七年级有理数的加减法教案及习题

合集下载

人教版七年级上册1.3有理数的加减法习题课教案

人教版七年级上册1.3有理数的加减法习题课教案

春来实验集体备课教学案年级七科别数学周次月日星期备注主备课人王月娥课题有理数加减习题课教学目标1、掌握有理数的加、减法运算法则,灵活运用有理数的加法运算律2、会用法则解决实际问题,体会数形结合、转化等思想,掌握赋值法解决数学问题的方法教学重、难点重点:加法法则、减法法则,加法运算律的运用难点:计算教学过程一、复习回顾1、有理数的加法法则,减法法则,加法运算律的内容是什么?2、利用法则计算时的步骤有哪些?二、例题精讲类型一:有理数的加、减法例1 计算:(1)23+(-27)+9+(-5)(2)(-32)-(-12)-40-(-15)解:(1)原式=(23+9)+[(-27)+(-5)]=41+(-32)=-9(2)原式=(-32)+(+12)+(-40)+(+15)=[(-32)+(-40)]+(12+15) =(-72)+27=-45跟踪训练:(1)-︱-5︱+︱-13︱(2)(3)0-(-3.71)-(+1.71)-(-5)(4)类型二:有理数的加减法与数轴、绝对值相结合例2 (1)有理数a、b在数轴上对应位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b(2)若︱x︱=5,︱y︱=3,且x<y,则x-y等于()A.-8B.-2C.-8或-2D.2或8跟踪训练:1.有理数a、b在数轴上的位置如图,则(-a)+(-b) 0,(-a)-(-b) 0.(填“>”或“<”)2.若︱x-3︱与︱y+0.5︱互为相反数,则x+y ,x-y=类型三:新型运算问题例3 对于任意的有理数,定义a⊙b=a+b+1,求:(1)(-2)⊙(-3)(2)[(-3)⊙4]⊙(-2)415213-⎪⎭⎫⎝⎛-)81(25.0125.3)412(-+++-解:由题意得:(1)(-2)⊙(-3)=(-2)+(-3)+1=(-5)+1=-4(2)[(-3)⊙4]⊙(-2)=[(-3)+4+1]⊙(-2)=2⊙(-2)=2+(-2)+1=1跟踪训练:1.定义[a]表示不超过a的最大整数,如[3.2]=3,[-1.5]=-2,计算[-9.3]+[2]+[8.8]类型四:有理数的加减法在实际问题中的应用例4 股民小刚上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票情况.(单位:元.其中,“+”表示比前一天涨,“-”表示比前一天跌)星期一二三四五涨跌+4 +4.5 -1 -2.5 -6 (1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?跟踪训练:1、某中学定于11月份举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处,所走的路线(单位:m)分别为:+10,-3,+4,-2,+13,-8, -7,-5,-2,求:(1)甲处与乙处相距多远?(2)工作人员共修整跑道多少米?三、强化练习1、计算(1)(-1.25)+1.75 (2)(-23)+59+(-41)+(-59)(3)0-[(-3)-(+12)] (4)︱-2.5︱-︱-4.8︱2、解答题(1)小马虎在计算12+N时,误将“+”看成了“-”,结果是41,求9+N.(2)已知m是7的相反数,n比m的相反数小15,则m与n相比哪个大?大多少?(3)若︱x︱=3,︱y︱,且︱x+y︱=-x-y,求x-y的值(4)一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160个单位.星期一二三四五收缩压的变化(与前一天比较)+25 -20 +17 -10 -18请算出星期五该病人的收缩压.四、小结1、有理数的加减法则以及加法运算律的应用2、有理数加减法与数轴、绝对值的结合五、作业报纸第3期18、20题。

七年级数学有理数的加减混合运算实例教案

七年级数学有理数的加减混合运算实例教案

七年级数学有理数的加减混合运算实例教案【引言】有理数是数学中很重要的一类数,而加减混合运算是有理数的基本运算之一,也是初学者需要掌握的基本技能。

本篇教案就是为初学者提供一些有关有理数加减混合运算的实例,让学生们更好地掌握这一技能。

【教学过程】一、概述在学习有理数的加减混合运算时,首先要明确加法和减法的基本运算规则。

正数加正数,得正数;负数加负数,得负数;正数减负数,得正数;负数减正数,得负数。

同时,要掌握一些简单的有理数化简技巧。

比如,对于加法运算,我们可以把分母化为相同分母,然后分子相加;对于减法运算,我们可以把分母化为相同分母,然后分子相减。

二、实例讲解1.实例一有理数运算:-3.2 + (-0.8) + 4 - (-3)解题思路:我们先把减号改为加号,再加上括号里面的数,得:- 3.2 + (-0.8) + 4 + 3接着,我们把数值带入公式,得:-7所以,所求有理数为-7。

2. 实例二有理数运算:-2.5 - 1/2 + (-2)解题思路:我们先把每个运算数转化为相同的分数,得:-5/2 - 1/2 + (-4/2)再把数值带入公式,得:-6所以,所求有理数为-6。

3. 实例三有理数运算:-2 + 1/3 - (-3)+ 2 2/3 + 1/6解题思路:我们先将加减运算和整数写成带分数形式,得:- 2 + 1/3 + 3 + 2 2/3 + 1/6然后化简分数,把分数相加,得:5 5/18所以,所求有理数为5 5/18。

