态假设;二是两种自由基相互转化速率 相等。即:
R iM1 R t11 R t12 0
R iM2 R t22 R t12 0
. k12 [M1 ][M2 ] k 21[M.2 ][M1 ]
k11 [M1 ] [M2 ]} d[M1 ] k12 (5—10) d[M 2 ] [M ]{k 22 [M ] [M ]} 2 2 1 k 21 [M1 ]{
(5—3)
令k11/k12 = r1, k22/k21 = r2,则:
d[M1 ] [M1 ] r1[M1 ] [M2 ] d[M2 ] [M2 ] r2 [M2 ] [M1 ]
(5—6) (5—7) (5—8) (5—9)
17
. k 12 [M1 ][M2 ] [M ] k 21 [M1 ] . 2
将式(5—9)代入式(5—3)中,并整理,得到:
. k [M ][M2 ] [M.2 ] 12 1 (5—9) k 21 [M1 ]
. d[M1 ] k11[M12 [M1 ][M2 ] k 22 [M.2 ][M2 ]
13
5.2.2 自由基共聚合反应机理
自由基共聚合反应的基元反应与均聚相同,也可分为链引 发、连增长、链终止三个阶段。二元共聚涉及两种单体,因此 有两种链引发、四种链增长和三种链终止。(符号的含义)
链引发
R + M1 R + M2 ki1 ki2 RM1 RM2 k11 k12 k21 k22 kt11 kt12 kt22 M1 M2 M1 M2

第三节 共聚反应及分类

第三节 共聚反应及分类

第三节共聚反应及分类一、共聚合反应的特征1. 共聚合及其共聚物的概念均聚合(homopolymerization):一种单体参加的反应,形成的产物为均聚物(homopolymer) 。

均聚物的大分子链上含有一种结构单元。

如聚氯乙烯(PVC)为均聚物> 共聚合(copolymerization):两种或多种单体共同参加的加成聚合反应,形成的聚合物分子链中含有两种或多种单体单元,该聚合物称为共聚物(copolymer)。

如根据参加共聚反应的单体数量,共聚反应可分为三种类型:> 两种单体参加的共聚反应称为二元共聚,理论研究得相当详细,本章的研究重点> 三种单体参加的共聚反应称为三元共聚,多种单体参加的共聚反应称为多元共聚共聚合反应与缩聚反应(condensation polymeriztion)的区别:缩聚反应:官能团间的反应,机理往往属于逐步聚合,如聚酯和尼龙-6,6的合成,大多是含不同基团的两种单体的缩合反应,形成的缩聚物也由两种结构单元组成,但不称做共缩聚。

同种基团的两种单体与另一种基团单体的缩聚才称做共缩聚。

注意:共聚合反应这一名称多用于连锁聚合的范畴,如自由基共聚(自由基机理进行聚合)、离子共聚等。

2.共聚物的类型与命名共聚物的分类:对于二元共聚,按照两种结构单元在大分子链中的排列方式不同,共聚物分为四种类型:> 无规共聚物(random copolymer):大分子链上M1、M2结构单元呈无规则排列,自由基共聚物大多属于无规共聚物,如VC-VAc。

> 交替共聚物(alternating copolymer):大分子链上M1、M2单元交替排列,即严格相间,如 St-MAn 溶液共聚所得的聚合物属于交替共聚物。

> 嵌段共聚物(block copolymer):大分子链是由较长的链段M1和另一较长的链段M2构成,M1、M2链段成段出现根据两种链段在分子链中出现的情况,又有:AB型 ABA型 (AB)n型,如苯乙烯(S)-丁二烯(B)-苯乙烯(S)形成三嵌段共聚物(SBS),即SBS热塑性橡胶属于嵌段共聚物> 接枝共聚物(graft copolymer):共聚物主链由单元M1组成,并接枝另一单元M2组成的支链,如高抗冲性的聚苯乙烯(HIPS),它是以聚丁二烯作主链,接枝上苯乙烯作为支链以提高其抗冲性。

