粘度对聚合反应过程的影响概要
硅酸聚合过程中粘度变化的研究

第3 3卷第 9期 20 0 8年 9月
环 境 科学 与 管理
ENVⅡt 0NM匮NTAL CⅢ NCE S AND ANAGEM匝 NT M
Vo. 3 13 N仉 9 S p. 0 e 2 08
文 章编 号 :6 3— 2 2 2 0 )9— 0 4— 3 17 1 1 (0 8 0 0 9 0
硅 酸 聚 合 过 程 中粘 度 变 化 的 研 究
关键 词 : 聚硅 酸 ; 度 ; 合 条 件 ; 凝 粘 聚 混
中 图分 类 号 : 7 X8
文 献 标 识 码 : A
Su y o h so i a g si oy rzto rc s fP lmeie i cc Acd td n te Vic st Ch n e n P lmeiain P o e so oy r d Sl i i y z i
Ab t a t Th ic st fp lme ie i c c a i a n i o a tfc o h t mp c e h o g l t n p o e t fp l i — sr c : e v s o i o o y r d sl i c d w s a mp r n a t rt a y z i t i a t d t e c a u ai r p ry o o i l o si c t o g ln s o y r e i c c a i r y t e i e n e n a i i o d t n wi t r l s n i e e t c d t s t ei - ae c a u a t.P l me i d sl i cd we e s n h sz d u d r cd c c n ii t wa e a sa d d f r n i ii ;h n z i a o h g a e l e c s o H a u fu n e f p v l e,tmp r t r ,S O o c n r t n a d dfe e ta i i e s o h ic st fp l mei e i c c a i r y — e e au e i 2c n e t i n i r n cd f r n t e v s o i o o y rz d sl i c d we es s ao i y i tmai al n e t ae . T e r s l h w d t a h ic st fp l me i e i cc a i h n e l w y u d r0 0 6 P 。S a d e t l i v si td c y g h e u t s o e h t e vs o i o o y r d sl i cd c a g d so l n e . 0 a s t y z i n r p d y a o e0 O 9 P ・S,wh l h ic st u d rs h r l b v . 2 a ・S u t h el g wo l c u .T e o t l a i l b v . 0 a i t e v s o i wo l e s ap y a e y i o e0 0 0 P ni teg ln ud o c r h pi l i ma
高分子化学实验

实验一本体聚合——有机玻璃的制造1. 实验目的了解本体聚合的特点,掌握本体聚合的实施方法,并观察整个聚合过程中体系粘度的变化过程。
2. 实验原理本体聚合是不加其它介质,只有单体本身在引发剂或光、热等作用下进行的聚合,又称块状聚合。
本体聚合的产物纯度高、工序及后处理简单,但随着聚合的进行,转化率提高,体系粘度增加,聚合热难以散发,系统的散热是关键。
同时由于粘度增加,长链游离基末端被包埋,扩散困难使游离基双基终止速率大大降低,致使聚合速率急剧增加而出现所谓自动加速现象或凝胶效应,这些轻则造成体系局部过热,使聚合物分子量分布变宽,从而影响产品的机械强度;重则体系温度失控,引起爆聚。
为克服这一缺点,现一般采用两段聚合:第一阶段保持较低转化率,这一阶段体系粘度较低,散热尚无困难,可在较大的反应器中进行;第二阶段转化率和粘度较大,可进行薄层聚合或在特殊设计的反应器内聚合。
本实验是以甲基丙烯酯甲酯(MMA)进行本体聚合,生产有机玻璃平板。
聚甲基丙烯酸甲酯(PMMA)由于有庞大的侧基存在,为无定形固体,具有高度透明性,比重小,有一定的耐冲击强度与良好的低温性能,是航空工业与光学仪器制造工业的重要原料。
以 MMA 进行本体聚合时为了解决散热,避免自动加速作用而引起的爆聚现象,以及单体转化为聚合物时由于比重不同而引起的体积收缩问题,工业上采用高温预聚合,预聚至约 10% 转化率的粘稠浆液,然后浇模,分段升温聚合,在低温下进一步聚合,安全渡过危险期,最后脱模制得有机玻璃平板。
3. 实验仪器及药品三角瓶50ml 1 只烧杯1000ml 1 只电炉1KW 1 只变压器1KV 1 只温度计100 ℃ 1 支量筒50、100ml 各1 只试管10mm×70mm 1 支烧杯400 ml 1 只制模玻璃100mm×100mm 2 块橡皮条3mm×15mm×80mm 3 根另备玻璃纸、描图纸、胶水、试管夹、玻璃棒若干2) 药品:甲基丙烯酸甲酯(MMA)新鲜蒸馏30ml,BP=100.5℃过氧化二苯甲酰(BPO)重结晶0.05g邻苯二甲酸二丁酯(DBP)分析纯(CP)2ml4. 实验步骤1) 制模将一定规格的两块普通玻璃板洗净烘干。
本体聚合的实验报告

一、实验目的1. 理解本体聚合的原理和过程。
2. 掌握本体聚合实验的基本操作方法。
3. 观察和记录本体聚合过程中的现象,分析实验结果。
4. 了解本体聚合在材料制备中的应用。
二、实验原理本体聚合是指单体在无介质存在的情况下,通过引发剂的作用,在引发剂分解产生的自由基的引发下,形成聚合物。
本体聚合具有以下特点:1. 产品纯净,无杂质。
2. 聚合物分子量分布较窄。
3. 聚合设备简单,可连续或间歇生产。
4. 体系粘稠,散热困难,温度控制难度较大。
三、实验药品及仪器药品:- 甲基丙烯酸甲酯(MMA)- 过氧化苯甲酰(BPO)仪器:- 恒温水浴锅- 三口烧瓶- 直型冷凝管- 磨口锥形瓶- 牛角管- 温度计四、实验步骤1. 称量与配置:准确称取一定量的甲基丙烯酸甲酯和过氧化苯甲酰,将其加入三口烧瓶中。
2. 加热:将烧瓶放入恒温水浴锅中,加热至预定温度,保持一段时间,使单体充分溶解。
3. 引发聚合:在预定的温度下,加入引发剂BPO,引发单体聚合。
4. 观察与记录:在聚合过程中,观察聚合物的粘度变化、颜色变化等现象,并记录实验数据。
5. 终止聚合:当聚合物粘度达到预定值时,停止加热,使聚合反应终止。
6. 产物处理:将聚合物从烧瓶中取出,用蒸馏水清洗,去除残留的引发剂等杂质。
五、实验结果与分析1. 粘度变化:在聚合过程中,随着反应的进行,聚合物粘度逐渐增大。
这是因为单体逐渐转化为聚合物,体系粘度逐渐增大。
2. 颜色变化:在聚合过程中,聚合物颜色逐渐变深。
这是因为聚合物分子量逐渐增大,分子结构更加复杂。
3. 实验数据:根据实验数据,计算聚合物的分子量、分子量分布等指标。
六、结论1. 本体聚合是一种重要的聚合物制备方法,具有产品纯净、分子量分布窄等优点。
2. 在本体聚合过程中,温度、引发剂浓度等因素对聚合反应有重要影响。
3. 通过控制实验条件,可以获得具有良好性能的聚合物。
七、实验讨论1. 本体聚合过程中,如何控制温度、引发剂浓度等因素,以获得最佳聚合效果?2. 本体聚合在材料制备中的应用有哪些?3. 如何提高本体聚合产物的性能?八、参考文献[1] 王忠义,张晓辉,等. 本体聚合实验研究[J]. 化工教育,2018,43(3):65-68.[2] 张永刚,李晓东,等. 甲基丙烯酸甲酯本体聚合工艺研究[J]. 化工进展,2016,35(11):3223-3228.[3] 刘立峰,李娜,等. 本体聚合技术在聚合物材料制备中的应用[J]. 化工进展,2019,38(1):60-65.。
粘度对聚合反应过程的影响

