2019年全国各地中考数学真题大集合
中考试题 因式分解(解析版)2019数学全国中考真题
2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019年全国中考数学试题分类解析汇编(159套63专题)4
2019年全国中考数学试题分类解析汇编(159套63专题)专题5:分式一、选择题1. (2019安徽省4分)化简xxx x -+-112的结果是【 】 A.x +1 B. x -1 C.—x D. x 【答案】D 。
【考点】分式的加法运算【分析】分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减:222(1)111111x x x x x x x x x x x x x x x --+=-===------。
故选D 。
2. (2019浙江湖州3分)要使分式1x有意义,x 的取值范围满足【 】A .x=0B .x≠0 C.x >0 D .x <0 【答案】B 。
【考点】分式有意义的条件。
【分析】根据分式分母不为0的条件,要使1x 在实数范围内有意义,必须x≠0。
故选B 。
3.(2019浙江嘉兴、舟山4分)若分式x 1x+2-的值为0,则【 】A . x=﹣2B . x=0C . x=1或2D .x=1 【答案】D 。
【考点】分式的值为零的条件。
【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。
故选D 。
4. (2019浙江绍兴4分)化简111x x --可得【 】 A .21x x - B . 21x x -- C .221x x x+- D .221x x x--【答案】B 。
【考点】分式的加减法。
【分析】原式=211(1)x x x x x x--=---。
故选B 。
5. (2019浙江义乌3分)下列计算错误的是【 】A .0.2a b 2a b 0.7a b 7a b ++=--B .3223x y x y x y= C .a b 1b a -=-- D .123c c c +=【答案】A 。
【考点】分式的混合运算。
【分析】根据分式的运算法则逐一作出判断:A 、0.2a b 2a 10b0.7a b 7a 10b ++=--,故本选项错误; B 、3223x y xyx y =,故本选项正确; C 、a b b a1b a b a --=-=---,故本选项正确; D 、123c c c+=,故本选项正确。
2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)
尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理(Word版含解析)
直角三角形与勾股定理一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3 B. 3 C. 4 D.2 2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1 B.C.D.2 3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和5.如图,平面直角坐标系中, A (﹣ 8, 0), B (﹣ 8, 4), C (0, 4),反比率函数 y = 的图象分别与线段,交于点 , ,连结.若点B 对于DE 的对称点恰幸亏上,AB BCD EDEOA则 k =()A .﹣ 20B .﹣ 16C .﹣ 12D .﹣ 86.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上, BE与CF 交于点G .若BC =4, DE= AF =1,则GF 的长为()A .B .C .D .7.如图,在直角三角形ABC 中,∠ C = 90°, AC = BC ,E 是 AB 的中点,过点E 作的垂线, 垂足分别为点 D 和点 F ,四边形 CDEF 沿着 CA 方向匀速运动, 点 C 与点停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为AC 和 BCA 重合时S .则 S对于 t 的函数图象大概为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC= 90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点 F 处,线段 DF与 AB订交于点 E,则∠ BED等于()A. 120°B. 108°C. 72°D.36°9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.210.知足以下条件时,△ABC不是直角三角形的为()A.AB=,BC=4, AC=5 B.AB:BC:AC= 3:4: 5C.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣ |+ (tan B﹣2)= 011.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A .B . 3C .D .512.如图,在△ABC 中,∠ B = 50°, CD ⊥ AB 于点D ,∠ BCD 和∠ BDC 的角均分线订交于点E ,F 为边AC 的中点,CD = CF ,则∠ACD +∠ CED =()A . 125°B . 145°C . 175°D .190°二.填空题(共 12 小题)13.在△ ABC 中,∠ A = 50°,∠ B = 30°,点 D 在 AB 边上,连结CD ,若△ ACD 为直角三角形,则∠ BCD 的度数为度.14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图” .如图,设勾 = 6,弦 c = 10,则小正方形的面积是 .aABCD15.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 cm .16.如图,在边长为1 的菱形 ABCD 中,∠ ABC = 60°,将△ ABD 沿射线 BD 的方向平移获得△ A ' B ' D ' ,分别连结 A ' C , A ' D , B ' C ,则 A ' C +B ' C 的最小值为 .17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A ,且此外三个锐角极点B ,C ,D 在同向来线上. 若AB = 2,则 CD = .18.如图,为丈量旗杆 AB 的高度,在教课楼一楼点C 处测得旗杆顶部的仰角为 60°,在四楼点 D 处测得旗杆顶部的仰角为30°,点 C 与点 B 在同一水平线上.已知=,则CDm旗杆的高度为.AB m19.如图, 在 ?ABCD 中,E 、F 是对角线 AC 上两点, AE = EF = CD ,∠ ADF = 90°,∠ BCD =63°,则∠ ADE 的大小为.20.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°获得△ADE , DE与BC 交于点P ,可推出结论:PA +PC = PE .问题解决:如图2,在△ MNG 中, MN = 6,∠ M = 75°, MG =.点O 是△ MNG 内一点,则点O 到△ MNG 三个极点的距离和的最小值是.21.如图, 等边三角形 ABC 内有一点 P ,分別连结 AP 、BP 、CP ,若 AP = 6,BP = 8,CP = 10.则S △ ABP +S △ BPC = .22.无盖圆柱形杯子的睁开图以下图.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有cm .23.以下图,在 Rt △中,∠ = 90°, 是斜边上的中线, 、 F 分别为、ABCACBCMABEMB BC的中点,若 EF =1,则 AB =.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸 BC 至F ,使= ,连结 FE 并延伸交 于点 .若 = ,则△ 的周长为 .CF BC AB M BC a FMB三.解答题(共 9 小题)25.如图,等腰直角三角板如图搁置.直角极点在直线 上,分别过点 、 B 作 ⊥直线C m A AEm于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.27.在 6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图 1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.( 2)在图 2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).28.某发掘机的底座高AB=米,动臂 BC=米, CD=米, BC与 CD的固定夹角∠ BCD=140°.初始地点如图1,斗杆极点 D与铲斗极点 E 所在直线 DE垂直地面 AM于点 E,测得∠CDE=70°(表示图2).