高分子化学讲义/共聚反应-第六章

高分子化学讲义/共聚反应-第六章

第六章链式共聚反应本章要点:1)共聚反应和共聚物的类型:按不同重复结构单元在聚合物连中的排列情况,共聚物可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物,共聚反应也相应地进行分类。

2)共聚组成方程和共聚曲线:描述共聚物组成与单体浓度、转化率之间的关系,共聚组成方程的微分式给出了某个时刻生成的共聚物的组成与该时刻单体组成的定量关系,共聚组成方程的积分式给出了在某个时期形成共聚物的平均组成与起始的单体组成和单体总转化率之间的关系。

共聚曲线则是共聚组成方程微分式的图形化。

3)竞聚率和共聚类型:竞聚率为自增长反应速率常数和交叉增长速率常数的比值,反映了单体共聚能力的强弱;依据共聚单体对竞聚率的乘积,共聚可分为理想共聚、无规共聚、交替共聚、非理想共聚和“嵌段”共聚等类型,它们的共聚曲线具有不同的特征。

4)共聚物的序列分布:是共聚物组成不均一性的必然体现,描述了不同长度的同种结构单元的序列在共聚物中所占的比例,包括序列的数量分布和质量分布。

5)自由基共聚:通过自由基共聚竞聚率的研究可以确定结构对单体和自由基活性的影响,这些结构因素主要包括极性效应和共轭效应,其中共轭效应的作用更为显著;由Q-e方程可建立起结构因素和竞聚率之间的半定量关系,可用于竞聚率的估算和共聚类型的推断。

自由基聚合的竞聚率基本不受反应条件的影响。

6)离子共聚:离子共聚基本属于理想共聚,共聚单体的竞聚率受引发剂类型、温度、溶剂和其它聚合条件影响。

本章难点:1)理想共聚模型:活性中心等活性假定、稳态假定、无解聚和聚合物具有很高分子量是理想共聚模型的基本点;活性中心等活性指的是活性中心只与增长链末端单元相关,与增长链的聚合物和其它结构单元无关。

2)共聚组成方程的成立条件和使用范围:共聚组成方程适用于活性中心等活性和无解聚的共聚。

共聚组成方程的微分形式是瞬时状态方程,描述某个时刻共聚物组成与单体组成的关系。

对于某阶段生成的共聚物组成,如果单体浓度变化不显著,则可以共聚组成方程的微分形式进行简化处理,否则需用共聚组成方程的积分式进行处理。

第三章自由基共聚合反应

第三章自由基共聚合反应

知识目标 樉学习掌握自由基共聚合反应的基本概念、基本计算; 樉学习掌握自由基共聚合反应的机理、影响因素。

能力目标 樉能初步运用自由基共聚合的原理对高聚物进行改性; 樉能初步运用自由基共聚合的规律指导双组分共聚物的合成。

第一节 自由基共聚合反应的意义与类型一、自由基共聚合反应的意义 由两种或多种单体共同参加的自由基聚合反应称为自由基共聚合反应,简称共聚反应。

其产物中含有两种或两种以上不同单体链节的聚合物称为共聚物。

如nM1+mM2→~M1M2M2M1M2M2M2M1M1M2M2M1~ 通过自由基共聚合反应,可以改变均聚物的组成和结构,进而改变均聚物的使用性能。

如聚苯乙烯是抗冲击强度和抗溶剂性能都很差的易碎性塑料,因此实际使用受到很大限制。

而将苯乙烯与少量丁二烯共聚,就可以得到高抗冲击聚苯乙烯;将苯乙烯与丙烯腈、丁二烯共聚,就可得到广泛应用的ABS工程塑料;又如通过共聚改善材料的染色性能,黏合性能等。