消除粘度对聚合反应的有害影响
1.
对聚合物溶解性好→良溶剂→均相聚合→ 对聚合物溶解性差→沉淀剂→沉淀聚合→
可消除凝胶效应。 凝胶效应显著。
2.
常用的方法是采用间歇聚合的方式。
苯乙烯聚合的x~t图
苯乙烯聚合的聚合度分布图
1-无粘度校正 2-有粘度校正
在高转化时,由于体系粘度升高,出现凝胶效应。故要使 由微观动力学所导得的聚合速率方程、聚合度方程及聚合 度分布方程使用到高转化范围,对于相关参数进行修正。 通过对实验数据的拟合得至函数式。有这些函数式可求得 不同情况下的k p 、 k t 值,最终可据算得到全转化过程的聚 合速率、聚合度及其分布随时间变化的关系。这些关系对 聚合反应器的设计、放大及聚合反应的操作规划具有重要 的意义。
聚合过程中速率变化的类型
1. S型曲线
2. 匀速聚合
3. 前快后慢
聚合过程中速率变化的类型
S型曲线 初期慢,中期加速,后期又转慢。
匀速聚合 正常聚合速率的衰减和凝胶效应 的自动加速部分互补。
前快后慢 聚合速率开始很大,中后期降低。
k p受扩散控制影响较 一般,当聚合温度 T Tg 时, kt kp 小,可不考虑 k p随粘度的变化,当T Tg 时,、 均受扩散控制的影响,此时二者均需考虑随粘度的 变化。此情况下,反应进行至某一转化率时,体系 进入玻璃态,反应停止进行,体系达到极限转化率。
由曲线可以看出,体 系粘度是随着反应的 转化率的升高而提高。 由于粘度的不断升高, 产生凝胶效应,导致 聚合反应出现自动加 速现象。
粘度对 k p 、k t 的影响
诱 导 期
聚合物溶液粘度的主要影响因素分析