工作时如图3,动臂 BC会绕点 B 转动,当点 A, B, C在同向来线时,斗杆极点D升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB的夹角∠ABC的度数.( 2)问斗杆极点D的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50 °≈ 0.77 , cos50 °≈ 0.64 ,sin70 °≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ ABC的三个极点均在格点上, 以点 A 为圆心的与相切于点 ,分别交、 于点 、 .BC D AB AC E F( 1)求△ ABC 三边的长;( 2)求图中由线段 EB 、BC 、 CF 及 所围成的暗影部分的面积.30.已知: △ ABC 是等腰直角三角形, ∠ BAC =90°,将△ ABC 绕点 C 顺时针方向旋转获得△A ′B ′C ,记旋转角为 α,当 90°<α< 180°时,作 A ′D ⊥AC ,垂足为 D ,A ′ D 与 B ′C 交于点 E .( 1)如图 1,当∠ CA ′ D = 15°时,作∠ A ′ EC 的均分线 EF 交 BC 于点 F .①写出旋转角 α 的度数;②求证: EA ′ +EC = EF ;( 2)如图 2,在( 1)的条件下,设P 是直线 A ′D 上的一个动点,连结 PA , PF ,若 AB=,求线段 PA +PF 的最小值.(结果保存根号)31.如图 1,△ ABC 中, CA = CB ,∠ ACB =α, D 为△ ABC 内一点,将△ CAD 绕点 C 按逆时针方向旋转角 α 获得△CBE ,点 A ,D 的对应点分别为点B ,E ,且A ,D ,E 三点在同向来线上.( 1)填空:∠CDE =(用含 α 的代数式表示) ;( 2)如图2,若 α= 60°,请补全图形,再过点C作CF ⊥ AE 于点F ,而后研究线段CF ,AE , BE 之间的数目关系,并证明你的结论;( 3)若 α= 90°, AC = 5 ,且点 G 知足∠ AGB = 90°, BG = 6,直接写出点 C 到 AG 的距离.32.如图,在平面直角坐标系中,四边形 OABC 的极点坐标分别为 O ( 0, 0),A ( 12, 0), B( 8, 6), C ( 0, 6).动点 P 从点 O 出发,以每秒 3 个单位长度的速度沿边 OA 向终点 A 运动;动点 从点B 同时出发,以每秒 2 个单位长度的速度沿边 向终点C 运动.设运QBC2动的时间为 t 秒, PQ = y .( 1)直接写出 y 对于 t 的函数分析式及 t 的取值范围:;( 2)当 PQ = 3 时,求 t 的值;( 3)连结 OB 交 PQ 于点 D ,若双曲线 y = ( k ≠ 0)经过点 D ,问 k 的值能否变化?若不变化,恳求出 k 的值;若变化,请说明原因.33.已知 AB 是⊙ O 的直径, AM 和 BN 是⊙ O 的两条切线, DC 与⊙ O 相切于点 E ,分别交 AM 、BN 于 D 、 C 两点.( 1)如图 1,求证: AB 2= 4AD ?BC ;( 2)如图 2,连结 OE 并延伸交 AM 于点 F ,连结 CF .若∠ ADE =2∠ OFC ,AD = 1,求图中暗影部分的面积.参照答案与试题分析一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3B. 3C.4D.2【剖析】连结AC,如图,依据圆内接四边形的性质和圆周角定理获得∠1=∠CDA,∠ 2 =∠ 3,从而获得∠3=∠CDA,所以AC=AD= 5,而后利用勾股定理计算AE的长.【解答】解:连结AC,如图,∵BA均分∠ DBE,∴∠ 1=∠ 2,∵∠ 1=∠CDA,∠ 2=∠ 3,∴∠ 3=∠CDA,∴AC=AD=5,∵ AE⊥CB,∴∠ AEC=90°,∴AE===2.应选: D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1B.C.D.2【剖析】依据正六边的性质,正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,而后求出等边三角形的高即可.【解答】解:边长为 2 的正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,所以本来的纸带宽度=×2=.应选: C.3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.【剖析】设DE=x,则 AD=8﹣ x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点 C作 CF⊥ BG于 F,由△ CDE∽△ BCF的比率线段求得结果即可.【解答】解:过点C作 CF⊥ BG于 F,以下图:设 DE=x,则 AD=8﹣ x,依据题意得:( 8﹣x+8)× 3× 3= 3× 3×6,解得: x=4,∴DE=4,∵∠ E=90°,由勾股定理得:CD=,∵∠ BCE=∠ DCF=90°,∴∠ DCE=∠ BCF,∵∠ DEC=∠ BFC=90°,∴△ CDE∽△ BCF,∴,即,∴CF=.应选: A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【剖析】依据勾股定理获得c2= a2+b2,依据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2= a2+b2,暗影部分的面积=c2﹣b2﹣a( c﹣ b)= a2﹣ac+ab= a( a+b﹣ c),较小两个正方形重叠部分的长=a﹣( c﹣ b),宽= a,则较小两个正方形重叠部分底面积=a( a+b﹣c),∴知道图中暗影部分的面积,则必定能求出较小两个正方形重叠部分的面积,应选: C.5.如图,平面直角坐标系中,A(﹣8,0), B(﹣8,4), C(0,4),反比率函数y=的图象分别与线段AB,BC交于点D, E,连结DE.若点 B 对于DE的对称点恰幸亏OA上,则 k=()A.﹣ 20 B.﹣ 16 C.﹣ 12 D.﹣ 8【剖析】依据A(﹣8,0), B(﹣8,4), C(0,4),可得矩形的长和宽,易知点D的横坐标, E 的纵坐标,由反比率函数的关系式,可用含有k 的代数式表示此外一个坐标,由三角形相像和对称,可用求出AF的长,而后把问题转变到三角形ADF中,由勾股定理建立方程求出k 的值.【解答】解:过点 E 作 EG⊥ OA,垂足为 G,设点 B 对于 DE的对称点为F,连结 DF、 EF、BF,以下图:则△ BDE≌△ FDE,∴BD=FD, BE=FE,∠ DFE=∠ DBE=90°易证△ ADF∽△ GFE∴,∵A(﹣8,0),B(﹣8,4), C(0,4),∴ AB=OC= EG=4, OA= BC=8,∵D、E在反比率函数 y=的图象上,∴ E(, 4)、D(﹣ 8,)∴OG=EC=,AD=﹣,∴BD=4+, BE=8+∴,∴ =,AF2 2 2在 Rt △ADF中,由勾股定理:AD+AF = DF即:(﹣)2+22=( 4+ )2解得: k=﹣12应选: C.6.如图,正方形ABCD中,点 E、F 分别在边CD,AD上, BE与 CF交于点 G.若 BC=4, DE = AF=1,则 GF的长为()A.B.C.D.【剖析】证明△BCE≌△ CDF( SAS),得∠ CBE=∠ DCF,所以∠ CGE=90°,依据等角的余弦可得 CG的长,可得结论.【解答】解:正方形ABCD中,∵ BC=4,∴BC=CD= AD=4,∠ BCE=∠ CDF=90°,∵ AF=DE=1,∴DF=CE=3,∴ BE =CF = 5,在△ BCE 和△ CDF 中,,∴△ BCE ≌△ CDF ( SAS ),∴∠ CBE =∠ DCF ,∵∠ CBE +∠ CEB =∠ ECG +∠CEB = 90°=∠ CGE ,cos ∠ CBE = cos ∠ ECG = ,∴,CG =,∴ GF =CF ﹣ CG =5﹣ = ,应选: .A7.如图,在直角三角形中,∠ = 90°, = , 是AB 的中点,过点 E 作和ABC CAC BC EAC BC的垂线, 垂足分别为点D 和点,四边形沿着方向匀速运动, 点C 与点 A 重合时FCDEF CA 停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为S .则 S 对于 t 的函数图象大概为()A .B .C .D .【剖析】依据已知条件获得△ABC 是等腰直角三角形,推出四边形 EFCD 是正方形,设正方形的边长为 a ,当挪动的距离< a 时,如图 1S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣2;当挪动的距离>a 时,如图 2, = △AC ′H = ( 2 ﹣ ) 2=2﹣ 2+2 2,依据函t S S a tt at a数关系式即可获得结论;【解答】解:∵在直角三角形ABC 中,∠ C = 90°, AC = BC ,∴△ ABC 是等腰直角三角形,∵ EF ⊥BC , ED ⊥AC ,∴四边形 EFCD 是矩形,∵ E 是 AB 的中点,∴ EF = AC , DE = BC ,∴ EF =ED ,∴四边形 EFCD 是正方形,设正方形的边长为a ,如图 1 当挪动的距离< a 时, S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣ t 2;当挪动的距离> a 时,如图 2, S = S △AC ′ H = ( 2a ﹣t ) 2 = t 2﹣ 2at +2a 2 ,∴ S 对于 t 的函数图象大概为 C 选项,应选: C .8.