通过自由基共聚合反应,还可以使本身不能均聚的单体如顺丁烯二酸酐、反丁烯二酸酐、顺丁烯二酸酯、1,2二苯基乙烯等参加共聚反应,扩大了单体范围。

通过自由基共聚合反应,能够测定单体和自由基的相对活性,设计、预测共聚物的性能、组成与结构。

自由基共聚合反应应用非常广泛,产品非常多。

如丁苯橡胶、丁腈橡胶、乙丙橡胶、丙烯酸酯类共聚物、ABS树脂、含氟共聚物塑料、氯乙烯乙烯醋酸乙烯酯三元共聚物等等,都是由自由基共聚合反应合成的。

二、共聚反应的类型 根据参加共聚反应单体的种类多少可以分为:只有两种单体共同参加的二元共聚反应和两种以上单体共同参加的多元共聚反应。

如果按聚合反应的活性中心不同,可以分为自由基型共聚和离子型共聚。

由于多元共聚反应非常复杂,这里着重介绍自由基型二元共聚反应。

离子型共聚在其他章节介绍。

三、共聚物的类型 由二种单体共同参加共聚反应所形成的共聚物,根据两种结构单元在共聚物大分子链的排列方式不同,可以分为以下四种类型。

第3.1-3.2节 共聚反应概述及组成方程

第3.1-3.2节 共聚反应概述及组成方程

主单体
第二单体 乙酸乙烯酯 丙烯 异戊二烯
共聚类型 无规 无规( 无规(配 位聚合) 位聚合) 无规 无规( 无规(阳 离子聚合) 离子聚合)
性能改进和用途 软塑料,增加柔性,用于 软塑料,增加柔性,用于PVC加工 加工 破坏结晶,增加柔性, 破坏结晶,增加柔性,乙丙橡胶 引入双键易于硫化, 引入双键易于硫化,丁基橡胶 25%+75%,增强,丁苯橡胶 % %,增强 %,增强,
Ri1 Ri2
链增长 ~ M 1• + M 1 ~ M 1• + M 2 ~ M 2• + M 1 ~ M 2• + M 2
k11 k12 k21 k22
丁二烯 苯乙烯 氯乙烯 丙烯腈
丙烯腈 丙烯腈 乙酸乙烯酯 衣康酸等
无规 无规 无规 无规
第3.2节 二元共聚物的组成 3.2节
两种单体共聚时,因其化学结构不同, 两种单体共聚时,因其化学结构不同,聚合 活性有差异, 活性有差异,故共聚物组成与原料单体组成往往 不同。共聚过程中, 不同。共聚过程中,先后生成的共聚物的组成也 不一致,因此有些体系后期有均聚物产生, 不一致,因此有些体系后期有均聚物产生,共聚 物组成一般随转化率而变, 物组成一般随转化率而变,存在着组成分布与平 均组成问题。 均组成问题。 有时容易均聚的两种单体难以共聚, 有时容易均聚的两种单体难以共聚,以及不 易均聚的单体却能共聚等情况。 易均聚的单体却能共聚等情况。因此需要对共 聚物组成与原料组成间关系的基本规律进行研 而共聚物组成包括瞬时组成 平均组成、 瞬时组成、 究,而共聚物组成包括瞬时组成、平均组成、 序列分布,是研究的核心问题。 序列分布,是研究的核心问题。
3
第三章 自由基共聚
共聚合反应的特征 二元共聚物的组成 竞聚率的测定与影响因素 单体和自由基的活性 Q-e概念

高分子化学第5章-共聚合反应讲解

高分子化学第5章-共聚合反应讲解

. 1
][M
2
]

k
t12
[M
. 1
][M
. 2
]

2k
t11
M
. 1
2

0
d[M
. 2
]
dt

Ri2

k
12
[M
. 1
][M
2
]

k
21[M
. 2
][M
1
]

k
t12
[M
. 2
][M
. 1
]

2k
t
22
M
. 2
2

0
满足稳态假设的另一条件是两种自由基相互转化速率相等, 即
共 聚
k
12[M
. 1

反应,形成的聚合物称做均聚物。
类型:连锁聚合、逐步聚合。
共聚合反应
定义:由两种或两种以上的单体共同参加的 聚合反应,称做共聚合反应。形成的
聚合物称做共聚物。
共 聚
类型:连锁聚合、逐步聚合。

