金属腐蚀的分类
金属腐蚀的定义及分类
金属腐蚀的定义及分类金属腐蚀是指金属与周围环境中的物质或电化学作用发生反应,导致金属表面变质,甚至破坏金属结构和性能的过程。
金属腐蚀是对于环境保护和金属制品使用寿命等方面的重要问题。
下面,我们将对金属腐蚀进行分类和说明。
1. 电化学腐蚀电化学腐蚀是指在电解质介质中,电化学反应与化学反应相结合导致金属腐蚀的过程。
一般情况下,电化学腐蚀是由于金属与溶液中存在的氧化还原电对发生反应,导致金属与环境发生相应的化学反应,并最终导致金属的腐蚀和损坏。
常见的电化学腐蚀有电解腐蚀、生物腐蚀和缝隙腐蚀等。
2. 化学腐蚀化学腐蚀是指金属在含有化学腐蚀介质的环境中,通过在金属表面上的物理化学反应而导致金属表面产生腐蚀现象。
化学腐蚀的发生是由于化学环境中存在的化学介质会被吸附在金属表面形成化学凝结物,进而导致金属表面加速腐蚀。
常见的化学腐蚀有腐蚀性气体腐蚀和液态金属腐蚀等。
3. 氧化腐蚀氧化腐蚀是指金属在氧气气体和水的环境中因氧气和水作用而导致的腐蚀现象。
在氧化腐蚀中,由于金属表面形成的氧化皮层密封缺陷,导致氧化腐蚀过程大大加速,最终导致金属材料的损坏。
常见的氧化腐蚀有锈蚀、烧蚀和高温氧化腐蚀等。
4. 物理腐蚀物理腐蚀是指金属在运动中受到磨擦、撞击等作用而导致的腐蚀现象。
在运动中,由于金属表面处于不断的接触状态下,所以金属局部表面会受到物理上的磨损和腐蚀,最终导致金属材料的破坏。
常见的物理腐蚀有磨损、冲蚀等。
总之,金属腐蚀是一个复杂的化学和物理过程,不同类型的腐蚀都有其独特的发生机制和特点。
因此,针对不同类型的腐蚀,应采取相应的腐蚀防治措施,以保障金属材料的性能和使用寿命。
中国腐蚀与防护学会 金属防腐蚀手册
我国腐蚀与防护学会金属防腐蚀手册第一章:金属腐蚀的基本概念1. 金属腐蚀的定义金属腐蚀是指在金属与其周围环境接触的情况下,金属表面受到化学或电化学的侵蚀,导致金属的质量和结构发生变化的过程。
金属腐蚀是一个不可逆转的过程,对金属的损坏是永久性的。
2. 金属腐蚀的分类根据腐蚀介质的不同,金属腐蚀可分为化学腐蚀和电化学腐蚀两种类型。
化学腐蚀是指金属直接受到化学物质的腐蚀,而电化学腐蚀是指金属与电解质溶液接触时发生的一种电化学过程。
3. 金属腐蚀的危害金属腐蚀不仅会导致金属的质量和结构损坏,还会影响到金属制品的外观和使用寿命。
金属腐蚀也会对环境造成污染,对人体健康和安全构成威胁。
第二章:金属防腐蚀的原理和方法1. 金属防腐蚀的原理金属防腐蚀的原理是通过改变金属与其周围环境的接触状态,阻止金属腐蚀的发生。
常用的金属防腐蚀方法包括物理防腐蚀、化学防腐蚀和电化学防腐蚀等。
2. 金属防腐蚀的方法(1)涂层防腐蚀:将金属涂覆一层具有耐腐蚀性的涂层,以隔离金属与环境的接触,防止腐蚀的发生。
(2)阳极保护:在金属的表面放置一块较活泼的金属,使其成为阳极,从而保护被保护金属。
(3)合金化:将一种或多种金属或非金属添加到金属中,改变金属的组织结构和物理性能,提高金属的抗腐蚀能力。
(4)阴极保护:通过外加电流或外加电源,使金属表面成为阴极,从而抑制金属腐蚀的发生。
第三章:金属防腐蚀的应用实践1. 工业领域中的金属防腐蚀在石化、船舶、汽车、航空航天等工业领域中,金属制品往往需要具备较高的耐腐蚀性能,以确保设备和产品的安全、稳定和持久运行。
2. 城市基础设施中的金属防腐蚀城市基础设施中的钢结构、管道、桥梁、隧道等金属构件,常常需要经过防腐蚀处理,以保证其在潮湿、高盐度环境下的使用寿命和安全性。
3. 日常生活中的金属防腐蚀在日常生活中,我们经常接触到各种金属制品,如家具、电器、汽车等,这些金属制品也需要经过防腐蚀处理,以延长其使用寿命和美观度。
金属腐蚀与防护研究与展望
金属腐蚀与防护研究与展望金属腐蚀是金属在与周围环境作用下,从整体或局部逐渐失去其功能和性能的过程。
在工业生产和日常生活中,金属腐蚀是普遍存在的,带来了各种消耗和损失。
腐蚀不仅使得金属减少使用寿命,还会引起安全风险。
各领域试图通过金属防护来预防和控制金属腐蚀。
本文将探讨金属腐蚀的原因与分类、防护方法以及未来发展趋势。
一、腐蚀的分类和原因根据金属腐蚀的过程与性质,我们可以把金属腐蚀分为化学腐蚀、电化学腐蚀(也叫浸蚀)以及微生物腐蚀三类。