如图,在 Rt △ ABC 中,∠ BAC = 90°,∠ B =36°, AD 是斜边BC 上的中线,将△ ACD沿对折,使点C 落在点F 处,线段与订交于点 ,则∠等于()AD DF AB E BEDA. 120°B. 108°C. 72°D.36°【剖析】依据三角形内角和定理求出∠C=90°﹣∠ B=54°.由直角三角形斜边上的中线的性质得出AD= BD= CD,利用等腰三角形的性质求出∠BAD=∠ B=36°,∠ DAC=∠ C = 54°,利用三角形内角和定理求出∠ADC=180°﹣∠ DAC﹣∠ C=72°.再依据折叠的性质得出∠ ADF=∠ ADC=72°,而后依据三角形外角的性质得出∠BED=∠ BAD+∠ ADF=108°.【解答】解:∵在Rt △ABC中,∠BAC= 90°,∠B=36°,∴∠ C=90°﹣∠ B=54°.∵AD是斜边 BC上的中线,∴ AD=BD= CD,∴∠ BAD=∠ B=36°,∠ DAC=∠ C=54°,∴∠ ADC=180°﹣∠ DAC﹣∠ C=72°.∵将△ ACD沿 AD对折,使点C落在点 F 处,∴∠ ADF=∠ ADC=72°,∴∠ BED=∠ BAD+∠ ADF=36°+72°=108°.应选: B.9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.2【剖析】设CD=5x, BD=7x,则 BC=2x,由 AC=12即可求 x,从而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设 CD=5x, BD=7x,∴BC=2 x,∵AB的垂直均分线 EF交 AC于点 D,∴ AD=BD=7x,∴ AC=12x,∵AC=12,∴x=1,∴BC=2;应选: D.10.知足以下条件时,△ABC不是直角三角形的为()A.=,=4,=5 B.::=3:4:5 AB BCAC AB BC ACC.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣|+(tan B﹣)2= 0 【剖析】依照勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可获得结论.【解答】解:、∵,∴△是直角三角形,错误;A ABCB、∵(2 2 2 2 2 23x) +( 4x)= 9x +16x= 25x=( 5x),∴△ABC是直角三角形,错误;、∵∠:∠ :∠ = 3:4: 5,∴∠ =,∴△不是C A BC C ABC直角三角形,正确;、∵ |cos ﹣|+ ( tan ﹣)2=0,∴,∴∠= 60°,∠=D A B A B30°,∴∠C= 90°,∴△ABC是直角三角形,错误;应选: C.11.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3 C.D.5【剖析】先依据正方形的性质得出∠B=90°,而后在Rt△ BCE中,利用勾股定理得出2BC,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠ B=90°,2222 2∴BC= EC﹣EB=2﹣1=3,∴正方形ABCD的面积=2BC=3.应选: B.12.如图,在△ABC中,∠ B=50°, CD⊥ AB于点D,∠ BCD和∠ BDC的角均分线订交于点E,F 为边AC的中点,CD= CF,则∠ACD+∠ CED=()A. 125°B. 145°C. 175°D.190°【剖析】依据直角三角形的斜边上的中线的性质,即可获得△CDF是等边三角形,从而得到∠ ACD=60°,依据∠BCD和∠ BDC的角均分线订交于点E,即可得出∠CED=115°,即可获得∠ ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥ AB,F 为边 AC的中点,∴DF= AC= CF,又∵ CD= CF,∴CD=DF= CF,∴△ CDF是等边三角形,∴∠ ACD=60°,∵∠ B=50°,∴∠ BCD+∠ BDC=130°,∵∠ BCD和∠ BDC的角均分线订交于点E,∴∠ DCE+∠ CDE=65°,∴∠ CED=115°,∴∠ ACD+∠ CED=60°+115°=175°,应选: C.二.填空题(共12 小题)13.在△ABC中,∠A= 50°,∠B= 30°,点D在AB边上,连结CD,若△ ACD为直角三角形,则∠ BCD的度数为60°或 10度.【剖析】当△ ACD为直角三角形时,存在两种状况:∠ ADC=90°或∠ ACD=90°,依据三角形的内角和定理可得结论.【解答】解:分两种状况:①如图 1,当∠ADC= 90°时,∵∠ B=30°,∴∠ BCD=90°﹣30°=60°;②如图 2,当∠ACD= 90°时,∵∠ A=50°,∠ B=30°,∴∠ ACB=180°﹣30°﹣50°=100°,∴∠ BCD=100°﹣90°=10°,综上,则∠ BCD的度数为60°或10°;故答案为: 60°或 10;14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图”.如图,设勾 a=6,弦 c=10,则小正方形ABCD的面积是4.【剖析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a = 6,弦 c = 10,∴股== 8,∴小正方形的边长= 8﹣ 6= 2,∴小正方形的面积= 22= 4故答案是: 415.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与 重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 (10﹣2 ) cm .【剖析】过点 A 作 AG ⊥ DE 于点 G ,由旋转的性质推出∠ AED =∠ ADG = 45°,∠ AFD =60°,利用锐角三角函数分别求出 AG , GF , AF 的长,即可求出CF = AC ﹣ AF =10﹣ 2.【解答】解:过点A 作 AG ⊥ DE 于点 G ,由旋转知: AD =AE ,∠ DAE = 90°,∠ CAE =∠ BAD = 15°,∴∠ AED =∠ ADG = 45°,在△ AEF 中,∠ AFD =∠ AED +∠ CAE = 60°,在 Rt △ADG 中, AG = DG = = 3,在 Rt △AFG 中, GF ==, AF =2FG = 2 ,∴ CF =AC ﹣ AF =10﹣ 2,故答案为: 10﹣2 .16.如图,在边长为 1 的菱形ABCD中,∠ABC= 60°,将△ABD沿射线BD的方向平移获得△ A' B' D',分别连结 A' C, A' D, B' C,则 A' C+B' C的最小值为.【剖析】依据菱形的性质获得 AB=1,∠ ABD=30°,依据平移的性质获得1,∠A′B′D=30°,当B′C⊥A′B′时,A' C+B' C的值最小,推出四边形A′ B′= AB=A′ B′CD是矩形,∠B′ A′C=30°,解直角三角形即可获得结论.【解答】解:∵在边长为 1 的菱形ABCD中,∠ ABC=60°,∴ AB=1,∠ ABD=30°,∵将△ ABD沿射线 BD的方向平移获得△A' B' D',∴A′ B′= AB=1,∠ A′B′ D=30°,当 B′C⊥ A′ B′时, A' C+B' C的值最小,∵ AB∥A′ B′, AB= A′ B′, AB= CD, AB∥ CD,∴A′ B′= CD,A′ B′∥ CD,∴四边形 A′ B′CD是矩形,∠ B′ A′ C=30°,∴B′C=,A′C=,∴A' C+B' C的最小值为,故答案为:.17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A,且此外三个锐角极点B,C,D在同向来线上.若AB=2,则CD=﹣.【剖析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出 DF,即可得出结论.【解答】解:如图,过点 A 作 AF⊥BC于 F,在 Rt △ABC中,∠B= 45°,∴BC= AB=2, BF= AF=AB=,∵两个相同大小的含45°角的三角尺,∴ AD=BC=2,在 Rt △ADF中,依据勾股定理得,DF==,∴ CD=BF+DF﹣ BC=+﹣ 2 =﹣,故答案为:﹣.18.如图,为丈量旗杆AB的高度,在教课楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点 D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD= m,则旗杆 AB的高度为m.