研究对象:二元共加聚反应。



聚 合
共聚物


和 共
共聚物的分类

无规共聚物
聚 竞聚率


共 影响竞聚率的因素


温度
线
dlnr1 dT

E11 E12 RT 2
式中E11、E12分别为自增长和共增长反应的活化能。
若r1<1,表示k11<k12,即E11>E12。上式右边为
正值,度上升,r1也上升,趋于1。若r1>1,表示k11

第三章-3 共聚与缩聚及其它聚合 [兼容模式]

第三章-3 共聚与缩聚及其它聚合 [兼容模式]

v极性效应(Polarity Effect)
•推电子基使烯类单体双键带负电性,而吸电子基则使其带正
电性,极性相反的单体易共聚,有交替倾向。
•一些难均聚的单体,如马来酸酐、反丁烯二酸二乙酯,能与
极性相反的单体如苯乙烯、乙烯基醚类共聚。
v位阻效应(StericHindrance Effect)
1,1-双取代空间效应不明显,使单体活性提高; 1,2-双取代,有位阻,使k12下降,自由基活性降低。
3.6 共聚反应(Copolymerization)
均聚合(Homo-polymerization):由一种单体参加的聚合反应
均聚物(Homo-polymer):均聚合所形成的产物,含一 种结构单元。
共聚合(Copolymerization): 由两种或两种以上不同单体进行加成聚合的反应
共聚物(Copolymer):共聚合所形成的产物:含有两种 或多种结构单元。不是各个单体各自聚合物的混合物而是两种 或两种以上单体相互间以化学键连接的新型聚合物。
苯乙烯与顺丁烯二酸酐的共聚物就是一个典型的例子
v 嵌段共聚物(Block Copolymer) 较长的M1链段与另一较长的M2链段构成大分子,每链
段有几百至几千个结构单元组成。
如SBS热塑性弹性体:St-Bd-St三嵌段共聚物。
v 接枝共聚物(Graft Copolymer) 其中一种结构单元(如M1)为主链,接枝另一结
逐步聚合反应的重要性
逐步聚合反应可合成: • 大多数杂链聚合物; • 许多带芳环的耐高温聚合物,如聚酰亚胺以及梯 形聚合物; • 许多功能高分子以及许多天然生物高分子; • 无机聚合物几乎都是由此法合成。
2、缩合聚合反应:
1)缩合与缩聚 官能度(f,functionality):一个分子中能参加反应的官能

第五章共聚合反应

第五章共聚合反应

第五章共聚合反应
(2) r1 = r2 = 0
dM dM
1 2
1
F1 = 0.5
交替共聚
(3)r1 > 0 , r2 = 0
dM
M
dM11r1
1
M
当 [M2]>>[M1] 时
2
2
d M1 1 d M2
交替共聚
第五章共聚合反应
或 r1[M1] /[M2] << 1 时, F1=1/2, M1 耗尽后, 共聚合即停止
第五章共聚合反应
3. 当 r1=r2=1; r1=r2=0; r1>0, r2=0及 r1·r2=1 等 特殊情况下,d[M1] / d[M2] = f ( M1/M2 ) 及 F1=f(f1) 的函数关系如何?
解: (1) r1 = r2 = 1
dM M
1
1
d M2 M2
恒比共聚
F1 = f1
单体为第二单体)
交替共聚物链中单体单元严格交替排列。-alt(前后单体Hale Waihona Puke 序无特定规定)第五章共聚合反应
嵌段共聚物:由较长的M1链段和另一较长的 M2链段构成的共聚物大分子
如: AB型、ABA型、ABC型、(AB)n型 (二、三或多嵌段共聚物)二单体先后 次序常表示反应先后。
第五章共聚合反应
接枝共聚物:主链由单体单元M1(A)组成,而 支链则由另一种单体单元M2(B) 组成。P(M1-g-M2)前面的单体构 成主链,后面的单体构成支链。
第五章
共聚合反应
第五章共聚合反应
1. 按大分子的微结构,共聚物可分为哪几种 类型? 它们结构有何差异?在这些共聚物 名称中,对前后单体的位置有何规定?
解:按微结构分类,共聚物可分为无规、交替 接枝、嵌段四种类型。