其中化学腐蚀是指金属在化学介质中发生化学反应,电化学腐蚀是指金属在电解液中发生氧化还原反应,微生物腐蚀是指金属在生物体的代谢作用下发生腐蚀。
金属腐蚀的原因有很多,主要包括化学反应、电化学反应和微生物作用。
在化学反应方面,如金属与空气中的氧气发生氧化反应;金属与硫化氢、氨气等气体、酸、碱等化学介质接触并发生化学反应。
电化学腐蚀表现为电流作用下的金属离子释放,电极电位的变化使得金属处于电化学不平衡状态,最终发生金属腐蚀。
微生物作用下,金属与微生物代谢所生成的酸、氧化剂等化学品接触,引起金属腐蚀。
二、防护方法为了预防和控制金属腐蚀,我们需要采取防护措施。
目前主流的金属防护方法包括物理防护、化学防护、电化学防护和涂层防护四种。
物理防护是指通过各种物理手段(如隔离、包覆、过滤、通风等)来防止环境对金属的腐蚀作用。
化学防护是指改变周围环境中的化学介质或添加一些特殊的化学品来达到防锈的目的。
例如,使用腐蚀抑制剂将物质添加到介质中来保护金属;在电解液中加入缓蚀剂,在氧化物中加入红外吸收剂等。
电化学防护也是一种常用的金属防护方法,它主要包括阴极保护和阳极保护。
通过改变金属电位来达到保护金属的目的。
例如,对化学电池进行控制,使它不超过一定值。
涂层防护是一种常见但也十分有效的金属防护方法。
涂层的类型非常广泛,如铬化物涂层、锌钢涂层、聚合物涂层等。
涂层可以防止各种化学物质的侵蚀,如水蒸气,氧气,盐水。
腐蚀分类1
比较均匀。腐蚀在金属的整个表面上进行,整个金属表面几乎以相同速
度进行腐蚀,金属腐蚀表现为整体减薄,直到失效; 2. 腐蚀原电池的阴、阳极面积非常小,用微观方法无法辨认,而且微阳
极和微阴极的位置随机变化,由微观腐蚀电池组成;
3. 整个金属表面在溶液中处于活化状态,只是各点随时间(或地点)有 能量起伏,能量高时(处)呈阳极,能量低时(处)呈阴极,从而使整
7.
表面可根据服役年限的要求,涂覆不同的覆盖层,包括
金属喷镀、电镀、热浸镀和各种涂料涂装体系以防止设
备的过早腐蚀破坏。
局部腐蚀特点:
1. 导致的金属的损失量小,很难检测其腐蚀速率,
但由于局部区的严重腐蚀往往导致突然的腐蚀事
故; 2. 局部腐蚀的种类多种多样; 3. 腐蚀事故中80%以上是由局部腐蚀造成的,难以 预测局部腐蚀速率并预防。
点蚀发生的条件
点蚀的发生要满足材料、介质和电化学 三个方面的条件: 1.材料条件:
点蚀多发生在表面容易钝化的金属材料上(如不锈钢、 Al及Al合金)或表面有阴极性镀层的金属上(如镀Sn、Cu或 Ni的碳钢表面)。 原因:当钝化膜或阴极性镀层局部发生破坏时,未破坏区和 破坏区的金属形成了大阴极、小阳极的“钝化-活化腐蚀电 池”,使腐蚀向基体纵深发展而形成蚀孔。
蚀孔形核敏感位置
金属材料表面成分和组织的不均匀性,表面钝化膜在某些部位较为薄弱, 这些部位成为蚀孔容易形核的部位:
晶界:晶界析出碳化铬导致晶界贫铬;位错,金属材料表面露头的位错是产 生点蚀的敏感部位 非金属夹杂:硫化物 硫化物夹杂是碳钢、低合金钢、不锈钢以及Ni等材料萌生点蚀最敏感的 位置。
析出相:碳化物、氮化物、碳氮化物 异相组织: 耐蚀合金元素在不同相中的分布不同,使不同的相具有不同的点蚀敏感 性,即具有不同的Eb值。 例如:在铁素体-奥氏体双相不锈钢中,铁素体相中的Cr、Mo含量较高, 易钝化;而奥氏体相容易破裂。点蚀一般发生在相界处奥氏体一侧。 钝化膜的机械划伤
论述金属腐蚀的类型及保护方法
论述金属腐蚀的类型及保护方法
一、金属腐蚀
金属腐蚀就是金属物质因接触腐蚀介质而被氧化的现象,是许多金属材料的缺陷之一。
一般情况下,基本金属或其合金在气体、液体或固体环境中,长期受到腐蚀介质的侵蚀,形成的金属结构的物理和化学的改变,就称为金属的腐蚀。
二、金属腐蚀分类
一般来说金属腐蚀可分为化学腐蚀、电化学腐蚀、磨粒腐蚀、园蚀腐蚀。
① 化学腐蚀:它是由氧化势能差起作用,金属元素被溶液中的氧化物(氧气、水合物等)取代而慢慢除去或分解,造成金属材料破坏的腐蚀。
② 电化学腐蚀:它是导体金属在电池反应作用中减薄,部分金属被氧化成氧化物,从而形成腐蚀的现象。
③ 磨粒腐蚀:一般指因摩擦而形成的金属分解或氧化而造成的金属腐蚀。