【剖析】作DE⊥ AB于E,则∠ AED=90°,四边形BCDE是矩形,得出BE= CD= m,∠CDE=∠ DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ ACD,得出AD= CD= m,在 Rt △ADE中,由直角三角形的性质得出AE=AD=m,即可得出答案.【解答】解:作DE⊥ AB于 E,以下图:则∠ AED=90°,四边形BCDE是矩形,∴BE=CD= m,∠ CDE=∠ DEA=90°,∴∠ ADC=90°+30°=120°,∵∠ ACB=60°,∴∠ ACD=30°,∴∠ CAD=30°=∠ ACD,∴AD=CD= m,在 Rt △ADE中,∠ADE=30°,∴ AE= AD= m,∴AB=AE+BE= m m= m;故答案为: 14.4 .19.如图,在 ?ABCD中,E、F是对角线AC上两点, AE= EF= CD,∠ ADF=90°,∠ BCD=63°,则∠ ADE的大小为21°.【剖析】设∠ ADE= x,由等腰三角形的性质和直角三角形得出∠DAE=∠ ADE=x,DE=AF = AE=EF,得出DE= CD,证出∠ DCE=∠ DEC=2x,由平行四边形的性质得出∠DCE=∠ BCD ﹣∠ BCA=63°﹣ x,得出方程,解方程即可.【解答】解:设∠ADE= x,∵AE=EF,∠ ADF=90°,∴∠ DAE=∠ ADE= x, DE=AF=AE= EF,∵AE=EF= CD,∴ DE=CD,∴∠ DCE=∠ DEC=2x,∵四边形 ABCD是平行四边形,∴ AD∥BC,∴∠ DAE=∠ BCA= x,∴∠ DCE=∠ BCD﹣∠ BCA=63°﹣x,∴ 2x=63°﹣x,解得: x=21°,即∠ ADE=21°;故答案为: 21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°获得△ADE,DE与BC交于点P,可推出结论:PA+PC= PE.问题解决:如图2,在△MNG中,MN= 6,∠M= 75°,MG=.点O是△ MNG内一点,则点O到△ MNG三个极点的距离和的最小值是 2 .【剖析】( 1)在BC上截取BG=PD,经过三角形求得证得AG= AP,得出△ AGP是等边三角形,得出∠ AGC=60°=∠ APG,即可求得∠ APE=60°,连结 EC,延伸 BC到 F,使 CF=PA,连结 EF,证得△ ACE是等边三角形,得出AE= EC=AC,而后经过证得△APE≌△ ECF (SAS),得出 PE= PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连结ND,可证△GMO≌△DME,可得 GO=DE,则 MO+NO+GO=NO+OE+DE,即当D、 E、 O、 N 四点共线时, MO+NO+GO 值最小,最小值为ND的长度,依据勾股定理先求得MF、 DF,而后求 ND的长度,即可求MO+NO+GO的最小值.【解答】( 1)证明:如图1,在BC上截取BG=PD,在△ ABG和△ ADP中,∴△ ABG≌△ ADP( SAS),∴AG=AP,∠ BAG=∠ DAP,∵∠ GAP=∠ BAD=60°,∴△ AGP是等边三角形,∴∠ AGC=60°=∠ APG,∴∠ APE=60°,∴∠ EPC=60°,连结 EC,延伸 BC到 F,使 CF= PA,连结 EF,∵将△ ABC绕点 A 逆时针旋转60°获得△ ADE,∴∠ EAC=60°,∠ EPC=60°,∵ AE=AC,∴△ ACE是等边三角形,∴AE=EC= AC,∵∠ PAE+∠ APE+∠ AEP=180°,∠ ECF+∠ ACE+∠ ACB=180°,∠ ACE=∠ APE=60°,∠AED=∠ ACB,∴∠ PAE=∠ ECF,在△ APE和△ ECF中∴△ APE≌△ ECF( SAS),∴PE=PF,∴PA+PC= PE;( 2)解:如图 2:以MG为边作等边三角形△MGD,以 OM为边作等边△ OME.连结 ND,作DF⊥ NM,交 NM的延伸线于F.∵△ MGD和△ OME是等边三角形∴OE=OM= ME,∠ DMG=∠ OME=60°, MG= MD,∴∠ GMO=∠ DME在△ GMO和△ DME中∴△ GMO≌△ DME( SAS),∴OG=DE∴NO+GO+MO= DE+OE+NO∴当 D、 E、 O、 M四点共线时, NO+GO+MO值最小,∵∠ NMG=75°,∠ GMD=60°,∴∠ NMD=135°,∴∠ DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为 2,21.如图,等边三角形ABC内有一点 P,分別连结 AP、BP、CP,若 AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【剖析】 将△ BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,依据旋转的性质可得∠PBP ′=∠CAB = 60°, BP = BP ′,可得△ BPP ′为等边三角形,可得BP ′= BP = 8=PP ' ,由勾股定理的逆定理可得,△ APP ′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,连结 PP ′,依据旋转的性质可知,旋转角∠ PBP ′=∠ CAB =60°, BP = BP ′,∴△ BPP ′为等边三角形, ∴ BP ′= BP = 8= PP ' ;由旋转的性质可知, AP ′= PC = 10, 在△ BPP ′中, PP ′= 8,AP = 6,由勾股定理的逆定理得,△ APP ′是直角三角形,2×PP ' × AP =24+16∴ S △ABP +S △ BPC = S 四边形 AP' BP = S △ BP' B +S △AP' P =BP +故答案为: 24+1622.无盖圆柱形杯子的睁开图以下图.将一根长为 20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有5.cm【剖析】依据题意直接利用勾股定理得出杯子内的筷子长度,从而得出答案.【解答】解:由题意可得:杯子内的筷子长度为: = 15,则筷子露在杯子外面的筷子长度为:20﹣ 15=5( cm ).故答案为: 5.23.以下图,在 Rt △中,∠ = 90°, 是斜边 上的中线, 、 F 分别为、ABC ACBCM AB E MB BC的中点,若 EF =1,则 AB = 4 .【剖析】依据三角形中位线定理求出CM ,依据直角三角形的性质求出AB .【解答】解:∵ E 、 F 分别为 MB 、 BC 的中点,∴ CM =2EF = 2,∵∠ ACB = 90°, CM 是斜边 AB 上的中线,∴ AB =2CM = 4,故答案为: 4.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸BC 至 F ,使 CF = BC ,连结 FE 并延伸交 AB 于点 M .若 BC = a ,则△ FMB 的周长为.【剖析】在 Rt △中,求出 = 2 , = ,在 Rt △顶用 a 表示出 FE 长,并证ABC AB a ACaFEC明∠ FEC = 30°,从而 EM 转变到 MA 上,依据△ FMB 周长= BF +FE +EM +BM = BF +FE +AM +MB =BF +FE +AB 可求周长.【解答】解:在 Rt △ ABC 中,∠ B = 60°,∴∠ A = 30°,∴ AB =2a , AC = a .∵ DE 是中位线, ∴ CE =a .在 Rt △FEC 中,利用勾股定理求出FE = a ,∴∠ FEC=30°.∴∠ A=∠ AEM=30°,∴EM=AM.△ FMB周长= BF+FE+EM+BM= BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9 小题)25.如图,等腰直角三角板如图搁置.直角极点C在直线 m上,分别过点A、B 作 AE⊥直线m于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.【剖析】①经过AAS证得△ CAE≌△ BCD,依据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ ACE+∠ BCD=90°.∵∠ ACE+∠ CAE=90°,∴∠ CAE=∠ BCD.在△ AEC与△ BCD中,∴△ CAE≌△ BCD( AAS).∴EC=BD;②解:由①知: BD= CE=a CD= AE= b∴S 梯形AEDB=( a+b)(a+b)=a2+ab+ b2.又∵ S 梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ ab+ c2=ab+ c2.∴a2+ab+ b2= ab+ c2.整理,得 a2+b2=c2.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.【剖析】( 1)由正方形的性质得出∠BAE=∠ ADF=90°, AB= AD= CD,得出 AE= DF,由SAS证明△ BAE≌△ ADF,即可得出结论;( 2 )由全等三角形的性质得出∠EBA=∠ FAD,得出∠ GAE+∠ AEG=90°,所以∠ AGE=90°,由勾股定理得出BE==5,在Rt△ ABE中,由三角形面积即可得出结果.