烯烃的聚合反应和共聚合反应

烯烃的聚合反应和共聚合反应

A 提高机械性能
通过优化共聚物组成和序列结构, 提高其机械性能,如强度、韧性和
耐磨性等。
B
C
D
实现功能化
在共聚反应中引入具有特定功能的单体或 官能团,赋予共聚物新的功能,如导电性、 磁性和生物相容性等。
增强耐候性
通过引入具有耐候性的单体或官能团,提 高共聚物的耐候性,如耐紫外线、耐氧化 和耐化学腐蚀等。
烯烃的聚合反应和共聚合反应
目录
• 烯烃聚合反应基本概念 • 烯烃均聚反应过程分析 • 烯烃共聚合反应过程分析 • 催化剂体系在烯烃聚合中应用 • 实验方法与技术手段 • 工业应用及市场前景展望
01 烯烃聚合反应基本概念
烯烃定义与性质
01
烯烃是一类不饱和烃,分子中含有碳碳双键。
02ห้องสมุดไป่ตู้
烯烃具有较高的反应活性,容易发生加成、氧化、聚合等反应。
共聚物分类
根据共聚物中单体单元的排列方式, 可分为无规共聚物、交替共聚物、嵌 段共聚物和接枝共聚物等。
共聚物组成与序列结构
共聚物组成
共聚物的组成受单体投料比、反应条 件和催化剂等因素影响,可通过调整 这些因素来控制共聚物的组成。
序列结构
共聚物中单体单元的序列结构对其性 能有重要影响,如嵌段共聚物中不同 单体单元的嵌段长度和分布等。
不同烯烃的物理性质(如沸点、熔点、密度等)和化学性质
03
(如反应速率、产物分布等)存在差异。
聚合反应原理简介
聚合反应是指由低分子量的单体通过化学键连接 成高分子量的聚合物的过程。
聚合反应通常包括链引发、链增长和链终止三个 步骤。
聚合反应速率受到温度、压力、催化剂等因素的 影响。
聚合反应类型及特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共 聚 合 方 程
自由基共聚合方程
令f1代表某一瞬间单体M1占单体混合物的摩尔分 数,f2代表M2占单体混合物的摩尔分数。F1代表同一 瞬间单元M1在共聚物中的摩尔分数,F2代表单元M2 在共聚物中的摩尔分数:
f1 1 f 2 [M1 ] [M1 ] [M2 ]
F1 1 F2
M M1 k 21 M2M1 2
R 22 k 22 M M2 2

R 21 k 21 M M1 2

链终止
M M M1M1
kt t 11
1
1
R t11 2k t11 M1

2
M M M2M2
研究核心
共 聚 合 反 应
瞬间组成、平均组成、序列分布。
共 聚 合 方 程
自由基共聚合反应机理
链引发
I R
R M1 k11 RM1
R i1 k i1 R M1

R M2 k12 RM 2
链增长
共 聚 合 反 应
R i 2 k i 2 R M2
基本假设
链自由基的活性与链长无关(等活性假设); 链自由基的活性只取决于末端单体单元的结构,与
共 聚 合 反 应
次末端单元的结构无关; 无解聚反应发生,即反应是不可逆的; 共聚物的聚合度很大,引发和终止反应对共聚物的 组成影响可以忽略不计; 反应体系状态稳定即稳态处理,其等价条件是反应 体系中两种自由基的浓度保持不变,一方面每种自 由基的引发速率和终止速率相等,另一方面两种自 由基相互转变的速率相等。
根据两种链段在分子链中出现的情况,又有 AB型、ABA型、(AB)n型。
接枝共聚物
主链由M1单元构成,支链由M2单元构成。
共 聚 合 反 应
共 聚 合 反 应 和 共 聚 物
共聚物
共聚物的命名
将两种或多种单体名称之间用短划线相连,
并在前面冠以“聚”字。
无规共聚物:前为主单体,后为第二单体;