其最大的表现就是金属表面上出现细粒的损伤和粗糙的晕色现象。
④ 蚀蚀腐蚀:又称浸蚀腐蚀,指金属因长期浸渍在某种刺激性液体中而慢慢腐蚀的现象。
三、金属腐蚀保护方法
(1) 采用封闭防腐系统:采用覆盖层、膜、衬垫、密封件、弹性体等物质覆盖以及机械装置,以便定期维护和维修的方法。
(2) 电化学防护:采用电化学方式在金属表面构建导电金属膜,使金属不易受到腐蚀,从而实现防护的效��。
(3) 化学防腐:采用化学方法选择合适的抗腐剂,把它加入到溶液中,以有效地抑制金属腐蚀。
(4) 其它技术保护:催化、穿孔、堤坝等保护技术均可以有效地保护金属。
金属的腐蚀与防护
化学腐蚀
在外界环境中的水蒸气、酸碱等物质影响下,金属表面发生氧化还原反应,形成氧化物或其他化合物。例如,当铁暴露于氧和水中时,会形成铁锈(Fe₂O₃·nH₂O),这是一种典型的化学腐蚀现象。
电化学腐蚀
在一定条件下,例如在电解质溶液中,不同电位造成的电流分布变化,会导致金属表面上出现阳极区和阴极区。在阳极区,金属发生氧化反应而溶解,释放出电子;在阴极区,则发生还原反应,这一过程是通过离子在溶液中传递形成闭合回路,从而加剧了金属的整体损失。
三、影响金属腐蚀因素
影响木材及其抗风雨能力的重要因素有很多,包括:
环境湿度
高湿度会加速空气中的氧气、水分与金属的接触,加快氧化反应。因此,在潮湿环境下,金属更易受到腐蚀。
温度
氧化反应通常随着温度升高而境下金属更容易发生严重腐蚀。
pH值
环境中的酸碱程度直接影响着局部区域的电极电位。不同pH值下的介质对不同类型的金属具有不同程度的侵害。例如,低pH值(酸性环境)往往对铁等铸铁材料具有较强的侵袭性。
电化学腐蚀
电化学腐蚀是由于电流在金属表面产生的不均匀分布而导致的。比如,当金属与不同电位的金属连接时,低电位部分会被加速腐蚀。
生物腐蚀
这种腐蚀是由微生物造成的,尤其是在水体中生活的微生物,会通过其代谢过程改变周围环境,从而促进了金属的腐蚀过程。生物膜或污垢层常常在这种情况下形成,进一步加速了腐蚀。
二、金属腐蚀机制
金属的腐蚀与防护
金属腐蚀是指金属在环境的作用下,发生化学或电化学反应,导致其物理和化学性能劣化的过程。腐蚀不仅削弱了金属材料的强度、韧性,还可能引发结构失效,造成巨大的经济损失和安全隐患。因此,了解金属腐蚀的原理和机制,以及实施有效的防护措施,对于延长金属构件的使用寿命,提高工程安全性具有重要意义。
八大腐蚀类型
八大腐蚀类型腐蚀是指金属或其他材料在特定环境中受到化学或电化学作用而逐渐损坏的过程。
腐蚀不仅会降低材料的强度和耐久性,还可能导致设备故障和安全事故。
了解不同的腐蚀类型对于预防和控制腐蚀至关重要。
本文将介绍八大腐蚀类型,并探讨其特点和防治方法。
1. 电化学腐蚀电化学腐蚀是最常见的腐蚀类型之一。
它是由于金属与电解质溶液中的化学反应而引起的。
在电化学腐蚀中,金属表面的阳极和阴极区域形成,形成电池。
阳极区域发生氧化反应,而阴极区域发生还原反应。
防治电化学腐蚀的方法包括使用阴极保护、涂层保护和合适的材料选择。
2. 空气腐蚀空气腐蚀是由于金属与空气中的氧气和湿气发生反应而引起的。
常见的空气腐蚀类型包括氧化腐蚀和水蒸气腐蚀。
氧化腐蚀是金属与氧气反应形成氧化物的过程,而水蒸气腐蚀是金属与湿气反应形成氢氧化物的过程。
防治空气腐蚀的方法包括使用防腐涂层、控制湿度和氧气浓度。
3. 酸性腐蚀酸性腐蚀是由于金属与酸性溶液接触而引起的。
酸性腐蚀可以分为酸性溶液直接腐蚀和酸性气体腐蚀两种类型。
酸性溶液直接腐蚀是酸性溶液中的氢离子与金属表面发生反应,而酸性气体腐蚀是酸性气体与金属表面发生反应。
防治酸性腐蚀的方法包括使用耐酸材料、控制酸性溶液的浓度和温度。
4. 碱性腐蚀碱性腐蚀是由于金属与碱性溶液接触而引起的。
碱性腐蚀可以分为碱性溶液直接腐蚀和碱性气体腐蚀两种类型。
碱性溶液直接腐蚀是碱性溶液中的氢氧根离子与金属表面发生反应,而碱性气体腐蚀是碱性气体与金属表面发生反应。
防治碱性腐蚀的方法包括使用耐碱材料、控制碱性溶液的浓度和温度。
5. 微生物腐蚀微生物腐蚀是由微生物对金属表面进行代谢活动而引起的。
微生物腐蚀可以分为微生物菌膜腐蚀和微生物产生的酸性物质腐蚀两种类型。