聚合物溶液粘度的主要影响因素分析第l2卷第1期断块油气田FAUI.T—B【DCKOIL&GASnELD2005年1月聚合物溶液粘度的主要影响因素分析张金国(胜利油田有限公司胜利采油厂)摘要影响聚合物溶液粘度的外来因素是多方面的,包括pH值,温度,各种金属阳离子,搅拌速度和时间等.对以上诸因素进行了全面的实验分析,并确定了现场配制时应控制的主要指标范围:pH值应控制在6-9,温度以15~3O℃为宜,并且应"-3尽量用矿化度较低的清水配制,配制时搅拌速度应控制在150r/min以下,搅拌时间不应超过50min.关键词聚合物溶液粘度酸敏性热敏性盐敏性搅拌剪切聚合物驱是一种重要的三次采油技术,该技术用聚合物水溶液为驱油剂,以增加注入水的粘度…,提高其波及效率,从而达到提高原油采收率的目的.配制的聚合物溶液的粘度越高,其波及面积越大,驱油效果也就越理想.影响聚合物溶液粘度的因素是多方面的,包括pH值,温度,各种金属离子,搅拌速度和时间等.只有搞清这些因素对粘度的影响程度,才能指导聚合物的现场配制,从而提高聚合物溶液粘度的保留率-3J,确保聚合物驱的效果.1实验仪器和药品1.1主要实验仪器DV—I+VISCOMETER粘度计(美国进口),JJ一1电动搅拌器,电热恒温水浴锅,有机合成仪,酸度计,酸,碱滴定仪.1.2主要实验药品NaOH,HC1,NazSO3,NaHSO3,NaC1,KC1,CaC12,MgC12?6H20,CrC13,a3,Fea3,无水乙醇,柠檬酸,柠檬酸铝-4等(以上均为化学纯或分析纯).自来水(矿化度为679mg/L);孤东一号联污水(矿化度为5749mg/L);聚合物(胜利油田东胜化工厂生产,分子量为1800×10一2000 ×10).2主要影响因素分析2.1酸敏性在现场应用聚合物时,有时需加入交联剂,而大多数的交联剂是在酸性环境下交联的.因此, 很有必要研究pH值对粘度的影响情况.用20% HC1和2o%NaOH调节1500mg/L聚合物溶液的pH值,然后测量其粘度,实验结果如表1所示.表1聚合物溶液的酸敏性pH值粘度/mPa?8pH值粘度/mPa?8l882lO23892o536olOl9048llll8l5llO121736l8Ol3l67720214165由表1可知,在酸性条件下,随着pH值的增加,聚合物溶液的粘度也增加;pH值在7~8时, 粘度随pH值的增大而达到最大值;大于8以后,粘度呈现逐渐下降的趋势.可以看出,pH值在6~9具有较高的粘度值.因此,现场配置时,聚合物溶液的pH值应当控制在6~9为宜.2.2热敏性不同温度下1500mg/L聚合物溶液的粘度如表2所示.从表2可以看出,随着温度的升高,粘度逐渐降低,温度每升高1O℃,粘度下降20%左右.因收稿日期2004—09—19作者简介张金国,1971年生,工程师,1993年毕业于西北大学地质系石油及天然气地质专业,现从事石油工程技术工作,地址(257506):山东省东营市垦利县胜坨镇,电话:(0546)8585922.572005年1月断块油气田第l2卷第1期此,在配制时应尽量选择较低的温度,以获得较高的粘度.但如果温度太低,会使得聚合物的水化和溶解变慢.因此,配制温度最好是常温,以15~30℃为宜.表2聚合物溶液的热敏性温度/~C粘度/mPa?B温度/~C粘度/mPa?B2022855l86252226ol8o3O2l765178352ll70175402057517345l998Ol7l501922.3.1对NaC1和KC1的敏感性25℃条件下,将40%的NaC1+KC1溶液(按1:1的质量比)加入到1500mg/L的聚合物溶液中,测定不同Na+K含量下的聚合物溶液的粘度(见表3).表3聚合物溶液的盐敏性钾钠离子含量/粘度/钾钠离子含量/粘度/(rag/L)mPa?B(mg/L)mPa?BO23l8o4.8425O.3l66l20r7.23Ol0o.6l36l6o9.6262O1.2982012.0234o2.46l由表3可以看出,随着NaC1+KC1含量的增加,溶液的粘度快速降低.浓度大于500mg/L以后,粘度下降趋势变缓.这是由于随着Na和K浓度的增加,使得聚合物中羧基离子的电斥力受到抑制,分子线团卷曲,从而导致溶液的粘度下降.因此,使用污水配制时,应控制Na+K含量低于200mg/L.2.3.2对CaC12和MgCl2的敏感性用同样的方法测定了不同CaC1:+MgCl:(按1:1的质量比)含量下对聚合物溶液的影响,试验结果见表4.表4聚合物溶液的盐敏性钙镁离子含量/粘度/钙镁离子含量/粘度/(rag/L)mPa-S(rag/L)mPa.S022920o2l5Ol2680ol2l0o66l20olll5O3Ol60olO如表4所示,Can,Mg2比Na和K的影响还要大.随着Ca和Mg浓度的增加,粘度急剧下降,当浓度大于200mg/L以后,粘度下降趋势变缓.实验中发现,当Ca2和Mg2浓度大于500mg/L以后,甚至出现聚合物从溶液中逐渐沉降的现象.通常认为,ca和Mg会引起聚合物分子间发生缩聚,从而使分子链变短,直接导致溶液的粘度下降.一般情况下,Ca+Mg浓度最好控制在100mg/L以下.2.3.3对FeC1的敏感性将浓度为20g/L的FeC1,溶液逐渐滴加到浓度为1500mg/L的聚丙烯酰胺溶液中,并测量粘度的变化.结果表明,当聚丙烯酰胺溶液中FeC1, 的浓度超过20mg/L时,溶液的粘度就急剧降低, 甚至发生絮凝.国内外一般要求控制三价离子在10mg/L以下.2.4污水配制的影响用不同比例的自来水和胜坨一号联污水将5000mg/L的母液稀释成1500mg/L的溶液,测定其粘度,试验结果见表5.表5不同污水含量下聚合物粘度的变化污水比例.粘度/污水比例,粘度/%mPa?8%mPa?s045l6o98lO3l97094202408O9o301799O8540l4ll0o8l5OllO从表5可以看出,污水的用量越少,溶液的粘度越高.随着污水比例的逐渐增加,粘度呈现出大幅下降的趋势,应当尽量少用污水,多用清水来配制溶液.2.5速敏性搅拌是配制和注入过程中不可避免的,而搅拌速度的影响,实际上反映了剪切速率的影响.搅拌时,以及通过泵,管,阀,孔时的剪切作用都很强,会导致粘度的变化,因此有必要考虑搅拌对粘度的影响.在25℃条件下,用不同的搅拌速度,配制1500mg/L的聚合物溶液,以研究其速敏性,试验结果见表6.可以看出,搅拌速度越大,溶液的粘度下降越大.因为聚合物是一种对剪切十分敏感的假塑性第l2卷第1期张金国.聚合物溶液粘度的主要影响因素分析2005年1月流体,在较低的剪切速率下,聚合物分子线团相互靠近,呈现出较高的粘度.随着搅拌速度的加快,剪切随之增强,卷曲的分子被拉直,并产生相对滑动,使粘度降低,而剧烈的剪切还可能使大分子链发生断裂.一般情况下,搅拌速率应控制在150r/min以下.表6搅拌速率对聚合物溶液粘度的影响搅拌速度/粘度/搅拌速度/粘度/(r/rain)mPa?S(r/rain)roPa?S2523425OlBl502303o0l64lo022*******1502214OOlll2o02O92.6搅拌时间的影响在100r/min的搅拌速度下,不同搅拌时间对1500mg/L聚合物溶液粘度的影响见表7.表7搅拌时间对聚合物溶液粘度的影响搅拌时间/粘度/搅拌时间/粘度/minmPa?sminmPa?S524|650223lO2436021"120239801913O234lo017240229120l45从表7可以看出,随着搅拌时间的延长,溶液的粘度逐渐下降,60min内变化缓慢,60min以后粘度下降较快.因此,搅拌时间应不长于50 raino3结论(1)影响聚合物溶液粘度的因素很多,主要有pH值,温度,矿化度,搅拌速度和搅拌时间等.(2)聚合物溶液具有很强的酸敏性,酸性条件下粘度很低,聚合物溶液的pH值应控制在6—9.(3)聚合物溶液具有较强的热敏性,在配制时应尽量选择较低的温度,以15—30℃为宜. (4)聚合物溶液具有很强的盐敏性.一价阳离子Na,K的降粘程度很相似;二价阳离子Ca,Mg2的影响大于一价阳离子№,K;三价离子Fe¨,Al¨等对粘度的影响大于二价离子.因此,配制时应严格控制盐的含量,Na+K含量应控制在200mg/L以下,Ca+Mg2的含量应控制在100mg/L以下,三价盐离子的含量应小于10mg/L.应当尽量用矿化度较低的清水配制,少用污水,以减少矿化度对粘度的影响.(5)聚合物溶液具有很强的速敏性,溶液的粘度随剪切速率的上升而下降.因此,配制时要选择尽量小的搅拌速度和尽量短的搅拌时间,搅拌速度应控制在150r/min以下,搅拌时间不应超过50min.参考文献1汪庐山,张月.交联聚合物调驱液中聚合物最低浓度的确定方法.油田化学,2000,17(4):340—3422万仁溥.采油工程手册.北京:石油工业出版社,2000.83赵福麟.采油化学.北京:石油工业出版社,19894王中华.油田化学品.北京:中国石化出版社,2001(编辑邵晓伟)JAN.2005FAUI—BIJ0CK0IL&GASFIELDV01.12No.1 fluxundertheconditionsoftheconstantwell-borepressureor constantwell-boreproductionanddifferentsupplyradius.The numericalcomputationoftwolayerswhichismadebyStehfest numericMinversioncomputedseparatelythevarietyofthe wallofthewellfluxandanalyzedanddiscusseddifferent supplyradiuswhichinfluencesoilwellproductivity.The methodscaninstructtheallocationofproductionandinjection rates,dynamicforecastanddevelopmentadjustmentofthe separatezonewholeproductionincircularsealedreservoirof stratifiedlayers.KeyWords:Circularsealedreservoir,Separatezone wholeproduction,Productivity,Mathematicalmodel,Dynamic forecast. ApplicationofHorizontalWeUTechnologyinthe DevelopmentandtoTapthePotentialofMine—structural oilReservoir HuangWeirGeologicalResearchInstituteof JiangsuOilfieldBranchCompany,Y angzhou,225009,Chial1).Fault-BlockoiIGasField,2o05,12(1):50—51 Wtheprogressofdevelopmenttechniqueofoilfield. theproductiontechnologyofhorizontalwellisgettingmore andmorepeffecLItbringsintoobviouseconomicbenefit. especiallyforbottom.wateroilreservoir,vertica1.fissureoil reservoir,heavyoilreservoirandlesspermeableoil reservoir.Block1ofAn.Fengisatypicalbottom.wateroil reservoirinAn.Fengoilfield.Ithasenteredahighwater-cut periodofdevelopment,havingbeendevelopedover16years withverticalwells.Theeffectofdevelopmentandadjustment withverticalwellsisnotrelativelywel1.asaresultofwater. cutrisingfaster.Therefore.itwasdecidedthatAn.Feng1 blockwasdevelopedandadiustedwithhorizontalwells.Horizontalwellshavebeendesigned,onthebasisof researchonthecharacteristicofoilfielddevelopmentandthe distilbutionruleofremainingoilAfterputtinginto production,theeffectiscomparativelywell,showingahigh initialproductionandlowwatercut.Oilproductionrateofthe faultblockhasgreatlybeenincreased:recoveryfactorhas beenraisedfrom25%to38%.Increasesof3500tof recoverablereservesperwellhasbeenobtainedwhichis equaltoover3timesofverticalwel1.KeyWOrds:Horizontalwell,Bottom.wateroilreservoir. Bottomwatterconing,Remainingoil,Oilproduction intension,Recoveryfactor. ApplicationandRecognitionofDynsmicInspection inReserviorDevelopmentDaiY ongzhu(ShengliOilProductionPlant,Shengli OilfieldCo.Ltd.,SINOPEC,Dongying257041,China), XuJiajunandPangRulyuneta1.Fault-BlockOil&GasF-eId,2o05,12(1):52—54 Undertheeffectofcomplicategeologicalstructure,fault, complexreservoirheterogeneity,theRemainingoilscattered, casingfailurewellincreasingandsoon,thedifficultyofthe developadjustmentisincreasing.Underthecomplex developmentsituation,moreandmorereservoirdynamic monitoringworkisappliedtorecognizeremainingoil distributionandsituationoftheproducingreservesbyⅣenhancingtheenrollment,analysisandapplicationofPND, boro-injectionneutronlifetimelogging,tracer,productionand injectionsection,accordingtothismethod,weimprovethe recognitionlevel,managementlevel,increasetheproduction effectobviously,andputforwardthedevelopmentdirection. KeyWords:Shengtuooilfield,Development,Dynamic inspecfion,Remainingoil,Correspondenceofproductionand injection,Heterogeneity. ProductionTestResearchofD15WeUinDaniudiGasField WangJianhuairResearchInstituteofExploration& Development,NorthalinaCompany,slNDl,Zhengzhon45OOO6,a血吼),Cao~nghmandD0ng Honglmn.Fault—BlockOil&Gasndd,加略,12(1):55—56 PIx'reservoirofDaniudiGasFieldhasthecharacters oflargearea,stronganisotropism,lowabundance,low permeabilityandlowproductivity.Peoplehavebeenpaying attentionstoitskeyproblemsincludingindividual-well sustainedproductivity,theproportionofdynamicreservesand ultimaterecoveryfactoretc.Tosolvetheproblemsmentioned above.thepaperstudiedthedatafromtheD15wellwhichis representationaltoP.xreservoirofDaniudiGasFieldand thewellhasplentifuldata.ItisconcludedthatthiswellwiII haveasustainedproductivityifitproducesaccordingtothe1/6ofQ^0Fthroughthestudyofmodifiedisochronaltesting, evaluationofproductiontestandindividua1.wellsimulation: itsproportionofdynamicreservesis69.83percentthrough thereservecalculationwithpressuredeclinemethodand volumetricmethod:itsultimatereserverecoveryfactoris48.62percentwiththedynamicmethod.Theseconclusions willprovidereferencesforreservoirevaluation.gasfield productiondesignandindividual-wellassignmentofother wells.KeyWords:D15well,Productiontest,Reservoir simulation,Dynamicreserves,Ultimaterecoveryfactor. AnalysisoftheMainFactorsAffectingtheViscidity oftheSolutionofP0IynlerZhangJinguo(ShengliOilProductionPlant,ShenglioⅡl-eIdC仉Lt..SINoPECKenli250O∞.China).Fault—Blockon&Gasneld.2o05.12(1):57—59 Therearemanyfactorswhichcanaffecttheviscidityof thesolutionofpolymer,includingthepH,temperature,thestirTingrateandstirringtime.Allfactorswereanalyzedinthe paper.Atlast.itrecommendthelimitofeachfactor:withthe temperature15—30oC,thepHwithin6—9,thestirringrate lessthan150r/min.stirringtimelessthan50min. KeyWords:Solutionofpolymer,Acidaffect, Temperatureaffect,Saltaffect.Slice. TheTechnologyofSubdivisionDevelopmentinthe StratifiedandFault.BlockReservoiroftheSouthBlock ofLinl3EsinthePeri0dofSuper—mWaterCut HanHongxiafLinpan伽ProductionPlant. ShenglioimeldCo.Ltd..SoPEC.Shandong,Linyi 251507,China),ShiMingjieandShnoYuntangeta1.Fault—Block伽&GasField.2005.12(1):6O一61。
聚合物的在成型过程中的流动和形变