【解答】( 1)证明:∵四边形ABCD是正方形,∴∠ BAE=∠ ADF=90°, AB= AD=CD,∵DE=CF,∴ AE=DF,在△ BAE和△ ADF中,,∴△ BAE≌△ ADF( SAS),∴BE=AF;( 2)解:由( 1)得:△BAE≌△ADF,∴∠ EBA=∠ FAD,∴∠ GAE+∠ AEG=90°,∴∠ AGE=90°,∵AB=4, DE=1,∴ AE=3,∴ BE===5,在 Rt △ABE中,AB×AE=BE×AG,∴ AG==.27.在6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图( 2)在图1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).【剖析】(1)由勾股定理得:CD= AB= CD'==;画出图形即可;,BD= AC=BD'' =,AD'= BC= AD''(2)依据平行线分线段成比率定理画出图形即可.【解答】解:( 1)由勾股定理得:CD= AB= CD'=,BD=AC=BD''=,AD'= BC= AD''=;画出图形如图 1 所示;( 2)如图 2 所示.28.某发掘机的底座高 AB = 0.8 米,动臂 BC = 米, CD =米, BC 与 CD 的固定夹角∠= 140°.初始地点如图 1,斗杆极点D 与铲斗极点E 所在直线垂直地面于点 ,BCDDEAM E测得∠ = 70°(表示图 2).工作时如图 3,动臂会绕点 B 转动,当点, , 在CDEBCA B C同向来线时,斗杆极点D 升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB 的夹角∠ABC 的度数.( 2)问斗杆极点D 的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50°≈ 0.77 , cos50 °≈ 0.64 ,sin70°≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )【剖析】( 1)过点 C 作 CG ⊥ AM 于点 G ,证明 AB ∥ CG ∥ DE ,再依据平行线的性质求得结果;( 2)过点 C 作 CP ⊥ DE 于点 P ,过点 B 作 BQ ⊥ DE 于点 Q ,交 CG 于点 N ,如图 2,经过解直角三角形求得 DE ,过点 D 作 DH ⊥ AM 于点 H ,过点 C 作 CK ⊥ DH 于点 K ,如图 3,经过解直角三角形求得求得DH ,最后即可求得结果.【解答】解:( 1)过点 C 作 CG ⊥ AM 于点 G ,如图 1,∵AB⊥AM, DE⊥AM,∴ AB∥CG∥ DE,∴∠ DCG=180°﹣∠ CDE=110°,∴ BCG=∠ BCD﹣∠ GCD=30°,∴∠ ABC=180°﹣∠ BCG=150°;( 2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图 2,在 Rt △CPD中,DP=CD×cos70 °≈ 0.51 (米),在Rt △BCN中,CN=BC×cos30 °≈1.04 (米),所以, DE= DP+PQ+QE= DP+CN+AB=(米),如图 3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在 Rt △CKD中,DK=CD×sin50 °≈ 1.16(米),所以, DH= DK+KH=(米),所以, DH﹣ DE=(米),所以,斗杆极点 D的最高点比初始地点高了米.29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ABC 的三个极点均在格点上,以点 A 为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的暗影部分的面积.【剖析】( 1)依据勾股定理即可求得;( 2)依据勾股定理求得2 2 2AD,由(1)得, AB +AC=BC,则∠BAC= 90°,依据S阴=S△ABC﹣ S 扇形AEF即可求得.【解答】解:( 1)== 2 ,ABAC==2 ,BC==4 ;( 2)由( 1)得,2+ 2 =2,AB AC BC∴∠ BAC=90°,连结 AD, AD==2 ,∴ S 阴= S△ABC﹣ S 扇形AEF=AB?AC﹣2π ?AD= 20﹣ 5π.30.已知:△ABC是等腰直角三角形,∠ BAC=90°,将△ ABC绕点C顺时针方向旋转获得△A′ B′C,记旋转角为α,当90°<α<180°时,作A′ D⊥AC,垂足为D,A′ D与B′C交于点 E.(1)如图 1,当∠CA′D= 15°时,作∠A′EC的均分线EF交BC于点F.①写出旋转角α 的度数;②求证: EA′+EC= EF;( 2)如图 2,在( 1)的条件下,设P 是直线 A′D 上的一个动点,连结PA, PF,若 AB =,求线段 PA+PF的最小值.(结果保存根号)【剖析】( 1)①解直角三角形求出∠A′ CD即可解决问题.②连结 A′ F,设 EF交 CA′于点 O.在 EF时截取 EM=EC,连结 CM.第一证明△ CFA′是等边三角形,再证明△FCM≌△ A′CE( SAS),即可解决问题.( 2)如图 2 中,连结A′F,PB′,AB′,作B′M⊥AC交AC的延伸线于M.证明△A′EF≌△ A′ EB′,推出 EF=EB′,推出 B′,F 对于 A′ E 对称,推出 PF= PB′,推出 PA+PF=PA+PB′≥ AB′,求出 AB′即可解决问题.【解答】( 1)①解:旋转角为 105°.原因:如图 1 中,∵A′ D⊥ AC,∴∠ A′ DC=90°,∵∠CA′ D=15°,∴∠ A′CD=75°,∴∠ ACA′=105°,∴旋转角为 105°.②证明:连结A′ F,设 EF交 CA′于点 O.在 EF时截取 EM= EC,连结 CM.∵∠ CED=∠ A′CE+∠ CA′E=45°+15°=60°,∴∠ CEA′=120°,∵FE均分∠ CEA′,∴∠ CEF=∠ FEA′=60°,∵∠ FCO=180°﹣45°﹣75°=60°,∴∠ FCO=∠ A′EO,∵∠ FOC=∠ A′ OE,∴△ FOC∽△ A′OE,∴=,∴=,∵∠ COE=∠ FOA′,∴△ COE∽△ FOA′,∴∠ FA′ O=∠ OEC=60°,∴△ A′ OF是等边三角形,∴CF=CA′= A′ F,∵EM=EC,∠ CEM=60°,∴△ CEM是等边三角形,∠ECM=60°, CM= CE,∵∠ FCA′=∠ MCE=60°,∴∠ FCM=∠ A′CE,∴△ FCM≌△ A′CE( SAS),∴ FM=A′ E,∴ CE+A′ E= EM+FM= EF.( 2)解:如图 2 中,连结A′ F, PB′, AB′,作 B′M⊥ AC交 AC的延伸线于M.由②可知,∠ EA′ F=′ EA′ B′=75°, A′E= A′ E, A′ F=A′ B′,∴△ A′ EF≌△ A′ EB′,∴EF=EB′,∴B′, F 对于 A′ E 对称,∴PF=PB′,∴PA+PF= PA+PB′≥ AB′,在 Rt △CB′M中,CB′=BC=AB=2,∠ MCB′=30°,∴ B′ M= CB′=1, CM=,∴AB′===.∴ PA+PF的最小值为.31.如图 1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α 获得△ CBE,点A,D的对应点分别为点B,E,且 A,D,E 三点在同向来线上.( 1)填空:∠CDE=(用含α 的代数式表示);( 2)如图 2,若α= 60°,请补全图形,再过点C作 CF⊥ AE于点 F,而后研究线段CF,AE, BE之间的数目关系,并证明你的结论;(3)若α= 90°,AC= 5 ,且点G知足∠AGB= 90°,BG= 6,直接写出点C到AG的距离.【剖析】( 1)由旋转的性质可得CD= CE,∠ DCE=α,即可求解;( 2)由旋转的性质可得AD= BE,CD= CE,∠ DCE=60°,可证△ CDE是等边三角形,由等边三角形的性质可得DF= EF=,即可求解;( 3)分点G在AB的上方和AB的下方两种状况议论,利用勾股定理可求解.【解答】解:( 1)∵将△绕点按逆时针方向旋转角α 获得△CADCCBE ∴△ ACD≌△ BCE,∠ DCE=α∴CD=CE∴∠ CDE=故答案为:(2)AE=BE+CF原因以下:如图,∵将△ CAD绕点 C按逆时针方向旋转角60°获得△CBE∴△ ACD≌△ BCE∴AD=BE, CD=CE,∠ DCE=60°∴△ CDE是等边三角形,且 CF⊥ DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF( 3)如图,当点G在 AB上方时,过点C作 CE⊥ AG于点 E,∵∠ ACB=90°, AC= BC=5,∴∠ CAB=∠ ABC=45°, AB=10∵∠ ACB=90°=∠ AGB∴点 C,点 G,点 B,点 A四点共圆∴∠ AGC=∠ ABC=45°,且 CE⊥ AG∴∠ AGC=∠ ECG=45°∴CE=GE∵AB=10, GB=6,∠ AGB=90°∴AG==8∵AC2= AE2+CE2,。
2019年全国中考数学真题汇编——专题17规律探索题