【总结】通过以上三个实例的讲解,我们可以看出有理数加减混合运算的基本思路。

我们需要先把加减法转化为加法,再将所有的运算数化简为相同的分数,最后将分数相加,得到最终结果。

当然,这只是一个简单的入门教程,学生们在实际学习中需要更多的实例和练习,才能更加熟练地掌握这一技巧。

希望学生们能够认真学习、勤加练习,不断提高自己的数学水平。

有理数的加减法教案

有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。

3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。

4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

人教版数学七年级上册1.3有理数的加减法教案

人教版数学七年级上册1.3有理数的加减法教案

1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法教学目标1.了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.3.能较为熟练地进行有理数的加法运算,并能解决简单的实际间问题.教学重难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.教学过程活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.ji数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律教学目标1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.教学重难点重点:加法交换律和结合律,及其合理、灵活的运用.难点:合理运用运算律教学过程一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.教学反思本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则教学目标1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.教学重点难点重点:有理数的减法法则.难点:对有理数的减法法则的探究.教学过程一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.教学反思本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。

人教版七年级数学上册《有理数的加减法》教案

人教版七年级数学上册《有理数的加减法》教案

1.3 有理数的加减法第1课时有理数的加法(一)教学目标1.经历有理数加法法则的推导过程,理解有理数加法法则.2.能运用有理数加法法则正确进行有理数加法运算.3.能运用有理数加法解决实际问题.教学重点运用有理数加法法则正确进行有理数加法运算.教学难点异号两数的加法运算.教学设计(设计者:)教学过程设计一、创设情景明确目标一艘潜艇在水下50 m处,过了一段时间又上浮了15 m,现在潜艇在水下________米,能用一个算式表示吗?______________________.又该怎样计算呢?小学学过的加法是正数与正数相加、正数与0相加.引入负数后,加法有哪几种情况?二、自主学习指向目标自学教材第16至18页,完成下列问题:1.同号两数相加,取__相同的符号__,并把__绝对值__相加.2.绝对值不相等的异号两数相加,取__绝对值较大的加数__的符号,并用__较大的绝对值__减去__较小的绝对值__.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.三、合作探究达成目标探究点一有理数的加法法则活动一:阅读教材第16至18页,相互交流思考下面的问题:1.观察教科书中算式①②及对应的问题,归纳同号两数相加的法则.2.观察教科书中算式③④及对应的问题,归纳异号两数相加的法则.3.观察教科书中算式⑤⑥及对应的问题,归纳互为相反数相加及有一个加数是0的法则.【展示点评】(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.【小组讨论】有理数的加法运算分几种情况?有理数的加法法则从哪些方面总结的?【反思小结】有理数的加法运算分三种情况:同号、异号、与0相加;有理数的加法法则是从符号和绝对值两方面进行的归纳.【针对训练】见“学生用书”.探究点二 有理数的加法运算活动二:阅读教材第18页例1,相互交流思考下面的问题:题(1)(2)分别是哪种类型?用什么法则?【展示点评】第(1)题是同号两数相加,按法则1进行运算.第(2)题是异号两数相加,按法则2进行计算.【小组讨论】进行有理数加法运算的一般步骤和方法有哪些?【反思小结】在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定__和__的符号;三要计算和的__绝对值__.即“一辨、二定、三算”.【针对训练】见“学生用书”.探究点三 有理数的加法运算的应用例2 某市一天上午的气温是零下10℃,下午上升2℃,夜间又下降15℃,则夜间的气温是多少?【针对训练】见“学生用书”.四、总结梳理 内化目标1.有理数的加法法则. 2.有理数的加法的运算步骤. 有理数的加法⎩⎪⎨⎪⎧法则⎩⎪⎨⎪⎧同号异号0运算步骤 五、达标检测 反思目标1.上升10 m ,再上升-3 m ,则共上升了__7__m. 2.-713的绝对值与513的相反数的和是__2__. 3.两数相加,其和小于每一个数,那么( C )A .这两个加数必定有一个为0B .这两个加数一正一负,且负数的绝对值较大C .这两个加数必定都是负数D .这两个加数的符号不能确定4.数a ,b 表示的点如图所示,则(填“>”“<”或“=”)(1)a +b__>__0;(2)a +(-b)__<__0;(3)(-a)+b__>__0;(4)(-a)+(-b)__<__0.5.计算题:(1)(+3)+(+8); (2)(+14)+(-12); (3)(-312)+(-3.5); (4)(-314)+(+213); (5)|(-19)+8.3|;(6)-3.4+4.3.解:(1)11 (2)-14 (3)-7 (4)-1112(5)10.7 (6)0.9 六、布置作业 巩固目标课后作业 见“学生用书”.第2课时 有理数的加法(二)教学目标1.知道加法运算律在加法运算中的作用,能运用加法运算律简化加法运算.2.能用有理数的加法解决一些实际问题.教学重点有理数加法运算律.教学难点灵活运用运算律使运算简便.教学设计(设计者:)教学过程设计一、创设情景明确目标1.叙述有理数加法法则.2.你能很快算出下列各题的结果吗?由此你得到了什么结论?(1)(-8)+(-9)=________,(-9)+(-8)=________;(2)(+4)+(-7)=________,(-7)+(+4)=________;(3)[2+(-3)]+(-8)=________,2+[(-3)+(-8)]=________;(4)[10+(-10)]+(-5)=________,10+[(-10)+(-5)]=________.二、自主学习指向目标自学教材第19至20页,完成下列问题:1.有理数加法的交换律:两个数相加,交换加数的位置,__和__不变,数学表达式__a+b=b+a__.2.有理数加法的结合律:三个数相加,__先把前两个数相加或先把后两个数相加__,和不变,数学表达式__(a +b)+c=a+(b+c)__.3.在有理数中,所有整数的和为__0__.三、合作探究达成目标探究点一运用有理数的加法运算律简化运算活动一:阅读教材第19页,相互交流思考下面的问题:1.有理数的加法有哪些运算律?用字母表示出来.2.教材中是如何解答的?这样使运算简化的根据是什么?你还有其它方法解答吗?【展示点评】加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c).【小组讨论】多个有理数相加时,有哪些运算方法能使运算简化?【反思小结】多个有理数相加,可运用有理数加法的交换律、结合律,可以先把同号的数结合在一起运算;有小数应化为分数,同分母的分数相加,互为相反数的数相加,有时凑整的相加.【针对训练】见“学生用书”.探究点二 有理数加法的实际运用活动二:有10袋小麦,重量分别为(单位:kg):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.这10袋小麦一共多少千克?如果每袋小麦以90 kg 为标准,10袋小麦共计超过多少千克或不足多少千克?【展示点评】解法1是直接计算,解法2的关键是将每袋小麦以90 kg 为标准,把超过或不足的用正数和负数表示出来.【小组讨论】哪一种解法简便,简便在哪?【反思小结】当已知的一列数中各数都比较大,但都与某一个数比较接近时,一般就以这“某一个数”为基数,超过的记为正数,不足的记为负数,这样计算起来较为快捷.【针对训练】见“学生用书”.四、总结梳理 内化目标1.