微生物菌膜腐蚀是微生物在金属表面形成菌膜,并通过代谢活动产生酸性物质进行腐蚀。
防治微生物腐蚀的方法包括使用抗菌剂、控制温度和湿度。
6. 应力腐蚀应力腐蚀是由于金属在受到应力的同时与腐蚀介质接触而引起的。
金属腐蚀的分类
金属腐蚀的分类金属腐蚀是金属结构受到有害气体、液体或固体的外部影响而导致的破坏,因此金属腐蚀的种类变化多端。
根据金属腐蚀的不同形式,大致可以将其分为三类:化学腐蚀、电化学腐蚀以及机械腐蚀。
一、化学腐蚀化学腐蚀是指在金属表面上引起的化学变化而导致金属结构的破坏,通常由腐蚀剂(如溶剂、酸、碱、盐等)的存在引起的。
其中有电聚焦化学腐蚀和均布化学腐蚀。
1.电聚焦化学腐蚀:也称电化学化学腐蚀,指单电极和复电极上由于电流效应所引起的金属表面化学变化而导致的金属破坏。
在电解时,金属离子在电极表面分解,极性区将产生不同的电极产物,其中正极会被还原而吸收,而负极则会被氧化而腐蚀。
2.均布化学腐蚀:是指金属在冷却的酸、碱、盐等腐蚀剂溶液中的化学腐蚀,例如在汽车上雨水中含有腐蚀性的氯离子,会使汽车表面受到腐蚀,这就是由于氯离子在汽车表面形成氯化物而腐蚀汽车表面。
二、电化学腐蚀电化学腐蚀是由电流产生的氧化还原反应,对金属结构的影响相比化学腐蚀要大的多。
电化学腐蚀的过程可以分为五个阶段:绝缘涂层的破坏、电位极化、极化后的破坏、阳极式腐蚀和阴极式腐蚀。
1.缘涂层的破坏:有的金属表面会有一层保护层,这层保护层在一定程度上能抑制电化学腐蚀,但在腐蚀环境下,保护层也会受到腐蚀剂的侵袭,当保护层被破坏之后,金属表面就会暴露在腐蚀环境中,从而导致电化学腐蚀的发生。
2.位极化:金属与腐蚀剂的接触,会引起金属表面的电位变化,即金属表面的电位被极化,也就是说金属表面的活动电位被稳定在一定水平上,当电位极化发生时,阳极和阴极的表面氧化还原反应就会开始发生。
3.化后的破坏:当金属表面进行电位极化之后,金属表面会产生氧化性物质,如果氧化性物质中含有溶解度较高的物质,这些物质会继续使金属表面受到腐蚀,最终会导致金属的破坏。
4.极式腐蚀:阳极式腐蚀是指金属表面上的正极发生氧化反应而导致金属破坏,这种腐蚀形式也被称为正极腐蚀。
一般来说,在金属的另一端是一个阴极,它会吸收具有电荷的金属离子,而阳极则会被溶解,因此,当金属进行阳极式腐蚀时,它会受到腐蚀剂以及金属离子形成的化学反应的攻击。
金属的腐蚀与防腐
金属的腐蚀与防腐金属是我们日常生活和工业生产中广泛应用的材料之一,然而,金属在使用过程中容易发生腐蚀现象。
腐蚀不仅会损害金属的外观和性能,还会导致安全隐患和财产损失。
为了保护金属不受腐蚀的侵害,我们需要采取一系列的防腐措施。
本文将就金属腐蚀的原因、分类以及常用的防腐方法进行探讨。
一、金属腐蚀的原因金属腐蚀是指金属与其周围环境发生化学反应而被破坏的过程。
主要的原因有以下几个方面:1. 氧化反应:金属与氧气发生氧化反应,形成金属氧化物。
例如,铁与氧气发生化学反应形成铁锈。
2. 酸碱腐蚀:金属与酸碱溶液接触时,会发生化学反应而导致腐蚀。
酸性溶液会加速金属腐蚀,碱性溶液则会使其减缓。
3. 电化学腐蚀:金属在电解质溶液中,由于电流的作用会发生电化学反应而腐蚀。
4. 氯离子腐蚀:金属与氯离子接触会导致腐蚀,尤其是在潮湿的环境中。
二、金属腐蚀的分类根据金属腐蚀的发生方式和破坏性质,可以将金属腐蚀分为以下几类:1. 干腐蚀:金属在干燥环境中,由于氧气和金属表面的反应而发生腐蚀,如铁锈的形成。
2. 湿腐蚀:金属在潮湿环境中,由于水蒸气、液体水和金属表面的反应而发生腐蚀。
3. 化学腐蚀:金属与酸、碱、盐等化学物质接触发生腐蚀。
4. 电化学腐蚀:金属在电解质溶液中发生电化学反应而腐蚀,如电池中阳极的腐蚀。
三、金属腐蚀的防腐方法为了保护金属不受腐蚀的侵害,我们可以采取以下几种常用的防腐方法:1. 表面处理:金属的表面处理是预防腐蚀的重要手段之一。
可以通过镀层、涂层等方式,形成具有防腐功能的保护层。
例如,电镀、喷涂等方法可以在金属表面形成一层坚韧的保护膜,阻隔氧气和有害物质的侵蚀。
2. 金属合金:金属合金是由两种或两种以上金属元素按一定比例混合而成的新材料。
金属合金具有优越的抗腐蚀性能,可以提高金属的耐蚀性。