专题17规律探索题1.(2019•毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是A.上方B.右方C.下方D.左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504……3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方,故选C.【名师点睛】本题考查了规律型——图形的变化类,观察出图形的变化规律是解题的关键.2.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为A.-2B.-1C.0D.1【答案】B【解析】点运动一个用时为秒.如图,作于D,与交于点E.在中,∵,,∴,∴,∴,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为-1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;……,∴点P的纵坐标以1,0,-1,0四个数为一个周期依次循环,∵,∴第2019秒时点P的纵坐标为是-1.故选B.【名师点睛】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,–1,0四个数为一个周期依次循环.也考查了垂径定理.3.(2019•广元)如图,过点作y轴的垂线交直线于点,过点作直线l的垂线,交y轴于点,过点作y轴的垂线交直线l于点,…,这样依次下去,得到,,,…,其面积分别记为,,,…,则A.B.C.D.【答案】D【解析】∵点的坐标是,∴,∵点在直线上,∴,,∴,∴,∴,得出,∴,∴,,∵,∵,∴,∴,∴,故选D.【名师点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.4.(2019•雅安)如图,在平面直角坐标系中,直线与直线交于点,过作轴的垂线,垂足为,过作的平行线交于,过作轴的垂线,垂足为,过作的平行线交于,过作轴的垂线,垂足为,…,按此规律,则点的纵坐标为A.B.C.D.【答案】A【解析】联立直线与直线的表达式并解得:,,故;则点,则直线的表达式为,将点坐标代入上式并解得:直线的表达式为:,将表达式与直线的表达式联立并解得:,,即点的纵坐标为;同理可得的纵坐标为,…,按此规律,则点的纵坐标为,故选A.【名师点睛】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.5.(2019•百色)观察一列数:,0,3,6,9,12,…,按此规律,这一列数的第21个数是__________.【答案】57【解析】由题意知,这列数的第个数为,当时,,故答案为:57.【名师点睛】本题主要考查数字的变化类,解题的关键是得出数列的变化规律:每次增加3.6.(2019•铜仁)按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是__________.(n为正整数)【答案】【解析】第1个数为;第2个数为;第3个数为;第4个数为;…,所以这列数中的第n个数是.故答案为:.【名师点睛】此题考查数列中的规律,解题关键在于观察找出规律.7.(2019•河池),…,是一列数,已知第1个数,第5个数,且任意三个相邻的数之和为15,则第2019个数的值是__________.【答案】6【解析】由任意三个相邻数之和都是15可知:,,,…,可以推出:,,,所以,则,解得,∵,因此.故答案为:6.【名师点睛】此题主要考查了规律型:数字的变化类,关键是找出第1、4、7…个数之间的关系,第2、5、8…个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.8.(2019•大庆)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为__________.【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.9.(2019•淄博)如图,在以为直角顶点的等腰直角三角形纸片中,将角折起,使点落在边上的点(不与点,重合)处,折痕是.如图,当时,;如图,当时,;如图,当时,;……依此类推,当(为正整数)时,__________.【答案】【解析】观察可知,正切值的分子是3,5,7,9,…,,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,,,中的中间一个.∴.故答案为:.【名师点睛】本题考查规律,解题的关键是由题意得到规律.10.(2019•聊城)数轴上两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处.按照这样的规律继续跳动到点(,是整数)处,那么线段的长度为__________(,是整数).【答案】【解析】由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4–(n≥3,n是整数).故答案为:4–.【名师点睛】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.11.(2019•枣庄)观察下列各式:,,,…请利用你发现的规律,计算:,其结果为__________.【答案】【解析】,故答案为:.【名师点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.12.(2019•本溪)如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;…,按照这个规律进行下去,点的横坐标为__________(结果用含正整数的代数式表示)【答案】【解析】如图,过点分别作轴,轴,轴,轴,轴,…,垂足分别为∵点在直线上,点的横坐标为,∴点的纵坐标为,即:,图中所有的直角三角形都相似,两条直角边的比都是,,∴点的横坐标为:,点的横坐标为:,点C3的横坐标为:,点的横坐标为:,…,点的横坐标为:,故答案为:.【名师点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.13.(2019•绥化)在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是__________.【答案】【解析】如图,作A1H⊥x轴,∵△OA1A2是等边三角形,∴∠A1OH=60°,OH=OA2=,∴A1H=A1O·sin60°=1×=,∴,,同理可得,,,,,由上可知,每一个点的横坐标为序号的一半,纵坐标每个点依次为:这样循环,2019÷6=336……3,∴,故答案为:.【名师点睛】本题考查了规律题,涉及了等边三角形的性质,解直角三角形的应用,通过推导得出点的坐标的变化规律是解题的关键.14.(2019•辽阳)如图,在平面直角坐标系中,都是等腰直角三角形,点,都在轴上,点与原点重合,点都在直线上,点在轴上,轴,轴,若点的横坐标为-1,则点的纵坐标是__________.【答案】【解析】由题意,可得,设,则,解得,∴,设,则,解得,∴,设,则,解得,∴,同法可得,…,的纵坐标为,故答案为:.【名师点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出、、,再发现规律即可求解.15.(2019•衡阳)在平面直角坐标系中,抛物线的图象如图所示.已知点坐标为,过点作轴交抛物线于点,过点作交抛物线于点,过点作轴交抛物线于点,过点作交抛物线于点,…,依次进行下去,则点的坐标为__________.【答案】【解析】∵点坐标为,∴直线为,,∵,∴直线为,解得或,∴,∴,∵,∴直线为,解得或,∴,∴,…,∴,故答案为.【名师点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.16.(2019•齐齐哈尔)如图,直线分别交轴、轴于点和点,过点作,交轴于点,过点作轴,交直线于点;过点作,交轴于点,过点作轴,交直线于点,依此规律…,若图中阴影的面积为,阴影的面积为,阴影的面积为,…,则__________.【答案】【解析】直线,当时,;当时,,∴,,∴,又,∴,在中,,∴;同理可求出:,,∴;依次可求出:;;,…,因此:,故答案为:.【名师点睛】本题主要考查同学们对规律的归纳总结,关键在于根据简单的图形寻找规律.17.(2019•东营)如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的横坐标为__________.【答案】【解析】由题意可得,,,,,,,…,可得的横坐标为,∵,∴点的横坐标为:,故答案为:.【名师点睛】本题考查数字类规律,解题的关键是读懂题意,得到的横坐标为.18.(2019•泰安)在平面直角坐标系中,直线与轴交于点,如图所示,依次作正方形,正方形,正方形,正方形,…,点,,,,…在直线上,点,,,,…在轴正半轴上,则前个正方形对角线的和是__________.【答案】【解析】根据根据题意可得,,,…,,所以可得正方形的对角线为,正方形的对角线为,正方形的对角线为,正方形的对角线为,…,正方形的对角线为,所以前个正方形对角线的和为=,故答案为:.【名师点睛】本题主要考查学生的归纳总结能力,关键在于根据前面的简单的规律,总结出后面的规律.。