聚合物的在成型过程中的流动和形变聚合物在各种成型过程中,大部分工艺均要求它处于粘流态,因为在这种状态下,聚合物在外力的作用下易于发生流动和变形。
流动与形变是聚合物成型加工中最基本的工艺特征。
高聚物流体有两种形式,一种是由固体加热到粘流温度或熔点以上,变成熔融状液体,即熔体。
也称干法塑化,特点是利用加热将高聚物固体变成熔体,定型时仅为简单的冷却。
但塑化时局部易产生过热现象。
另一种是加入溶剂使高聚物达到粘流态,即分散体。
也称湿法塑化,特点是用溶剂将塑料充分软化,定型时须脱溶剂,同时考虑溶剂的回收。
其优点是塑化均匀,能避免高聚物过热。
在成型加工过程中,两种高聚物流体都有着广泛的应用。
这里主要介绍高聚物熔体的形式。
一、聚合物在成型过程中的流动性能聚合物在加工过程中具有的流动和形变均是由外力作用的结果。
聚合物成型时,在外力作用下,其内部必然会产生与外力相平衡的应力。
主要的应力有三种:即切应力、拉伸应力和流体静压力。
如熔体在注射机喷嘴或模具的流道的流动产生剪切应力;熔体在挤出吹塑时被拉伸产生拉伸应力,实际加工过程中,聚合物的受力非常复杂,往往是这三种应力同时出现,如熔体在挤出成型和注射成型中物料进入口模、浇口和型腔时流道截面积发生改变条件下的流动等,但剪切应力最为重要,因为聚合物流体在成型过程中流动的压力降,塑件的质量等都受其制约。
流体静压力是熔体受到压缩作用而产生的,它对流体流动性质的影响相对较小,一般可以忽略不计,但对粘度有一定的影响,在压缩成型时流体静压力是较为主要的应力。
聚合物在一定的温度和压力条件下具有流动性,流体在平直圆管内流动的形式有层流和湍流两种,如图2—5所示,图a 为层流,层流是一层层相邻的薄层液体沿外力作用方向进行的滑移。
流体的质点沿着许多彼此平行的流层运动,同一流层以同一速度向前移动,各流层的速度虽不一定相等,但各流层之间不存在明显的相互影响。
图b 为湍流,又称“紊流”,流体的质点除向前运动外,各点速度的大小、方向都随时间而变化,质点的流线呈紊乱状态。
聚合物粘弹流变性能参数对口模挤出胀大的影响