有理数加法的运算律及运用.2.有理数加法的运算律在实际生活中的运用. 有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律应用 五、达标检测 反思目标1.用简便方法计算17+(-25)+23+(-35)时要用到的运算律有( C )A .加法交换律B .加法结合律C .加法交换律和加法结合律D .不用运算律2.计算:(1)(-12)+19+(-8)+31;(2)18+(-16)+(-23)+(+16); (3)(-134)+278+(-14); (4)147+(-213)+37+13.解:(1)30 (2)-5 (3)78 (4)03.10筐苹果,以每筐30 kg 为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.求这10筐苹果的总重量.解:10×30+(2-4+2.5+3-0.5+1.5+3-1+0-2.5)=304 kg六、布置作业 巩固目标课后作业 见“学生用书”.第3课时 有理数的减法教学目标1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能够运用有理数减法法则进行运算.3.在将有理数减法转化为有理数加法的过程中,体验转化思想.教学重点运用有理数减法法则计算.教学难点探索有理数减法法则.教学设计 (设计者: )教学过程设计一、创设情境 明确目标珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8844 m 和-155 m ,问珠穆朗玛峰比吐鲁番盆地高多少?你是怎么算的.二、自主学习 指向目标自学教材第21至22页,完成下列问题:1.有理数减法法则:__减去一个数,等于加这个数的相反数__,数学表达式是__a -b =a +(-b )__.2.若a >b ,则a -b__>__0;若a<b,则a-b__<__0.3.利用有理数减法法则进行计算,其步骤是(1)__减数变为其相反数__;(2)__相加__.4.一般地,较小的数减去较大的数,所得差的符号是__负号__.5.(1)零上24℃比零下24℃高__48℃__.(2)世界上最高的山峰是珠穆朗玛峰,其海拔高度大约8844 m,吐鲁番盆地的海拔高度大约是-155 m,两处高度相差多少米?解:8844-(-155)=8999(m)三、合作探究达成目标探究点一有理数的减法法则活动一:阅读教材第21至22页的内容,相互交流思考下面的问题:1.由教科书中的算式③,你能得到什么结论?2.完成教科书第22页的“探究”中的问题,从中有什么新的发现?3.如何用字母a,b表示有理数的减法法则?字母a,b可以表示什么数?【展示点评】减去一个数等于加上这个数的相反数,即a-b=a+(-b).【小组讨论】有理数的减法法则的实质是什么?【反思小结】根据减去一个数等于加上这个数的__相反数__可知有理数的减法的其实质是把减法运算转化为__加法__运算.【针对训练】见“学生用书”.探究点二运用有理数的减法法则运算活动二:阅读教材第22页例4,相互交流思考下面的问题:1.在减法运算中,哪些符号变,哪些符号不变?2.由例(2)(4)可知,较小的数减去较大的数时,所得差的符号有什么规律?【小组讨论】说一说有理数减法运算的一般步骤和方法.【展示点评】在运算过程中,要同时改变两个符号,一个是运算符号由“-”变为“+”,一个是减数性质符号,由“正”变为“负”或由“负”变为“正”.被减数的符号是__不__改变的.较小的数减去较大的数时,所得差的符号是__负__号.【反思小结】有理数减法运算的一般步骤是:先把__减法__运算转化为__加法__运算,再进行计算.在进行有理数减法运算时,首先要弄清减数的符号(是正号,还是负号).在减法转化为加法时,被减数与减数的位置不能互换.【针对训练】见“学生用书”.四、总结梳理 内化目标1.法则:有理数的减法.2.数学思想:转化. 有理数的减法⎩⎪⎨⎪⎧法则⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫文字字母―→有理数的加法运算步骤五、达标检测 反思目标 1.下列说法正确的是( C )A .零减去一个数,仍是这个数B .负数减去负数,结果仍是负数C .正数减去负数,结果是正数D .被减数一定大于差2.-7,-12,+2三个数的和比它们的绝对值的和小( D )A .4B .-4C .-38D .383.温度3℃比-7℃高__10℃__,海拔300 m 比海拔-80 m 高__380__m ,-3比__3__小6,-3比__-9__大6.4.计算:(1)(-5)-(-3); (2)0-(-7);(3)(+25)-(-13); (4)(-11)-(+5).解:(1)-2 (2)7 (3)38 (4)-165.计算:(1)12-21; (2)(-1.7)-(-2.5); (3)23-(-12); (4)(-16)-(-13). 解:(1)-9 (2)0.8 (3)76 (4)16六、布置作业 巩固目标 课后作业 见“学生用书”.第4课时有理数的加减混合运算教学目标1.能够熟练的进行有理数的加减混合运算,会使用加法的运算律简化运算.2.了解有理数混合运算中省略加号和括号的意义及读法.教学重点有理数的加减混合运算.教学难点使用加法的运算律简化运算.教学设计(设计者:)教学过程设计一、创设情境明确目标1.有理数加法交换律和结合律用公式表示________________________________________________________________________.2.北京某日早晨的气温是-10℃,中午上升了3℃,下午下降4℃,晚上又下降5℃,你会求出晚上的气温是多少度吗?二、自主学习指向目标自学教材第23至24页,完成下列问题:1.根据有理数的减法法则,可以将有理数加减混合运算统一为__加法__运算,然后按__加法__的运算法则进行计算,即a+b-c=a+b+__(-c)__.2.有理数加减混合运算的一般步骤是:(1)__先转化为加法运算__;(2)__运用加法的运算律化简运算__.三、合作探究达成目标探究点一有理数的加减混合运算活动一:阅读教材第23页例5,相互交流思考下面的问题:1.题中有哪些运算?该如何计算?2.怎么运算更简便?运算使用了哪些运算律?【展示点评】例5属于加减混合运算问题,过程中使用了加法的交换律与结合律.注意利用交换律交换某项时,要注意连同这一项的符号一起搬家.【小组讨论】说一说有理数加减混合运算的步骤?【反思小结】有理数的加减混合运算要将有理数的减法统一成加法运算,然后根据题目特点合理使用运算律进行运算.【针对训练】见“学生用书”.探究点二 省略加号和的形式活动二:把算式(-20)+(+3)+(+5)+(-7)写成省略加号的和形式,并把它读出来.【展示点评】写成省略加号的和的形式为-20+3+5-7,读作“负20、正3、正5、负7的和”或“负20加3加5减7”.【小组讨论】1.把一个式子写成省略括号和加号的和形式的依据是什么?2.两种读法的不同之处在哪?【反思小结】其依据是有理数的__加法和减法法则__.两种不同的读法:一个是把符号当作__运算__符号,一个是把符号当作__性质__符号.【针对训练】见“学生用书”.探究点三 数轴上两点之间的距离活动三:在数轴上,当A ,B 分别表示数a ,b ,利用有理数的减法,分别计算下列情况下A ,B 之间的距离.(1)a =2,b =6; (2)a =0,b =6;(3)a =-2,b =6; (4)a =-2,b =-6.【展示点评】根据AB =|a -b|,可得:当a>b 时,AB =a -b ;当a =b 时,AB =0,当a<b 时,AB =b -a.【小组讨论】:两数之差的绝对值与两数之间的距离有什么关系?【反思小结】利用数轴,把数和形结合起来,有利于把抽象的知识直观化.两数之差的绝对值等于表达两数的点之间的距离.【针对训练】见“学生用书”.四、总结梳理 内化目标1.有理数的加减混合运算的顺序.2.把一个式子写成省略加号和的形式的读法及其依据.有理数的加减混合运算――→转化有理数的加法运算――→运算律简化运算五、达标检测 反思目标1.将6-(+3)-(-7)+(-2)中的减法转化加法,再写成省略加号和括号的形式是( C )A .-6-3+7-2B .6-3-2-7C .6-3+7-2D .6+3-7-22.-6的相反数与比5的相反数小1的数的和为( B )A .1B .0C .2D .113.下列各式和等于4的式子是( C ) A .(-214)+(-134) B .(-12)-(-34)+3 C .0.125+(-34)-(-458) D .-⎪⎪⎪⎪⎪⎪⎪⎪-734+(-312)+14 4.已知数a =29,b =-36,c =-216,则代数式(-a)+b -(-c)=__-281__.5.计算下列各题:(1)13-[26-(-21)+(-18)]; (2)-9+(+45)-(-12)+(-5)+(-45); (3)-16-14-(-13); (4)12-(-34)+(-56)-23. 解:(1)-16 (2)-2 (3)-112 (4)-14六、布置作业 巩固目标 课后作业 见“学生用书”.。