例如,不锈钢就是铁、铬、镍等多种金属元素的合金,具有良好的防腐蚀性能。
3. 主动防护:主动防护是通过改变环境条件,减少金属腐蚀的发生。
金属腐蚀分类
金属腐蚀分类一、引言金属腐蚀是指金属材料与周围环境中的化学物质相互作用,导致金属表面发生氧化、脱落等现象的过程。
金属腐蚀对于工业生产和日常生活都有重要影响,因此对金属腐蚀进行分类和研究具有重要意义。
本文将对金属腐蚀进行分类,以便更好地了解金属腐蚀的机理和防治方法。
二、分类根据金属腐蚀的不同特点和机理,可以将金属腐蚀分为以下几类:1. 电化学腐蚀电化学腐蚀是指金属在电解质溶液中发生的腐蚀现象。
它是由于金属表面与电解质溶液发生电化学反应而产生的。
电化学腐蚀的机理主要包括阳极溶解、阴极反应和电荷传输过程。
2. 化学腐蚀化学腐蚀是指金属与非电解质溶液或气体发生的腐蚀现象。
化学腐蚀的机理主要是金属表面与溶液中的酸、碱、盐等化学物质发生反应,导致金属表面发生溶解、氧化等变化。
3. 电化学-化学腐蚀电化学-化学腐蚀是指金属在同时存在电化学和化学腐蚀因素的条件下发生的腐蚀现象。
这种腐蚀通常会比单一的电化学腐蚀或化学腐蚀更为严重,因为两种腐蚀作用相互促进。
4. 间隙腐蚀间隙腐蚀是指金属表面与固体物质之间的间隙中发生的腐蚀现象。
间隙腐蚀的机理主要是间隙中的溶液或气体对金属的腐蚀作用,由于间隙中的流体往往难以排出,腐蚀物质会在间隙内积聚,导致腐蚀速度加快。
5. 应力腐蚀应力腐蚀是指金属在同时受到应力和腐蚀因素影响下发生的腐蚀现象。
应力腐蚀的机理主要是应力作用下金属表面的被动膜被破坏,从而导致金属表面发生腐蚀。
6. 空穴腐蚀空穴腐蚀是指金属表面存在的微小孔洞处发生的腐蚀现象。
这种腐蚀通常会出现在金属表面被局部腐蚀的区域,导致孔洞不断扩大,最终形成凹坑。
7. 磨擦腐蚀磨擦腐蚀是指金属在磨擦条件下发生的腐蚀现象。
磨擦会破坏金属表面的保护膜,使金属暴露在腐蚀介质中,从而导致腐蚀的发生。
三、防治措施针对不同类型的金属腐蚀,可以采取相应的防治措施:1. 电化学腐蚀的防治主要包括选择合适的金属材料、改变电解质溶液的组成、使用阴极保护等方法。
高中化学知识点总结金属腐蚀
高中化学知识点总结金属腐蚀金属腐蚀是指金属在一定条件下与周围环境发生反应,导致其失去原有性能和功能的过程。
在生活和工业中,我们经常会遇到金属腐蚀问题。
本文将详细介绍金属腐蚀的原因、分类、预防和应对方法。
一、金属腐蚀的原因金属腐蚀的主要原因是金属与氧气、水或其他化学物质发生氧化还原反应。
下面是一些常见的金属腐蚀原因:1. 湿氧腐蚀:金属表面与湿气中的氧气反应,形成氧化物,如铁的腐蚀产生铁锈。
2. 酸性腐蚀:金属与酸反应产生氢气,同时也生成相应的金属盐。
3. 碱性腐蚀:金属表面与碱反应会产生氢气和金属盐。
4. 电化学腐蚀:金属与电解质溶液接触时,在阳极和阴极上会发生电化学反应,造成金属腐蚀。
二、金属腐蚀的分类金属腐蚀可以根据反应类型和腐蚀环境进行分类。
以下是几种常见的金属腐蚀类型:1. 干腐蚀:金属在无水的环境中被氧化,氧气作为氧化剂,常见的干腐蚀有热氧化和干铰化。
2. 氧化还原反应腐蚀:金属与氧化剂或还原剂反应而发生腐蚀,如金属锌与盐酸反应产生氢气。
3. 湿腐蚀:金属在水或湿气环境中被氧化,形成氢氧化物或氧化物。
4. 细菌腐蚀:金属在微生物作用下发生腐蚀,常见的细菌腐蚀有微生物腐蚀和硫酸盐腐蚀。
三、金属腐蚀的预防和应对方法为了防止和减缓金属腐蚀的发生,我们可以采取以下预防和应对措施:1. 选择适当的金属材料:根据使用环境的特点,选择合适的金属材料来抵御腐蚀作用。
2. 表面涂层保护:通过给金属表面加工涂层,如环氧树脂、油漆等,来提高金属的抗腐蚀性能。
3. 电镀和镀层:利用电镀等方法,在金属表面形成一层保护膜,减少金属与环境接触,防止腐蚀。
4. 电化学保护:如阴极保护和阳极保护,通过外部电源提供电流,使金属成为电池中的阴极或阳极,达到保护金属的目的。
5. 控制环境条件:合理调节环境湿度、酸碱度等参数,以减缓金属的腐蚀速度。
6. 定期维护和检查:对经常暴露在潮湿环境下的金属部件进行定期维护和检查,及时发现并处理腐蚀问题。
金属材料腐蚀的分类
金属材料腐蚀的分类一般将腐蚀形态分为八类,分别是:①均匀腐蚀或全面腐蚀:腐蚀均匀分布在整个金属表面上。