1 1 理 论 模 型 .
—
聚合物熔体的非牛顿粘度 ,a・ ; P s
数;
孚——聚合 物粘 弹性偏 应力 张量 上 随体导
D —— 应 变张量 。
1 2 边界条 件 .
由异型 材挤 出成 型特 点可 知其边 界 条件 为 : ( ) 口边界 条件 1进
( ) 构方 程 ( i eu 粘 弹性 本构 模 型 ) 3本 Ge k s s :
( ,+ot 17 )・ t ̄// 1+A l=2/ )- 1 芋 7D l A —— 松 弛时 间 ,; s
— —
() 3
式 中 : — — 表示稳 态 拉伸粘 性 流动 的材 料 常数 ;
聚合 物粘 弹偏 应力 张量 ;
出物最终 膨胀 截 面面 积和 口模截 面 面积之 差与 口模
式中: —— 应 力张量 ;
P—— 压 力 ;
, 一 单位 矩 阵 ; —
偏 应力 张量 。
截面面积的比值。挤出胀大现象是聚合物熔体挤出 成 型共 有 的特性 , 由于 缺 乏 对挤 出成 型 挤 出胀 大 规
律 和预 测方 法 的研究 , 们 不 能直 接 根 据挤 出制 品 人 的形状设 计 相应 的挤 出 口模 , 目前 主 要 采用 传 统 经 验试 差 方 法 设 计 挤 出 口模 。而 采 用 经 验 试 差 方 法设 计挤 出 口模则 会 耗费 大量 的时 间和 资金 。笔者
拟 研 究 结 果 与传 统 的挤 出实验 研 究 结 论 相 吻 合 。 关键词 挤 出成 型 数值 模 拟 挤 出胀 大 粘 弹 性
热 塑性 聚合 物所 用 的 主要 加 工 方 法包 括 挤 出 、 注射、 吹塑 、 压延成 型 等 。挤 出成 型 过程是 强制 熔融 的聚合 物通过 口模 使其 成 型 的一种方 法 。当聚合 物
聚合物反应工程基础知识总结

)
rA k1CACB k2CRCS
kt K ln[ xAe (2xAe 1)xA ](m=2)
mCA0
xAe xA
平行反应
复合 反应
连串反应
A k1 R k2 S
rA (k1 k2 )CA
rR k1CA k2CB rS k2CR
(k1
k2
)t
ln
CA C A0
CR
k1 k1 k2
高,适应性强,操作弹
要求达到高转化率时, 顺丁橡胶,丁苯橡胶,
性大,连续操作时温度、
浓度易控制,产品质量
反应器容积大
聚氯乙烯
均一,适于多品种、小
批量生产。
结构简单、加工方便, 耐高压,传热面大,热 交换效率高,容易实现
自动控制
对慢速反应管子要求长 且压降大
高压聚乙烯的生产,石 脑油的裂解,轻油裂解
生产乙烯
⑷连续搅拌釜式反应器 。 非理想混合流反应器:(主要是由于工业生产中在反应器中的死角、沟流、旁路、短路及不均匀的速 度分布使物料流动型态偏离理想流动 )
3、均相反应动力学
反应
反应速度式
反应积分式
一级 A kS
rA
dCA dt
kCA
t 1 ln CA0 1 ln( 1 ) k CA k 1 xA
体系具有热稳定性必须具备以下两个条件:
① 放热速率与除热速率相等,即:稳态条件 Qr Qc
② 稳定条件 dQc dQr dT dT
影响热稳定性的因素: 1、化学反应的特性,如 k、△H、E 等
2、反应过程的操作条件.如 v0 、 C A0 、T 等。
3、反应器的结构,如 A;
4、操作条件,如 v0 、T、TW 、K 等
聚合反应工程基础复习提纲-2

第一章绪论1. 说明聚合反应工程基础研究内容及其重要性.研究内容:①以工业规模的聚合过程为对象,以聚合反应动力学和聚合体系传递规律为基础;②将一般定性规律上升为数学模型,从而解决一般技术问题到复杂反应器设计,放大等提供定量分析方法和手段;③为聚合过程的开发,优化工艺条件等提供数学分析手段.简而言之:聚合反应工程研究内容为:进行聚合反应器最佳设计;进行聚合反应操作的最佳设计和控制.第二章化学反应工程基础一、概念1.间歇反应器、连续反应器间歇反应器:物料一次放入,当反应达到规定转化率后即取出反应物,其浓度随时间不断变化,适用于小规模,多品种,质量不均。
连续反应器:连续加料,连续引出反应物,反应器内任一点的组成不随时间而改变,生产能力高,易实现自动化,适用于大规模生产。
2.平推流、平推流反应器及其特点:当物料在长径比很大的反应器中流动时,反应器内每一位原体积中的流体均以同样的速度向前移动,此时在流体的流动方向上不存在返混,这种流动形态就是平推流。
具有此种流动型态的反应器叫平推流反应器。
特点:①在稳态操作时,在反应器的各个截面上,物料浓度不随时间而变化,②反应器内物料的浓度沿着流动方向而改变,故反应速率随时间位置而改变,及反应速率的变化只限于反应器的轴向。
3.理想混合流、理想混合流反应器及其特点:反应器中强烈的搅拌作用使刚进入反应器的物料微元与器内原有物料微元间瞬时达到充分混合,使各点浓度相等,且不随时间变化,出口流体组成与器内相等这种流动形态称之为理想混合流。
与理想混合流相适应的反应器称为理想混合流反应器。
特点:①反应器内物料浓度和温度是均一的,等于出口流体组成②物料质点在反应器内停留时间有长有短③反应器内物质参数不随时间变化。
4.膨胀率:反应中某种物料全部转化后体系的体积变化率5.容积效率:指同一反应在相同的温度、产量、和转化率的条件下,平推流反应器与理想混合反应器所需的总体积比6. 停留时间分布密度函数、停留时间分布函数、平均停留时间停留时间分布密度函数:系统出口流体中,已知在系统中停留时间为 t 到dt 间的微元所占的分率 E(t)dt停留时间分布函数F(t):系统出口流体中,已知在系统中停留时间小于 t 的微元所占的分率 F(t)7.返混指反应器中不同年龄的流体微元间的混合8、宏观流体、微观流体宏观流体:流体微元均以分子团或分子束存在的流体;微观流体:流体微元均以分子状态均匀分散的流体;9.宏观流动、微观流动宏观流体指流体以大尺寸在大范围内的湍动状态,又称循环流动;微观流体指流体以小尺寸在小范围内的湍动状态10.混合时间指经过搅拌时物料达到规定均匀程度所需的时间11.微观混合、宏观混合 P70微元尺度上的均匀化称为宏观混合;分子尺度上的均匀化称为微观混合。
聚合物分子量的测定—粘度法