初一有理数加减法教案

初一有理数加减法教案

初一有理数加减法教案【篇一:有理数加减法教案】有理数的加减法(一)[本节课内容] 1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作? 5m;如果物体先向右移动5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(?5)+(?3) = ?81如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(?3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.2例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为()=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)3=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点4会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4oc,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:oc).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___,0+(+3) =___;1―(―3) =___,1+(+3)=____;―5―(―3) =___,―5+(+3) =___.这些数减?3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____; 15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a?b = a+(?b)例题5【篇二:有理数的加法的教案】1.3.1 有理数的加法教案(第二课时)教学目标1.知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.2.过程与方法①培养学生的观察能力和思维能力.②经历对有理数的运算,领悟解决问题应选择适当的方法.3.情感、态度与价值观在数学学习中获得成功的体验.教学重点难点重点:如何运用加法运算律简化运算.难点:灵活运用加法运算律.教与学互动设计(一)情境创设,导入新课思考在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究体验 1.自己任举两个数(至少有一种是负数 ,并比较它们的运算结果,你发现了什么?发现:对任选择的数,即小学里学过的加法交换律在有理数范围内仍是成立的.体验 2.任选三个有理数(至少有一个是负数),并比较它们的运算结果.发现都有些什么?这就是说,小学的加法结合律,在有理数范围内都是成立的.小结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)(三)应用过移,巩固提高例1 说出下列每一步运算的依据(-0.125)+(+5)+(-7)+(+)+(+2)=(-0.125)+(+)+(+5)+(+2)+(-7)(加法交换律)=[(-0.125)+(+)]+[(+5)+(+2)]+(-7)(加法结合律)=0+(+7)+(-7)(有理数的加法法则)=0(有理数的加法法则)例2 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【答案】(1)0 (2)-6.7 (3)-1002例3 某出租司机某天下午营运全是在东西走向的人民大道进行的,?如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18) =[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]=0=118a【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.(2)共耗油118a公升.例4 若│2x-3│与│y+3│互为相反数,求x+y的相反数.【提示】两个非负数互为相反数,只有都为0.解:根据题意,有2x-3=0,y+3=0 则x=,y=-3x+y= +(-3)=-.所以x+y的相反数是备选例题.小王上周在股市以收盘价/(收市时的价格)每股25?元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期每股涨跌(元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.?若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【答案】(1)星期二收盘价为25+2-0.5=26.5(元/股)(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)∴小王的本次收益为1740元.(五)总结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.一 +2 二 -0.5 三 +1.5 四 -1.8 五 +0.8【篇三:人教版七年级上册第一章有理数的加法教学设计】人教版七年级上册第一章《有理数》第三节有理数的加减法第一课时1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。