镁合金牺牲阳极从重量上来看,均匀腐蚀代表金属的最大破坏。
但从技术观点来看,这类腐蚀形态并不重要。
因为如果知道了腐蚀速度,便可估算出材料的腐蚀公差,并在设计时将此因素考虑在内。
②电偶腐蚀或双金属腐蚀:凡具有不同电极电位的金属相互接触,并在一定介质中所发生的电化学腐蚀称为电偶腐蚀或双金属腐蚀。
③缝隙腐蚀:浸在腐蚀介质中的金属表面,在缝隙和其它隐蔽的区域内常常发生强烈的局部腐蚀.这种腐蚀常和空穴、垫片底面、措接缝、表面沉积物以及螺帽和铆钉下的缝隙内积存的步量静止溶液有关。
④小孔腐蚀(简称孔蚀):这种腐蚀的破坏主要集中在某些活性结点上,并向金属内部深处发展。
通常其腐蚀深度大于孔径,严重时可穿透设备。
⑤晶间腐蚀:这种腐蚀首先在晶粒边界上发生,并沿着晶界向纵深发展。
测试桩虽然外观没有明显的变化,但其机械性能大为降低。
⑥选择性腐蚀:合金中的某一组分由于腐蚀优先地溶解到电解质溶液中,铝热焊接从而造成另一组分富集于金属表面上。
⑦磨损腐蚀:腐蚀性流体和金属表面间的相对运动,引起金属的加速磨损和破坏。
一般这种运动的速度很高,同时还包括机械磨耗和磨损作用。
⑧应力腐蚀:应力腐蚀破坏是指在拉应力和一种给定腐蚀介质共存而引起的破坏。
金属或合金发生应力腐蚀破坏时,大部分表面实际不遭受腐蚀,只有一些细裂纹穿透内部,破坏现象能在常用的设计应力范围内发生,因此,后果很严重。
金属腐蚀又根据其发生的部位,可分为全面金属腐蚀和局部金属腐蚀两大类。
金属腐蚀还可按腐蚀环境分类,即分为化学介质腐蚀、大气介质腐蚀、海水介质腐蚀和土壤腐蚀等。
也可按腐蚀过程的特点,分为化学腐蚀、电化学腐蚀和物理腐蚀三大类。
上述腐蚀分类方法虽。
金属腐蚀的分类
金属腐蚀的分类金属腐蚀是一种金属物料破坏的技术,它对人类日常生活有重要影响。
它是一种微小的老化过程,它将使金属失去其本质而失去其机械性能。
它可以由环境中的化学物质,电流,腐蚀性气体或温度变化引起。
金属腐蚀有多种类型,它们也是按不同方式影响金属结构的不同方式而不同,所以可以将它们分类。
1、化学腐蚀:化学腐蚀是金属腐蚀的一种,它是由于金属与外界的潜在的化学反应而引起的一种腐蚀,通常在室外暴露的环境中发生,例如可能是由于酸雨和湿度的影响而引起的,也可能是由于金属的物质的潜在的化学反应而引起的。
2、电腐蚀:电腐蚀是由于电流对金属结构的影响,导致金属结构表面形成氧化层而发生的一种腐蚀,这种腐蚀一般在水中发生,可以通过电流的流量和电压的变化而引起。
3、磨损腐蚀:磨损腐蚀是由于外界物体的金属结构形成的摩擦和磨擦现象而引起的一种腐蚀,它是一种速率比较快的腐蚀,它会造成金属表面的细微碎片,使得金属表面形成氧化层,从而受到腐蚀。
4、热腐蚀:由于金属在热能激活状态下失去其机械性能,而引起的一种腐蚀,这类腐蚀主要在高温,高压,火焰和热气相互作用时发生,而且一旦发生这种腐蚀,金属表面会受到很大的损坏。
5、机械腐蚀:机械腐蚀是由于金属在外力的作用下,而加速其老化过程而发生的一种腐蚀,这种腐蚀是比较慢的,它包括外力磨损,磨蚀和破坏等,这种腐蚀往往发生在金属在机械装置的使用过程中。
6、生物腐蚀:这是指由于微生物,如细菌 ,酵母或放线菌所引起的一种腐蚀,它可以在水中,泥土或其他渗湿环境中发生,一般具有酸性环境或高湿度环境,可以很大程度上加速金属的腐蚀。
在使用金属材料时,应该重视金属腐蚀的分类,才能更好地利用金属材料,延长金属的使用寿命。
从上述可以看出,金属腐蚀有多种类型,这些类型都有不同的影响,因此我们应该了解它们的不同,重视金属腐蚀造成的影响,从而更好地保护金属,避免金属腐蚀造成的损失。
金属腐蚀的分类
金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。
化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。
生物腐蚀是指由各种微生物的生命活动引起的腐蚀。
电化学腐蚀是指发生电化学反应导致的腐蚀。
电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义!电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。