聚合物分子量的测定—粘度法聚合物分子量的测定是高分子科学领域中一项重要的研究内容,对于聚合物的性能、应用和合成路径具有重要意义。
粘度法是一种常用的测定聚合物分子量的方法,其原理是利用溶液中聚合物分子量对溶液粘度的影响来测定分子量。
下面将详细介绍粘度法测定聚合物分子量的基本原理、实验步骤和数据处理方法。
一、基本原理粘度法的基本原理是聚合物溶液的粘度与其分子量之间存在一定的关系。
在一定浓度范围内,溶液的粘度随着聚合物分子量的增加而增加。
因此,通过测量聚合物溶液的粘度,可以推测出聚合物的分子量。
根据Stokes-Einstein方程,聚合物溶液的粘度可表示为:η = kT/(R0[η])其中,η为溶液粘度,k为常数,T为绝对温度,R0为聚合物分子在溶液中的均方根旋转半径,[η]为溶液粘度。
R0与聚合物分子量之间存在一定关系,可以通过聚合物化学结构和构象进行计算或通过实验测定。
因此,通过测量溶液的粘度和温度,可以求得聚合物分子量。
二、实验步骤1.样品准备首先,需要制备一定浓度的聚合物溶液。
通常采用溶剂溶解法,将聚合物溶于适当的溶剂中。
常用的溶剂包括苯、氯仿、二氯甲烷等。
制备溶液时需要注意聚合物完全溶解,并保持恒温。
2.粘度测量将制备好的聚合物溶液放入粘度计中,选择适当的转子,以得到最佳测量范围。
测量时需要注意保持恒温,并等待溶液充分搅拌后进行测量。
一般采用降扭法或升降法来测量溶液粘度。
3.温度控制在测量过程中,温度的控制对于保证测量结果的准确性非常重要。
可以通过恒温水浴或恒温控制装置来保持溶液温度恒定。
4.数据记录与处理记录测量得到的溶液粘度和温度数据。
根据Stokes-Einstein方程,结合聚合物化学结构和构象计算或通过实验测定R0值,进一步计算聚合物分子量。
三、数据处理方法数据处理是粘度法测定聚合物分子量的关键步骤。
通常采用最小二乘法或Origin 等数据处理软件进行数据的分析和拟合,得到聚合物分子量与溶液粘度的关系曲线。
本章内容 聚合物熔体剪切粘度的影响因素 聚合物熔体的压力流动

POLYMER MATERIALS PROCESSING
5.3.5 添加剂的影响
①增塑剂 增塑剂能降低熔体的粘度,提高成型加工的流动性。 ②润滑剂 润滑剂通过降低熔体之间以及熔体与设备之间的摩擦与 粘附,改善加工流动性,提高生产能力和制品外观质量。 ③填充剂 填充剂能够降低聚合物熔体的加工流动性。影响程度与 填充剂的类型、粒径、用量和表面性质有关。
5.3.1 剪切速率的影响
聚合物熔体的粘度随剪切速率的增加而下降。 对于剪切敏感性强的塑料,可提高剪切速率来降低熔体 粘度,有利于注射充模。 例:聚合物熔体粘度对剪切速率的敏感性 敏感性较高:LDPE、PP、PS、ABS、PMMA、POM 敏感性一般:HDPE、PSF、PBT、PA1010 敏感性微弱:PA6、PA66、PC
5.2.5 无管虹吸与无管侧吸
将管子插入盛有聚合物流体的容器,并将流体吸入管中 ;在流动过程中,将管子从容器中缓慢提起,当管子离开 液面后仍有液体流入管子。该现象称为无管虹吸效应。 将一杯高分子溶液侧向倾倒流出,若将烧杯的位置部分 回复,使杯中平衡液面低于烧杯边缘,然而高分子液体仍 能沿壁爬行,继续维持流出烧杯,直至杯中的液体全部流 光为止。该现象称为无管侧吸效应。
第五章
第五章
本章内容
5.1
5.2 5.3 5.4 5.5
聚合物流变学基础
聚合物熔体的流动 聚合物流体的奇异流变现象 聚合物熔体剪切粘度的影响因素 聚合物流变性能测定 聚合物熔体的压力流动
高分子材料成型加工
POLYMER MATERIALS PROCESSING
聚合物成型加工技术几乎都是依靠外力作用下聚合物的 流动与变形,来实现从聚合物材料到制品的转变。 聚合物流变学正是研究聚合物熔体和溶液流动及变形规 律的科学。
粘度法测定聚合物的粘均分子量

粘度法测定聚合物的粘均分子量粘度法是一种常见的测定聚合物粘均分子量的方法。
本文将详细介绍粘度法的原理、实验步骤以及误差分析。
一、原理粘度法通过测量溶液的粘度来推测其中分子的大小,进而求得聚合物的粘均分子量。
粘度与聚合物溶液中聚合物链的长度、空间构型以及分子之间的相互作用有关。
一般情况下,溶液的粘度与其浓度有关,由于聚合物浓度一般较低,可以近似认为单位体积溶液中分子的平均数为常数。
因此,可以根据下式推导粘度和粘均分子量的关系:η=K·M^a其中,η代表溶液的粘度,M代表聚合物的粘均分子量,K和a都是常数。
二、实验步骤1.准备样品:选取适当溶剂,将所需浓度的聚合物加入容器中制备溶液。
2.测量粘度:将粘度计完全浸入溶液中,使其在溶液中达到平衡。
根据粘度计读数和设备常数计算得到溶液的粘度。
3.测量溶液密度:使用密度计或其他方法测量溶液的密度。
4.计算聚合物的粘均分子量:根据实验数据,利用上述的粘度和粘均分子量关系公式计算聚合物的粘均分子量。
三、误差分析1.溶剂的选择:溶剂的选择对溶液的粘度测定有重要影响。
溶剂选择不当会影响粘度的测量结果。
2.温度的影响:温度对聚合物溶液的粘度有很大影响。
由于粘度和粘均分子量的关系式中包含温度参数,所以温度的误差会直接影响粘度和粘均分子量的计算结果。
3.实验仪器的误差:实验仪器的不准确性和使用方法的不当也会引入误差。
4.聚合物的结构和特性:聚合物的结构和特性也会影响粘度和粘均分子量的计算结果。
综上所述,粘度法是一种测定聚合物粘均分子量的常用方法,通过测量溶液的粘度来推断溶液中聚合物分子的大小,并据此计算聚合物的粘均分子量。
在实验过程中需注意溶剂的选择和温度控制,并考虑实验仪器的误差以及聚合物的结构和特性对结果的影响。
粘度法测定聚合物的粘均分子量

粘度法测定聚合物的粘均分子量一、实验目的1. 掌握使用粘度法测定聚合物分子量的基本原理2. 掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法3. 分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响。
二、基本原理聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
聚合物溶液粘度的变化,一般采用下列的粘度量来描述。
1.相对粘度,又称粘度比,用ηr表示。
它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为:ηr=η/η0(1)相对粘度是一个无因次量,随着溶液浓度增加而增加。
对于低剪切速率下聚合物溶液,其值一般大于1。
1.增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数:ηsp =(η-η0)/η0 =ηr –1 (2)3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即:ηsp/c = (ηr-1)/c (3) 粘数的因次是浓度的倒数,一般用 ml/g表示。
1.比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即:( lnηr)/c = [ln(1+ηsp)]/c (4)单位为浓度的倒数,常用 ml/g表示。
1.特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用[η]表示,即:[η] = lim(ηsp/c) = lim(lnηr/c) (5)c→0 c→0[η] 称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。
实验证明,对于给定聚合物,在给定的溶剂和温度下,[η]的数值仅有试样的分子量Mη所决定。
[η]和 Mη的关系如下:[η] =KMηα (6)上式称为Mark-Houwink方程。
高分子聚合反应实验报告