七年级数学上册1.3《有理数的加减法》有理数的加减混合运算教案+新人教版

七年级数学上册1.3《有理数的加减法》有理数的加减混合运算教案+新人教版

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

有理数的加减混合运算教学目的和要求:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念。

2.使学生熟练地进行有理数的加减混合运算。

3.培养学生的运算能力。

教学重点和难点:重点:准确迅速地进行有理数的加减混合运算。

难点:减法直接转化为加法及混合运算的准确性。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合(并采取尝试指导法)。

教学过程:一、复习引入:1.叙述有理数加法法则。

2.叙述有理数减法法则。

3.叙述加法的运算律。

4.符号“+”和“―”各表达哪些意义?5.化简:+(+3);+(―3);―(+3);―(―3)。

6.口算:(1)2―7; (2)(―2)―7; (3)(―2)―(―7); (4)2+(―7);(5)(―2)+(―7); (6)7―2; (7)(―2)+7;(8)2―(―7)。

二、讲授新课:1.加减法统一成加法算式:以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数。

同样,(―11)―7+(―9)―(―6)按减法法则应为(―11)+(―7)+(―9)+(+6),这样便把加减法统一成加法算式。

几个正数或负数的和称为代数和。

再看16―(―2)+(―4)―(―6)―7写成代数和是16+2+(―4)+6+(―7)。

既然都可以写成代数和,加号可以省略,每个括号都可以省略,如:(―11)―7+(―9)―(―6)=―11―7―9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”;16+2+(―4)+6+(―7)=16+2―4+6―7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”。

有理数的加减混合运算_七年级数学教案

有理数的加减混合运算_七年级数学教案

有理数的加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算2.11有理数加减混合运算一、教学目标1、掌握有理数混合运算的法则,并能熟练的按有理数运算顺序进行有理数加、减、乘、除、乘方、的混合运算。

2、在运算过程中合理的使用简化运算,培养良好的运算能力。

3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。

二、重点、难点1、重点:熟练进行有理数的混合运算。

2、难点:在运算中灵活使用运算律并且能准确掌握符号问题。

三、教学过程1、(幂),a是底数,n是指数,叫做幂,他表示n个a相乘。

在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生回答:加法、减法、乘法、除法、乘方),注意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法则再有理数的范围内都是适用的。

下面我们来检测一下大家,自己在练习23+我们一起检验一下自己做的对不对。

首先看第一题:这一题是那种运算(学生答:加法)。

那么前面我们学习的有理数加法的法则是?学生答:同号两数相加,取相同的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323则,知道了如何分别进行这些法则的运用,今天我们就来学习有理数的混合运算。

大家来看一下这个算式:思考该如何解决这个问题,3+2某(-)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来解决这个问题:首先我们先来判断一下这个式子包含了哪几种运算?(加法、乘方、乘法),=4那么这个式子我们可以把它变成。

3+4某(-)=?这样的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。

例1、3+2某()215解:原式=3+4某()=3+(=154)5115现在我们自己总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号的话,先算括里面的。

人教版七年级上册1.3有理数的加减法(教案)

人教版七年级上册1.3有理数的加减法(教案)
3.重点难点解析:在讲授过程中,我会特别强调同号相加和异号相加这两个重点。对于难点部分,如异号相加时符号和数值的确定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数加减法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用正负数表示物品的增减,让学生通过操作来体验有理数加减法的实际应用。
人教版七年级上册1.3有理数的加减法(教案)
一、教学内容
人教版七年级上册1.3有理数的加减法,主要包括以下内容:
1.有理数的概念:正数、负数、整数、分数;
2.有理数的加减法则:
(1)同号相加,取相同符号,并把绝对值相加;
(2)异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
(3)任何数与0相加,仍得这个数;
在教学过程中,需针对这些重点和难点进行深入讲解和反复练习,确保学生能够透彻理解并掌握有理数的加减法。通过具体例题和实际问题的分析,帮助学生建立数学模型,克服难点,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的加减法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量的情况?”(如温度的升降、银行存款的存取等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数加减法的奥秘。
-掌握有理数的加减法则:特别是异号相加时,如何确定结果的符号和数值;
-有理数的加减混合运算:对于包含多个有理数的复杂表达式,如何正确运用运算律进行简化;
-将理论知识应用于实际问题:如何从实际问题中抽象出有理数的加减模型,并用所学知识解决。

数学人教七年级上册有理数的加减法优秀教案

数学人教七年级上册有理数的加减法优秀教案

1.3.1 有理数的加法(1)(终极版)教学目标:1.利用数形结合的思想使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

教法主要采用启发式教学和必要的讲解3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。

教学重点:有理数加法法则。

教学难点:异号两数相加的法则。

教学准备:多媒体教学过程:一、复习引入:1.如果把向西走20米记作—20米,那么向东走30米应该记作()米,—10米表示向()走()米,+50米表示向()走()米。