电化学腐蚀反应是一种氧化还原反应。
在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。
在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。
在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。
如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。
直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。
当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其习惯上称阴、,不叫正、负极)。
阳极上发生,使阳极发生溶解,上发生,一般只起传递电子的作用。
腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成,而浸泡在这层溶液中的金属又总是不纯的,如工业用的,实际上是合金,即除铁之外,还含有、(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。
这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。
(1)(钢铁表面吸附水膜酸性较强时)阳极(Fe):Fe=Fe2++2e-Fe2++2H2O=Fe(OH)2+2H+阴极(杂质):2H++2e-=H2电池反应:Fe+2H2O=Fe(OH)2+H2↑由于有放出,所以称之为析氢腐蚀。
金属材料腐蚀的分类
金属材料腐蚀的分类
金属材料的腐蚀可以按照不同的分类方式进行划分,以下是常见的几种分类方式:
1. 电化学腐蚀分类:
- 酸性腐蚀:金属在酸性环境中的腐蚀。
- 碱性腐蚀:金属在碱性环境中的腐蚀。
- 电池腐蚀:由于金属表面产生微观电池,导致腐蚀。
- 微生物腐蚀:由微生物代谢产生的酸、碱或化学物质导致
的腐蚀。
2. 物理腐蚀分类:
- 氧化腐蚀:金属与氧发生化学反应导致腐蚀。
- 湿气腐蚀:金属与湿气中的水蒸气等产生的化学物质发生
反应导致腐蚀。
- 焊接腐蚀:焊接过程中产生的热应力和化学物质导致的腐蚀。
3. 腐蚀形式分类:
- 均匀腐蚀:金属表面均匀腐蚀,使金属材料的厚度逐渐减少。
- 局部腐蚀:金属表面仅部分区域发生腐蚀,如点蚀、缝蚀、孔蚀等。
- 应力腐蚀:金属在受到应力作用的同时,发生化学物质的
腐蚀。
- 磨蚀腐蚀:金属材料在摩擦或冲刷作用下发生的腐蚀。
这些分类方式只是根据不同的角度对金属材料腐蚀进行的分类,实际上金属腐蚀是一个复杂的过程,往往同时存在多种腐蚀形式。
按腐蚀机理分类
按腐蚀机理分类
腐蚀可以按照不同的机理进行分类。
根据腐蚀发生的原因和方式,可以将腐蚀分为以下几类:
1. 电化学腐蚀:也称为湿腐蚀,是最常见的腐蚀形式之一。
这种腐蚀是由于金属与周围环境中的电解质溶液发生氧化和还原反应,形成电池,导致金属表面的离子迁移和金属原子的溶解。
常见的电化学腐蚀包括酸性腐蚀、碱性腐蚀、水腐蚀等。
2. 高温腐蚀:在高温环境下,金属与氧、硫、氢等气体发生化学反应,形成氧化物、硫化物、氢化物等物质,导致金属表面的物质损失。
高温腐蚀主要发生在炉窑、锅炉、汽轮机等设备中。
3. 微生物腐蚀:也称为生物腐蚀,是由微生物如细菌、真菌等对金属表面发生化学反应而导致的腐蚀。
微生物腐蚀通常发生在湿润的环境中,如土壤、水体等。
微生物腐蚀可以产生酸性物质、氧化物、硫化物等,进而使金属表面发生腐蚀。
4. 应力腐蚀开裂:应力腐蚀开裂是由于金属在受到应力作用下与周围环境中的化学物质发生反应引起的。
应力腐蚀开裂与应力和环境条件有关,常见于金属材料在高强度应力状态下的工作环境中。
5. 气体腐蚀:金属与气体发生化学反应导致腐蚀称为气体腐蚀。
常见的气体腐蚀有氧化腐蚀、氯化腐蚀等。
气体腐蚀通常发生在高温高压、湿润的环境中。
这些分类方法根据腐蚀发生的机理不同而有所区分,每种腐蚀形式都有其特定的防护方法和控制措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。