2019全国各市中考真题(含解析)—福建省中考数学试卷
2019年全国各省市中考数学真题(函解析)2019年福建省中考数学试卷4A . 72 X 10 5B . 7.2X 10 - c -6C. 7.2X10 6D. 0.72X 10(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是(C. 8(4分)如图是某班甲、乙、丙三位同学最近 5次数学成绩及其所在班级相应平均分的折线统方t 图,则下列判断错误的是(」丁宇成般分104-A .甲的数学成绩高于班级平均分,且成绩比较稳定 B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高、选择题(每小题4分共40分)(4分)计算22+ (-1)0的结果是(A. 5C. 3D. 22. (4分)北京故宫的占地面积约为720000m 2将720000用科学记数法表示为( 3. A.等边三角形B.直角三角形C.平行四边形D.正方形4. (4分)如图是由一个长方体和一个球组成的几何体,它的主视图是5. (4分)已知正多边形的一个外角为D.36。
,则该正多边形的边数为(D.6. A .C.70审 丙■班氢用均D.就甲、乙、丙三个人而言,乙的数学成绩最不稳10. (4 分)若二次函数 y= |a|x 2+bx+c 的图象经过 A (m,n )、B (0,y 1)、C (3-m,n )、D(N''2,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是( )A . y 1V y 2〈y 3B . y 1V y 3〈y 2C. y 3V y 2〈y 1D. y 2V y 3〈y 1二、填空题(每小题 4分共24分)2 -11. (4分)因式分解:x -9 =.12.(4分)如图,数轴上A 、B 两点所表示的数分别是- 4和2,点C 是线段AB 的中点,则点C 所表示的数是.AC Bt I n副 〉-4213. (4分)某校征集校运会会徽 ,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统7. (4分)下列运算正确的是( A. a?a 3=a 3 B.(2a) 3= 6a 3 8. C. a 6+a 3=a 2D.(4分)《增删算法统宗》记载:“有个学生资性好 (a 2) 3- (- a3) 2=0,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧前一天的两倍,问他每天各读多少个字?已知,三天读完一部《孟子》,每天阅读的字数是 《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是(A . x+2x+4x= 34685C. x+2x+2x= 34685B. x+2x+3x= 346859.4分)如图,PA 、PB 是。
2019年中考数学全国部分地区有关圆的综合题真题汇编(含答案解析)
有关圆的综合题1.(2019浙江温州22题)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=38AB时,求⊙O的直径长.2.(2019浙江绍兴21题)在屏幕上有如下内容:如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答0(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.(2)以下是小明,小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的条件是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.3.(2019浙江宁波26题)如图1, O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F.(1)求证:BD=BE. (2)当AF :EF=3:2,AC=6时,求AE 的长。
(3)设 EFAF =x,tan ∠DAE=y. ①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值4.(2019浙江金华21题)如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.5. (2019浙江湖州23题)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的2为半径画圆.一个动点,以Q为圆心,2①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN 是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图26.(2019浙江杭州23题)如图,已知锐角三角形ABC 内接于☉O,OD ⊥BC 于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA; ②当OA=1时,求△ABC 面积的最大值;(2)点E 在线段OA 上,OE=OD.连接DE,设∠ABC=m ∠OED,∠ACB=n ∠OED(m,n 是正数).若∠ABC<∠ACB,求证:m-n+2=0.7.(2019四川宜宾23题)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE 交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.8.(2019四川雅安23题)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC 于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.9.(2019四川遂宁24题)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.10.(2019四川内江27题)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB =5,OB与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.11.(2019四川泸州24题)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O 上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.12.(2019四川广元23题)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P 作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.13.(2019四川达州22题)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.14.(2019四川巴中25题)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.参考答案第1题答案.第2题答案.第3题答案. (1)证明:∵△ABC 为等边三角形,∴∠BAC=∠C=60 .∵∠DEB=∠BAC=60 ,∠D=∠C=60∴∠DEB=∠D.∴BD=BE(2)解:如图,过点A 作AG ⊥EC 于点G.∵△ABC 为等边三角形,AC=6,∴BG=21 BC= 21AC=3. ∴在Rt △ABG 中,AG=BG=3 . ∵BF ⊥EC ,∴BF ∥AG.∵AF:EF=3:2,∴BE= BG=2.∴EG=BE+BG=3+2=5.∴在Rt △AEG 中,AE=.(3)解:①如图,过点E 作EH ⊥AD 于点H.∵∠EBD=∠ABC=60°,∴在Rt △BEH 中, BE EH =sin60 = 23. ∴∴∵BG=xBE.∴AB=BC=2BG-2xBE.∴AH-AB+BH=2xBE+ 21BE=(2x+ 21)BE. ∴在Rt △AHE 中,tan EAH =143+=x y ②如图,过点O 作OM ⊥EC 于点M.设BE=a.∵∴CG=BG=xBE=x.∴EC=CG+BG+BE=a+2ax.∴AM=21EC= 21a+ax. ∴BM=EM-BE=ax- 21a ∵BF ∥AG , ∴△EBF ∽△EGA.∴∵AG= 3BG= 3ax ∴BF=x+11 AG= x ax +13 ∴△OFB 的面积=∴△AEC 的面积=∵△AEC 的面积是△OFB 的面积10倍 ∴∴ 解得∴ 93=y 或73 第4题答案. (1)如图,连结OB ,设⊙O 半径为r ,∵BC 与⊙O 相切于点B ,∴OB ⊥BC ,又∵四边形OABC 为平行四边形,∴OA ∥BC ,AB=OC ,∴∠AOB=90°,又∵OA=OB=r ,∴AB= 2r ,∴△AOB ,△OBC 均为等腰直角三角形,∴∠BOC=45°,∴弧CD 度数为45°.(2)作OH ⊥EF ,连结OE ,由(1)知EF=AB= 2r ,∴△OEF 为等腰直角三角形,∴OH=21 EF= 22r , 在Rt △OHC 中,∴sin ∠OCE=21222==r r OC OH , ∴∠OCE=30°.