0米表示()。

我们把数的范围扩大到有理数以后,我们知道除0以外任何一个有理数都由()和()两部分组成。

2.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。

现在引入了负数,数的范围扩充到了有理数。

那么,如何进行有理数的运算呢?3.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。

可是上述问题不能得到确定答案,因为问题中并未指出行走方向。

二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(―20)+(―30)=―50。

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

有理数加减法教案

有理数加减法教案

有理数加减法教案第一篇:有理数加减法教案教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议(一)重点、难点分析本节重点是运用有理数的减法法则熟练进行减法运算。

解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.(二)知识结构(三)教法建议1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例有理数的减法一、素质教育目标(一)知识教学点1.理解掌握有理数的减法法则.2.会进行有理数的减法运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过有理数的减法运算,培养学生的运算能力.(三)德育渗透点通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知→归纳结论→练习巩固.三、重点、难点、疑点及解决办法1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.计算(口答)(1);(2)-3+(-7);(3)-10+(+3);(4)+10+(-3).2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?教师总结:这就是我们今天要学的内容.(引入新课,板书课题)【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.(二)探索新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:(+10)-(+3)=+7.师:计算:(+10)+(-3)得多少呢?生:(+10)+(-3)=+7.师:让学生观察两式结果,由此得到(+10)-(+3)=+10)+(-3).(1)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数(+3),等于加上它的相反数(-3).【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).(2)教师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.4.例题讲解:[出示投影1(例题1、2)]例1 计算(1)(-3)-(-5);(2)0-7;例2 计算(1)7.2-(-4.8);(2)()-.例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生回答.【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.(三)尝试反馈,巩固练习师:下面大家一起看一组题.[出示投影2(计算题1、2)]1.计算(口答)(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9(5)0-(-5);(6)0-5.2.计算(1)(-2.5)-5.9;(2)1.9-(-0.6);第二篇:有理数加减法教案有理数的减法一、素质教育目标(一)知识教学点1.理解掌握有理数的减法法则.2.会进行有理数的减法运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过有理数的减法运算,培养学生的运算能力.(三)德育渗透点通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知→归纳结论→练习巩固.三、重点、难点、疑点及解决办法1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.计算(口答)(1);(2)-3+(-7);(3)-10+(+3);(4)+10+(-3).2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?教师总结:这就是我们今天要学的内容.(引入新课,板书课题)【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.(二)探索新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:(+10)-(+3)=+7.师:计算:(+10)+(-3)得多少呢?生:(+10)+(-3)=+7.师:让学生观察两式结果,由此得到(+10)-(+3)=+10)+(-3).(1)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数(+3),等于加上它的相反数(-3).【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).(2)教师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.4.例题讲解:[出示投影1(例题1、2)]例1 计算(1)(-3)-(-5);(2)0-7;例2 计算(1)7.2-(-4.8);(2)()-.例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生回答.【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.(三)尝试反馈,巩固练习师:下面大家一起看一组题.[出示投影2(计算题1、2)]1.计算(口答)(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9(5)0-(-5);(6)0-5.2.计算(1)(-2.5)-5.9;(2)1.9-(-0.6);(3)()-;(4)-().学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.用实物投影显示课本第45页的画面.3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?生答:8848-(-392)=8848+392=9240.所以两地高度相差9240米.【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.(四)课堂小结提问:通过本节课学习你学到了什么?生答:略.师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.八、随堂练习1.填空题(1)3-(-3)=____________;(2)(-11)-2=______________;(3)0-(-6)=____________;(4)(-7)-(+8)=____________;(5)-12-(-5)=____________;(6)3比5大____________;(7)-8比-2小___________;(8)-4-()=10;(9)如果,则的符号是___________;(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.2.判断题(1)两数相减,差一定小于被减数.()(2)(-2)-(+3)=2+(-3).()(3)零减去一个数等于这个数的相反数.()(4)方程在有理数范围内无解.()(5)若,,.()九、布置作业(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.(二)选做题:课本第84页中5、8.第三篇:有理数加减法教案教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议(一)重点、难点分析本节重点是运用有理数的减法法则熟练进行减法运算。

有理数的加减混合运算教案(优秀4篇)

有理数的加减混合运算教案(优秀4篇)

有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

教学重点和难点重点:加减运算法则和加法运算律。

难点:省略加号与括号的代数和的计算。

课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。

二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。

七年级数学上册《有理数加减混合运算》教案、教学设计

七年级数学上册《有理数加减混合运算》教案、教学设计
4.通过数学学习,培养学生的逻辑思维能力和严谨的学习态度,为他们的终身学习奠定基础。
二、学情分析
七年级的学生在数学学习上已具备一定的运算基础和逻辑思维能力,但对于有理数加减混合运算这一部分内容,他们在理解上可能还存在一定的困难。在之前的学习中,学生已经接触过正整数、零和负整数的概念,并掌握了它们的加减运算。因此,在此基础上,教师需要引导学生进一步拓展对有理数的认识,帮助他们建立完整的有理数加减混合运算体系。
6.课后作业,拓展延伸
布置适量的课后作业,包括基础题和提高题,巩固所学知识。同时,鼓励学生进行拓展学习,如研究有理数乘除运算等。
7.关注学生情感,营造良好氛围
在教学过程中,关注学生的情感态度,鼓励他们积极参与,勇于提问。对学生的每一次进步给予肯定和表扬,增强他们的自信心。
8.评价与反馈
采用多元化评价方式,关注学生的过程表现,及时给予反馈。通过评价,激发学生的学习积极性,提高他们的学习效果。
三、教学重难点和教学设想
(一)教学重点
1.有理数的概念及其分类;
2.有理数的加减法则及其运用;
3.数轴在有理数加减混合运算中的应用;
4.解决实际问题中涉及的有理数加减混合运算。
(二)教学难点
1.有理数加减法则的理解与记忆;
2.正确运用数轴辅助有理数加减混合运算;
3.将实际问题抽象为有理数加减混合运算模型。
3.深入讲解,突破难点
针对学生难以理解的有理数加减法则,教师通过数轴演示、具体实例分析等方法,帮助学生加深理解,突破难点。
4.巩固练习,提高能力
设计不同难度的练习题,让学生独立完成。在解题过程中,教师巡回指导,针对学生的问题进行个别辅导,提高他们的运算能力。
5.课堂小结,总结规律