化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。
生物腐蚀是指由各种微生物的生命活动引起的腐蚀。
电化学腐蚀是指发生电化学反应导致的腐蚀。
电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义!
电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。
电化学腐蚀反应是一种氧化还原反应。
在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。
在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。
在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。
如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。
直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。
当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。
阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。
腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。
这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得
腐蚀不断进行。
(1)析氢腐蚀(钢铁表面吸附水膜酸性较强时)
阳极(Fe):Fe=Fe2++2e-
Fe2++2H2O=Fe(OH)2+2H+
阴极(杂质):2H++2e-=H2
电池反应:Fe+2H2O=Fe(OH)2+H2↑
由于有氢气放出,所以称之为析氢腐蚀。
(2)吸氧腐蚀(钢铁表面吸附水膜酸性较弱时)
阳极(Fe):Fe=Fe2++2e-
阴极:O2+2H2O+4e-=4OH-
总反应:2Fe+O2+2H2O=2Fe(OH)2
由于吸收氧气,所以也叫吸氧腐蚀。
析氢腐蚀与吸氧腐蚀生成的Fe(OH)2被氧所氧化,生成Fe(OH)3脱水生成Fe2O3 铁锈。
钢铁
制品在大气中的腐蚀主要是吸氧腐蚀。
Fe+2H2O=Fe(OH)2+H2↑ O2+2H2O+4e-→4OH-
2Fe+O2+2H2O=2Fe(OH)2 2H++2e-→H2
氧浓差腐蚀:当锅炉停用时,积留在锅炉联箱、汽包及炉管低凹处的水,由于水的表层接触大气,溶解氧的浓度大,而较深层溶解氧的浓度相对地较小,这就在同一金属表面出现不同的电极电位,氧浓度大的区域电位高,为阴极,氧浓度小的区域电位低,为阳极,从而造成腐蚀,这就是通常所说的水线腐蚀。
因为水线腐蚀是由氧浓度差引起的,所以把这类腐蚀称为氧浓差腐蚀。
氧浓差腐蚀危害:氧浓差腐蚀表现更为严重的是,当金属表面一旦出现这类腐蚀产物时,由于这些产物比较疏松,并且不是连续覆盖在金属表面上,这就造成了腐蚀产物下面与腐蚀产物边缘溶氧浓度不均匀,因腐蚀产物阻止了氧的扩散,在其下部形成了缺氧的阳极区,在其边缘形成了富氧的阴极区,进而发生氧浓差腐蚀。
结果是阳极区的坑愈来愈深,阴极区的腐蚀产物愈积愈多,这样,在金属表面上出现疏密不匀、高低不等的鼓包。
鼓包的颜色由于铁的氧化物成分不同,由黄褐色到砖红色不等。
表层下面的腐蚀产物为Fe3O4黑色粉末。
如果将这些腐蚀产物除掉,便呈现出一个个的腐蚀坑。
当汽包或联箱内沉积有水渣,在锅炉停用时,由于这些地方容易积存水分和吸收潮气,同样会造成氧浓差腐蚀,所以这些地方要比其他部位腐蚀严重得多。
氧浓差腐蚀的运用:利用氧浓差腐蚀原理制作各种类型的电池。
最常见的氧浓差电池有两种类型,一种是在不同深度的水中由于溶解氧浓度不同而造成演共度梯度产生的氧浓度差电池,如水线腐蚀;另一种则是冷却水系统中最常见,也是危险最大的污垢下腐蚀或叫做沉淀物全自动过滤器。