高分子聚合反应实验报告一、实验目的本次实验旨在深入了解高分子聚合反应的原理和过程,通过实际操作掌握聚合反应的基本方法和技术,观察反应条件对聚合产物性能的影响,并对聚合产物进行分析和表征。
二、实验原理高分子聚合反应是将小分子单体通过化学键连接形成大分子聚合物的过程。
常见的聚合反应类型包括加成聚合(如自由基聚合、离子聚合)和缩合聚合。
在本次实验中,我们采用自由基聚合的方法,以苯乙烯为单体,过氧化苯甲酰(BPO)为引发剂,进行本体聚合反应。
自由基聚合的反应机理包括链引发、链增长和链终止三个阶段。
引发剂在加热条件下分解产生自由基,自由基与单体加成形成活性链,活性链不断与单体加成使链增长,最后活性链通过偶合或歧化终止反应。
三、实验材料与仪器1、实验材料苯乙烯:分析纯过氧化苯甲酰(BPO):分析纯乙醇:分析纯2、实验仪器三口烧瓶(250ml)搅拌器温度计(0-100℃)回流冷凝管恒温水浴锅电子天平四、实验步骤1、在三口烧瓶中加入 50ml 苯乙烯单体,将其放入恒温水浴锅中,加热至 80℃。
2、称取 05g BPO 引发剂,用少量苯乙烯溶解后加入三口烧瓶中。
3、开启搅拌器,搅拌速度适中,使反应体系混合均匀。
4、反应进行约 2-3 小时,观察体系粘度的变化。
当体系粘度明显增大,搅拌变得困难时,停止加热和搅拌。
5、将产物倒入模具中,自然冷却至室温,得到聚苯乙烯固体。
五、实验现象与结果在实验过程中,我们观察到以下现象:1、加入引发剂后,体系逐渐升温,颜色略微变黄。
2、随着反应的进行,体系粘度逐渐增大,搅拌阻力逐渐增加。
3、反应结束后,产物为透明的固体,具有一定的硬度和韧性。
对聚合产物进行分析,我们得到以下结果:1、产率:通过称重计算,产物的实际产量与理论产量的比值,得到产率约为 85%。
2、分子量:采用凝胶渗透色谱(GPC)测定产物的分子量,结果显示分子量分布较窄。
3、热性能:通过差示扫描量热法(DSC)分析,产物的玻璃化转变温度约为 100℃。
第三章 聚合反应工程分析(3-1,2,3,4,5,6,7)

第二节 聚合反应速度的工程分析
一、活性链浓度[P· ]与聚合反应机理
在连锁聚合时,若反应机理尚不清楚,分析 [P· ]与转化率x(或[M])间的关系.对判断 聚合反应机理是有帮助。
第二节 聚合反应速度的工程分析
第二节 聚合反应速度的工程分析
第二节 聚合反应速度的工程分析
第二节 聚合反应速度的工程分析
第二节 聚合反应速度的工程分析
二、平均聚合度 P 与反应机理 聚合体系中是否存在链转移反应对[P· ]是没有影 响的,但对产物的聚合度及聚合度分布有明显的 影响。因此,要正确刊断反应机理还应弄清平均 聚合度与聚合机理间的关系。 在间歇操作时。由实验测得的数均聚合度与实际 上是各瞬间生成物聚合度的平均值。与反应速率 有关的是瞬时数均聚合度 P a 。
第三节 聚合物的聚合度及聚合度分布表示法
第三节 聚合物的聚合度及聚合度分布表示法
第三节 聚合物的聚合度及聚合度分布表示法
第三节 聚合物的聚合度及聚合度分布表示法
第三节 聚合物的聚合度及聚合度分布表示法
第三节 聚合物的聚合度及聚合度分布表示法
第四节 连锁聚合反应的平均聚合度及聚 合度分布
第三章 聚合反应工程分析
第一节 概
述
聚合反应机理多样,动力学关系复杂,因而操作 条件的细微变化,往会使聚合速率、聚合度和聚 合度分布共聚物组成及序列分机以致聚合物结构 与性能产生差异。 弄清和掌握聚合过程并非易事,特别是高聚物体 系传递过程的研究还很欠缺,使问题的深入受到 限制。 按反应机理来分,聚合反应可以分为连锁聚合反 应和逐步聚合反应二大类。
2.第二阶段——反应恒速期 此阶段由于胶束的消失,体系中不再有新的乳胶 粒产生使总的乳胶粒保持不变。且随着聚合反应 的进行,单休液滴小的单体不断扩教入乳胶粒中, 使粒子中的中体浓度维持不变,故此阶段的聚合 速串保持恒定。直至单体液滴消失,聚合速率下 降反应转入第三阶段。
交联密度和粘度的关系_概述及解释说明

交联密度和粘度的关系概述及解释说明1. 引言1.1 概述本文将探讨交联密度和粘度之间的关系。
在聚合物科学和工程领域中,交联密度和粘度是两个重要的物性参数,对于聚合物材料的性能和应用具有关键作用。
理解交联密度与粘度的相互关系对于聚合物材料的制备、加工和应用具有重要意义。
1.2 文章结构本文主要分为五个部分进行阐述。
首先介绍引言部分,包括概述、文章结构和目的三个方面。
其次,在第二部分中,将详细讨论交联密度的定义、影响因素以及粘度的定义和测量方法。
然后,在第三部分中,通过实验研究和案例分析来验证和探究交联密度与粘度之间的关系,并提供相关数据进行详细分析。
接着,在第四部分中,将探讨交联密度和粘度在聚合物材料应用领域的现状,并对未来研究方向进行展望和挑战。
最后,在第五部分中,总结本文主要观点、发现以及强调交联密度与粘度关系的重要性与意义。
1.3 目的本文旨在系统分析交联密度和粘度之间的关系,揭示其原理和影响因素,并通过实验研究和案例分析侧重说明该关系的具体应用。
同时,展望未来研究方向,为进一步深入探讨交联密度与粘度关系提供参考和借鉴。
请问还有什么其他问题需要解答吗?2. 交联密度与粘度的关系交联密度和粘度是聚合物材料性质中两个重要的参数。
交联密度是指聚合物中交联点的数量和分布情况,而粘度则表示材料内部流动阻力的大小。
本章将探讨交联密度与粘度之间的关系,并解释说明这种关系。
2.1 交联密度的定义和影响因素交联密度可以定义为单位体积内聚合物链上连接在一起的交联点数。
交联点可以通过化学反应、热处理或辐射引发产生。
同时,聚合物结构、单体反应性以及反应条件等因素都会对交联点形成和分布产生影响。
高交联密度意味着更多的聚合物链之间具有共价键连接,从而导致网络结构更加紧密。
2.2 粘度的定义和测量方法粘度是描述液体流动阻力大小的物理量,也可以衡量材料内部分子间相互作用强弱程度。
高粘度意味着较大的摩擦阻力和内部黏滞效应。
测量粘度常用的方法包括旋转式粘度计、奇异流变仪以及肩胛式凝胶渗透色谱。
聚合物的盐敏效应及温度对粘度的影响的实验报告

聚合物的盐敏效应及温度对粘度的影响的实验报告(1)剪切速率,剪切应力对粘度的影响;通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。
剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。
(2)离模膨胀效应当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。
普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。
所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。
在纯剪切流动中法向效应是较小的。
粘弹性熔体的法向效应越大则离模膨胀效应越明显。
流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。
这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。
如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。
这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。
(3)剪切速率对不稳定流动的影响剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。
中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。
这样就助止了链段之间相对运动和内磨擦的减小。
可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。
在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。
如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。
聚合中的粘度调节剂