七年级数学上册有理数的加减混合运算教案及练习题

七年级数学上册有理数的加减混合运算教案及练习题

七年级数学上册有理数的加减混合运算教案及练习题七年级数学上册有理数的加减混合运算教案及练习题《有理数的加减混合运算》是七年级数学上册的内容。

PINCAI小编整理了七年级数学上册有理数的加减混合运算教案及练习题,一起来看看。

七年级数学上册有理数的加减混合运算教案教学目标1、知识与技能理解有理数加减法可以互相转化,能把有理数的加减混合运算统一为加加法运算,灵活应用运算律进行运算。

2、过程与方法经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题和解决问题的能力。

3、情感态度与价值观体会数学与现实生活的联系,提高学生学习数学的兴趣。

重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

难点:省略括号和加号的加法算式的运算方法。

关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数的加法形式。

教学过程:一、复习提问1、叙述有理数的加法、减法法则。

2、计算。

(1)(-8)+(-6) (2)(-8)-(-6) (3)8-(-6) (4)(-8)-6 (5)5-14二、新授我们又已经学习了有理数加、减法的运算,今天我们来研究怎么样进行有理数的加减混合运算。

例1、计算:(-20)+(+3)-(-5)-(+7)分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算,也可以用有理数的减法法则,把它改为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

解:(-20)+(+3)-(-5)+(-7)=(-20)+(+3)+(+5)+(-7)=-19把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

归纳:加减混合运算可以统一为加法运算。

式子(-20)+(+3)+(+5)-(+7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号,把它写为:-20+3+5-7。

这个式子读作“负20、正3、正5、负7”或读作“负20加3加5减7”。

有理数的加减混合运算教案

有理数的加减混合运算教案

有理数的加减混合运算教案有理数的加减混合运算教案「篇一」教学目标:1、使学生正确掌握用竖式计算连加、连减两步式题的方法。

2、通过计算连加、连减两步式题,提高学生的计算能力。

3、培养学生观察、分析的能力及书写工整、规范的良好习惯。

渗透教学:一、要善于欣赏他人;二、要及时地反思,找到自己与他人的差距,学人之长,补己之短。

教学重点:掌握用竖式计算连加、连减两步式题的方法。

教学难点:正确计算连减式题。

教学手段:投影片、有条件的可采用多媒体设备教学过程:一、情境式引入1、(出示图片1)教师叙述例1的已知条件。

2、提问(1)听完老师的叙述,你都知道了些什么?(2)根据这些已知条件,可以提出一个什么问题呢?(3)待学生回答后,完整的出示例1同学们到西瓜园里摘西瓜,第一组摘了28个西瓜,第二组摘了34个,第三组摘了23个。

三个组一共摘了多少个西瓜?(4)要求三个组一共摘了多少个西瓜,你准备怎么列式?二、新授(一)教学例1(1)提问引导①观察,这道题有什么特点?②这道题的运算顺序是什么?③这道题的数比较大,口算起来比较慢,你们有什么好办法?(2)分组讨论试做要求①先分小组讨论这道题的计算方法(你们组准备怎么做)。