共 聚 合 反 应

竟 聚 率 、 共 聚 曲 线
竞聚率
竞聚率的测定
曲线拟合法 直线交点法
截距斜率法
积分法
无论采用何种方法测定竞聚率,均会存在 一定的误差,因此不同方法得到的竞聚率会有 差异。
共 聚 合 反 应
竟 聚 率 、 共 聚 曲 线
竞聚率
影响竞聚率的因素
k11 r13 k13
共 聚 合 方 程
自由基共聚合方程
三元共聚组成方程
三种单体的消失速率
d[M1 ] R11 R 21 R 31 dt
d[M 2 ] R 12 R 22 R 32 dt
d[M 3 ] R 13 R 23 R 33 dt
三元共聚物组成微分方程
定义:由一种单体进行的聚合反应称为均聚
反应,形成的聚合物称做均聚物。
类型:连锁聚合、逐步聚合。
共聚合反应
定义:由两种或两种以上的单体共同参加的
聚合反应,称做共聚合反应。形成的 聚合物称做共聚物。
共 聚 合 反 应
类型:连锁聚合、逐步聚合。 研究对象:二元共加聚反应。
共 聚 合 反 应 和 共 聚 物
令R12=R21,R23=R32, R13=R31,则:
M 2 M3 dM1 : dM 2 : dM 3 M1 M1 r12 r13
共 聚 合 反 应
M1 r21 M 2 r21 M3 M 2 r r r12 r23 12 12
r1k
100%
共 聚 合 方 程
自由基共聚合方程
三元共聚组成方程
链引发——3个
链增长——9个
链终止——6个 竞聚率——6个
k11 r12 k12
共 聚 合 反 应
k 22 r21 k 21 k 22 r23 k 23
k 33 r31 k 31
k 33 r32 k 32
d[M1 ] d[M1 ] d[M2 ]
将以上两式代入共聚物组成方程可得以摩尔分数 表示的共聚组成方程:
共 聚 合 反 应
r1f12 f1f 2 F1 2 2 r1f1 2f1f 2 r2f 2
共 聚 合 方 程
自由基共聚合方程
以上两个共聚物组成方程是等同的,前者一般用 于科学研究中,后者用于工程技术方面。它们还可变 换成以质量分数表达的形式。 用[W1]和[W2 ]表示某一瞬间原料混合物中单体M1 和M2的质量浓度,M1′和M2 ′为M1和M2的相对分子质 量,将[M]=[W]/ M′则有:
共 聚 合 方 程
自由基共聚合方程
用ω1表示该瞬间所形成的共聚物中单体单元M1所 占的质量分数,即
dW1 1 100% dW1 dW2
由以上两式得
共 聚 合 反 应
W1 1 W2 1 W1 r W2 1 k r1k W2 2 W1
M2 W2 W r k W1 W2 dW1 W1 M 1 1 1 dW2 W2 M2 W2 r2 W2 k W1 r2 W2 W1 M 1 r1 W1
共 聚 合 反 应
其中k= M2 ′/ M1′
高 分 子 化 学
第一节 第二节 第三节 第四节 第五节
共聚合反应和共聚物 共聚合方程 竟聚率、共聚曲线及共聚物组分的控制 单体和自由基的活性、Q-e概念 离子共聚合
第五章 共聚合反应
第一节 共聚合反应和共聚物
共聚合反应 共聚物
共 聚 合 反 应
共 聚 合 反 应 和 共 聚 物
共聚合反应
均聚合反应
共 聚 合 方 程
自由基共聚合方程
二元共聚组成方程
根据假设四,单体的消耗速率取决于链增长反应:
d[M1 ] R11 R 21 k11 M1 M1 k 21 M M1 2 dt d[M 2 ] R 12 R 22 k12 M1 M 2 k 22 M M 2 2 dt
竞聚率的意义
竞聚率r1和r2是表征单体M1和M2进入共聚物中的能力 大小,是均聚增长速率常数与共聚增长速率常数的比值。 r1=0,k11=0 ,活性端基只能加上异种单体。 r1=1,k11= k12 ,活性端基加上两种单体的能力相同或 两种概率相同。 r1=∞,k11>>k12 ,只能均聚,不能共聚,这种情况较少出 现。 r1<1,k11<k12,共聚能力大于均聚,端基更利于加上异 种单体加成聚合。 r1>1,k11>k12,表示链自由基偏向与同种单体加成聚合。
共聚物
共聚物的分类
无规共聚物
两种单体单元M1、M2无规排列,且M1和M2 的连续单元数较少。
M1M2M2M1M2M1M2M1M1M2M2M2M1
交替共聚物 两种单体单元M1、M2严格交替排列。
共 聚 合 反 应
共 聚 合 反 应 和 共 聚 物
共聚物
嵌段共聚物
由较长的M1链段和较长的M2链段构成的大分 子,每个链段的长度为几百个单体单元以上。
温度
dlnr1 E 11 E 12 dT RT 2
式中E11、E12分别为自增长和共增长反应的活化能。
共 聚 合 反 应
若r1<1,表示k11<k12,即E11>E12。上式右边为 正值,度上升,r1也上升,趋于1。若r1>1,表示k11 >k12,即E11<E12。上式右边为负值,温度上升,r1 下降,也趋于1。总的结果,温度上升,r1 → 1,共 聚反应向理想共聚方向发展。