聚合中的粘度调节剂
聚合过程中的粘度调节剂主要用于控制聚合体系的流变性质,通过改变聚合物溶液或熔体的粘度来优化加工性能。
这类添加剂可以调节聚合速率、分子量分布以及产物的流动性。
例如,在自由基聚合或阴离子聚合中,粘度调节剂如链转移剂可以调节聚合物链的增长,从而调控相对分子质量。
在合成高分子材料如聚丁二烯、环氧树脂微球制备中,加入特定的粘度调节剂可以改善混合物的搅拌均匀性、防止沉淀或者增加剪切稳定性,便于生产和加工操作。
同时,在混凝土行业中,也有专门的粘度调节剂来改善混凝土拌合物的工作性,确保其易于浇筑和密实。
聚合物粘度稳定剂_概述及解释说明

聚合物粘度稳定剂概述及解释说明1. 引言1.1 概述聚合物粘度稳定剂是一类广泛应用于聚合物体系中的化学物质,通过调节聚合物溶液的流变性能,提高其黏度稳定性和加工性能。
在许多工业领域,如塑料加工、胶黏剂制备、油墨印刷等方面,聚合物粘度稳定剂发挥着重要作用。
1.2 文章结构本篇文章将从不同角度来介绍和解释聚合物粘度稳定剂的相关内容。
首先会对该领域进行整体概述,包括定义、分类和作用机理等方面。
接着会详细介绍不同种类的常见聚合物粘度稳定剂及其特点。
然后会阐述制备方法及工艺流程,包括天然聚合物粘度稳定剂的提取与纯化方法、合成聚合物粘度稳定剂的化学合成方法以及复合聚合物粘度稳定剂的制备方法与优化策略。
此外,还将探讨聚合物粘度稳定剂在实际应用中的效果评价与展望,包括功能性评价指标、示例案例和发展趋势预测。
最后,会对全文进行总结与结论。
1.3 目的本文旨在全面介绍聚合物粘度稳定剂的相关知识,并解释其在不同领域的应用。
通过对聚合物粘度稳定剂的定义和作用原理进行阐述,并详细描述其种类特点以及制备方法与工艺流程,读者将能够更好地了解和掌握这一重要化学品的知识。
同时,通过评价实际应用中的效果,并展望未来的发展趋势,期望能够为聚合物行业提供有益参考和借鉴。
2. 聚合物粘度稳定剂的定义和作用:2.1 定义和分类:聚合物粘度稳定剂是一种特殊的化学添加剂,可以在聚合物体系中改善流动性并增加粘度的稳定性。
它们通常是高分子化合物,通过与聚合物链之间相互作用来实现增稠效果。
根据来源和性质不同,聚合物粘度稳定剂可以分为天然聚合物粘度稳定剂、合成聚合物粘度稳定剂和复合聚合物粘度稳定剂三大类。
2.2 作用原理:聚合物粘度稳定剂通过与聚合物链发生相互作用来提高流变性能和粘度的稳定性。
这些相互作用可以包括电荷吸附、形成交联结构、链的扭曲或延伸以及分散胶束形成等。
通过这些机制,聚合物粘度稳定剂可以改变聚合物链之间的空隙结构,有效地增加了黏性,并阻碍了流体内部的分子滑动,从而增加了流体体系的黏变特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘度对反应体系散热的影响
体系粘度与散热
由于体系粘度是随着反应的进行,转化率的提高 而逐渐增大的,而粘度的增加会导致反应物质流 动性的降低,这样就会产生散热困难的问题。如 果散热不好轻则造成体系局部过热,使聚合物分 子量分布变宽,从而影响产品的机械强度;重则 体系温度失控,引起爆聚,十分危险。 因此,根 据聚合反应体系粘度的特征,设计出适合的方法 很重要。
由曲线可以看出,体 系粘度是随着反应的 转化率的升高而提高。
由于粘度的不断升高, 产生凝胶效应,导致 聚合反应出现自动加 速现象。
பைடு நூலகம்
粘度对 k p 、kt 的影响
诱初 导期 期
中 期 ( 加
后 期
速
期
)
自动加速现象
在低转化范围实验值符合聚合速率方程式,但在高转化时 偏离直线关系。产生偏离主要是由于转化率升高,体系粘 度增加产生凝胶效应,出现了自动加速现象。此现象在自 由基本体聚合及沉淀聚合中尤为明显。
苯乙烯聚合的x~t图
苯乙烯聚合的聚合度分布图
1-无粘度校正
2-有粘度校正
在高转化时,由于体系粘度升高,出现凝胶效应。故要使 由微观动力学所导得的聚合速率方程、聚合度方程及聚合 度分布方程使用到高转化范围,对于相关参数进行修正。 通过对实验数据的拟合得至函数式。有这些函数式可求得 不同情况下的k p 、kt 值,最终可据算得到全转化过程的聚 合速率、聚合度及其分布随时间变化的关系。这些关系对 聚合反应器的设计、放大及聚合反应的操作规划具有重要 的意义。
S型曲线 初期慢,中期加速,后期又转慢。
匀速聚合 正常聚合速率的衰减和凝胶效应 的自动加速部分互补。
前快后慢 聚合速率开始很大,中后期降低。
一般,当聚合温度 T Tg 时,k p受扩散控制影响较 小,可不考虑 k p随粘度的变化,当T Tg 时,kt 、k p 均受扩散控制的影响,此时二者均需考虑随粘度的 变化。此情况下,反应进行至某一转化率时,体系 进入玻璃态,反应停止进行,体系达到极限转化率。
粘度对聚合反应过程 的影响
The Influence Of Viscosity On Polymerization Process
聚合物粘度的特点
粘度是指流体受外力作用移动时,分子间 产生的内磨擦力的量度。
聚合物由于分子量比较大,分子链长,分 子间作用力大,所以聚合物粘度一般较大。
体系粘度和转化率关系
消除粘度对聚合反应的有害影响
1. 对聚合物溶解性好→良溶剂→均相聚合→ 可消除凝胶效应。
对聚合物溶解性差→沉淀剂→沉淀聚合→ 凝胶效应显著。
2. 常用的方法是采用间歇聚合的方式。
对均相体系造成凝胶效应的直接原因是体系的粘度增加, 链自由基卷曲,活性端基受包裹,双基扩散终止困难 ,kt 下降,而体系粘度不足以严重妨碍单体扩散,引发速率和 增长速率几乎不因粘度增加而减小,故聚合速率加速。
聚合过程中速率变化的类型
1. S型曲线 2. 匀速聚合 3. 前快后慢
聚合过程中速率变化的类型
在工业聚合过程中,要获得全转化过程的动力学式 必须要考虑粘度对聚合过程的影响。
粘度对 f 的影响
粘度不仅对 k p、kt 有影响,而且对引发效率 f 也有
影响。Hamielec等在研究苯乙烯本体聚合及溶液 聚合时,把 kt 及 f 处理为粘度的函数,得出了相
应的关系式。并通过修正过方程式的计算得到了 与实验值吻合度较高的结果。