②把本组讨论出的方法做在练习本上。

③如果一个组讨论后得到了几种不同的方法,可以把这几种不同的方法都记录下来。

交流三种方法[讨论过程中,重点提示学生:①首先,在别的同学发言时,要认真地倾听同学的发言,找出其他同学的优缺点。

②其次,在听完别人的发言后,要善于给同学提出有价值的问题。

③要善于在交流的过程中学习。

学习别人的好方法、好思路、好习惯等。

]方法一对比三种方法,选择最优方法问:谁来说说,这三种方法各有什么优缺点?学生回答:优点1、同学们比较熟悉这种竖式的书写方法。

2、在计算过程中,难度较小,不易出错。

缺点1、费时间。

2、这两个竖式不太好安排格式,如果写不好,容易显得很乱。

优点1、写起来会比第一种方法省点时间,少写了一个62,竖式由两个减少到了一个。

有理数的加减乘除运算--教案+例题+习题+答案

有理数的加减乘除运算--教案+例题+习题+答案

有理数的加减乘除运算一、目标认知学习目标:掌握有理数的加法法则,会使用运算律简算;并能解决简单的实际问题。

掌握有理数的减法法则和运算技巧,认识减法与加法的内在联系,合理运算。

重点:有理数的加法法则、减法法则、乘法法则、除法法则。

有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。

混合运算的顺序。

难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。

二、知识要点梳理知识点一:有理数的加法:把两个有理数合成一个有理数的运算叫做有理数的加法。

要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。

知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。

要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。

(2)加法结合律:。

知识点四:有理数减法的意义要点诠释:有理数减法的意义与小学学过的减法的意义相同。

已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。

减法是加法的逆运算。

知识点五:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。

这样一来,就将原来的混合运算统一为加法运算。

统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。

七年级数学上册13《有理数的加减法》教案(新版)新人教版

七年级数学上册13《有理数的加减法》教案(新版)新人教版

有理数的加减法(一)[本节课内容]1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作−5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3) = −8如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1) (-3)+(-9)=-(3+9)=-12(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.再计算总计超过多少千克905.4-90×10 = 5.4.答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___, 0+(+3) =___;1―(―3) =___, 1+(+3) =____;―5―(―3) =___,―5+(+3) =___.这些数减−3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____;15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)例题计算:(1) (-3)―(―5); (2)0-7;(3) 7.2―(―4.8); (4)-3.解:(1) (-3)―(―5)= (-3)+5=2;(2) )0-7 = 0+(-7) =-7;(3) 7.2―(―4.8) = 7.2+4.8 = 12;(4)-3=-3+(-5)=-8.二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”例1.计算(-20)+(+3)-(-5)-(+7)解:(-20)+(+3)-(-5)-(+7)= (-20)+(+3)+(+5)+(-7)=-20+3+5-7=-20-7+3+5=-27+8=-19说明:计算时,可以按照运算顺序,从左到右逐一加以计算三、加法运算律在加减混合运算中的作用与方法加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4解法1:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4+(-2)+(-2)+12.4=(-4.4+12.4)+4+[(-2)+(-2)]= 8+[4+(-5)]= 8+(-1)= 7此解法是将和为整数、便于通分的加数在一起解法2:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4-2-2+12.4=(8+4-2-2)+(--)= 8+(-1) = 7此种方法是将整数部分与小数部分分别相加使计算简化四、小结:①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)。

最新七年级有理数的加减法教案优秀6篇

最新七年级有理数的加减法教案优秀6篇

最新七年级有理数的加减法教案优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!最新七年级有理数的加减法教案优秀6篇作为一位杰出的老师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学
评价
老师对学生
学生对老师
1、对上次作业的评价:○好○较好○一般;
2、对本次上课的评价:○好○较好○一般;
教师签字:
○特别满意
○满意
○一般
学生签字:
校区主管审核签字:
(2)物体位于地面上空2米处,下降3米后又下降5米,最后物体在地面之下多少米处
解:
(1) ∴ 夜间比白天最多低35℃。
(2) ∴ 最后物体在地面之下6米处。
[例8] 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10, ,+4,+2, ,+13, ,+12,+8,+5。
(1)收工时距A地多远
(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升
解:
(1)
(2)
答:收工时在A地前面41千米,从A地出发到收工时共耗油13.4升。
【模拟试题】(答题时间:40分钟)
一. 填空:
1. 从中减去 与 的和是。
2. 比+3大 的数是。
3. 的绝对值与 的相反数的和是。
4. 的相反数是, 的倒数的相反数是。
3. 数 是在数轴上表示 的点右边的数,则 的值( )
A. 大于0 B. 小于0 C. 等于0 D. 不能确定正、负
4. 如果两个有理数的差是正数,那么( )
A. 被减数是负数,减数是正数B. 被减数和减数都是正数
C. 被减数大于减数D. 被减数和减数不能同为负数
5. 如果 , ,且 ,那么 的值是( )
解:
(1)原式=1 (2)原式= (3)原式=
(4)原式= (5)原式
[例5] 计算:
解:
原式
[例6] 已知在数轴上点A表示的数为 ,点B表示的数为15,求A、B两点间的距离。
解:A、B两点间的距离为90
[例7] 用有理数减法解答下列各题:
(1)某地白天最高气温是20℃,夜间最低气温是 ℃,夜间比白天最多低多少℃
5. 有理数减法法则
减去一个数,等于加上这个数的相反数。
【典型例题】
[例1] 计算:
(1) (2)
(3) (4)
解:
(1)原式 (2)原式
(3)原式 (4)原式
[例2] 运用加法运算律,计算下列各题:
(1)
(2)
解:
(1)原式
(2)原式
[例3] 计算:
解:原式
[例4] 计算:
(1) (2) (3)
(4) (5)
七年级有理数的加减法教案及习题
_______个性化辅导学教案
辅导对象
年级
教材
授课老师
学科
授课时间
教学目标
1. 理解有理数加法的意义;熟练掌握有理数加法运算法则、运算律,能正确、灵活地运用运算法则和运算律简化运算。
2. 理解有理数减法的意义,熟练掌握运算法则,会进行有理数的减法运算。
教学重点
教学难点
教学内容及教法学法
调整反思
一.教学内容:
二. 教学重、难点:
1. 重点:有理数的加法法则和减法法则。
2. 难点:异号两数相加的法则和减法意义的理解。
三. 知识要点:
1. 有理数加法的意义
有理数加法与算术中的加法的意义一样,具有“总和”、“累计”、“共”的意义。
2. 有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
二. 1. A 2. C 3. B 4. C 5. A
三. 1. 解:
(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
2. 解:
当 , , 时,原式
3. 解:
∵ , ∴ ,
又 ∵ ∴ ∴ ,
∴ 当 , 时,原式
当 , 时,原式
∴ 的值为10或4
4. 解:根据题意,得 ,
当 , 时,原式
课后作业
课堂
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
3. 有理数加法的运算律
(1)加法交换律
(2)加法结合律
4. 有理数减法的意义
有理数减法就是已知两个数的和与其中的一个加数,求另一个加数的运算。
5. , 都是有理数,且 ,那么 。
二. 选择:
1. 下面说法正确的是( )
A. 两个正数相加,和为正数
B. 两个负数相加,绝对值相减
C. 两个数相加,等于它们绝对值相加
D. 正数加负数,其和一定不等于0
2. 下列结论不正确的是( )
A. 若 , ,则
B. 若 , ,则
C. 若 , B. 13或 C. 3或 D. 或
三. 解答题:
1. 计算:
(1) (2)
(3) (4)
(5)
2. 已知 , , ,求 的值。
3. 已知 , ,且 ,求 的值。
4. 已知 的相反数是最小的正整数, 是绝对值最小的数,求 的值。
【试题答案】
一. 1. 3.75 2. 3. 4. ; 5.
相关文档
最新文档