两种单体进入共聚物的速率比就是两种单体的消耗 速率比,
共 聚 合 反 应
d[M1 ] k11 M1 M1 k 21 M M1 2 d[M2 ] k12 M1 M2 k 22 M M2 2


kt t 22
2
2
R t 22 2k t 22 M

2 2
共 聚 合 反 应
t 12 M1 M kt M1M2 2
R t12 2k t12 M1 M 2

共 聚 合 方 程
自由基共聚合方程
目代表单体聚合的次序; 接枝共聚物:前为主链,后为支链。
国际命名中,在共聚单体间插入:co(无规)、
共 聚 合 反 应
alt(交替)、b(嵌段)、g(接枝)。
共 聚 合 反 应 和 共 聚 物
常见的二元共聚物
主单体 乙烯 乙烯 异丁烯 第二单体 乙酸乙烯酯 丙烯 异戌二烯 改进的性能及及常见用途 增加柔性,可作聚氯乙烯的共混料。 破坏结晶性,增加柔性和弹性。为乙丙橡胶。 引入双键,供交联用。为丁基橡胶。
M1 r31 M 2 r31 M 3 M3 r r r r 13 32 13 13
第三节 竟聚率、共聚曲线及共聚物 组分的控制
竞聚率 共聚曲线 共聚物组分的控制
共 聚 合 反 应
竟 聚 率 、 共 聚 曲 线
竞聚率
丁二烯
丁二烯 苯乙烯 氯乙烯 四氟乙烯
甲基丙烯酸甲酯
苯乙烯
丙烯腈 丙烯腈 乙酸乙烯酯 全氟丙烯 苯乙烯
丙烯酸甲酯衣康酸 乙酸乙烯酯或苯乙烯
增加强度。为通用丁苯橡胶。
增加耐油性。为丁腈橡胶。 提高抗冲性能。为增韧塑料。
增加塑性和溶解性能,可作塑料、涂料和粘接剂等。
破坏结构规整性、增加柔性。用作特种橡胶。 改善流动性能和加工性能。其为塑料。 改善柔软性和染色性能,用作合成纤维。 改善聚合性能,用作分散剂和织物处理剂。
相关文档
最新文档