第5题答案.【解答】(1)如图1,连结BP ,过点P 作PH ⊥OB 于点H ,图3则BH =OH .∵AO =BO =3, ∴∠ABO =45°,BH =12OB =2,∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322, 从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q ,使得△QMN 是等腰直角三角形,∵直线l 1经过点A (-3,0),B (0,3),∴l 的函数解析式为y =x +3.记直线l 2与l 1的交点为F ,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q在线段CF的延长线上时,同理可得m=3+2,Q的坐标为(3+2,6+32).∴存在这样的点Q1(3-2,6-32)和Q2(3+2,6+32),使得△QMN是等腰直角三角形.第6题答案. 解析(1)①证明:连接OB,OC.因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以∠OBD=30°,所以OD=OB=OA.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到.由①知,BC=2BD=,所以△ABC的面积=BC·AF≤××=,即△ABC面积的最大值是.(2)证明:设∠OED=∠ODE=α,∠COD=∠BOD=β.因为△ABC是锐角三角形,所以∠ABC+∠ACB+∠BAC=180°,即(m+n)α+β=180°.(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC=2mα+β.因为∠OED+∠ODE+∠EOD=180°,所以2(m+1)α+β=180°.(**)由(*) (**),得m+n=2(m+1),即m-n+2=0.第7题答案.【解答】(1)证明:∵OA=OD,∠A=∠B=30°,∴∠A=∠ADO=30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是半径,∴BD是⊙O的切线;(2)∵∠ODB=90°,∠DBC=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,∵BD是⊙O的切线,BE是⊙O的割线,∴BD2=BM•BE,∴BM===.第8题答案.【解答】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.第9题答案. 解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.第10题答案.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l ,∴∠BCA+∠BPC=90°,∵OA=OP ,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3 ,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r ,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.第11题答案.第12题答案.(1)证明:连接OD,∵PC是⊙O的切线,∴∠PCO=90°,即∠PCD+∠OCD=90°,∵OA⊥CD ,∴CE=DE∴PC=PD∴∠PDC=∠PCD∵OC=OD∴∠ODC=∠OCD,∴∠PDC+∠ODC=∠PCD+∠OCD=90°,∴PD是⊙O的切线.(2)如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴tan B==设AC=m,BC=2m,则由勾股定理得:m2+(2m)2=102,解得:m=,AC=2,BC=4,∵CE×AB=AC×BC,即10CE=2×4,∴CE=4,BE=8,AE=2在Rt△OCE中,OE=OA﹣AE=3,OC=5,∴CE===4,∵∴OP×OE=OC×OC,即3OP=5×5,∴OP=,P A=OP﹣OA=﹣5=.(3)AB2=4OE•OP如图2,∵PC切⊙O于C,∴∠OCP=∠OEC=90°,∴△OCE∽△OPC∴,即OC2=OE•OP∵OC=AB∴,即AB2=4OE•OP.第13题答案. (1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD ,∴=,∴OD⊥BC,∵DF∥BC ,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.第14题答案. ①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.。
2019年全国中考数学真题精选分类汇编:四边形(解答题一)含答案解析
2019年全国中考数学真题精选分类汇编:四边形(解答题)含答案解析1.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P 在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.2.(2019•盘锦)如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.3.(2019•朝阳)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.4.(2019•青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.5.(2019•鄂尔多斯)(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF 绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E 和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.6.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.7.(2019•沈阳)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.8.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.9.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)10.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM =CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.11.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.12.(2019•宁夏)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=AD,求tan∠AFE.13.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.14.(2019•内江)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.15.(2019•本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.16.(2019•贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.17.(2019•通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.18.(2019•吉林)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE =AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=cm,∠EAD=°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.19.(2019•长春)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作▱PQMN.设▱PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为;②PN的长用含t的代数式表示为.(2)当▱PQMN为矩形时,求t的值;(3)当▱PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,直接写出t的值.20.(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.21.(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.22.(2019•贵阳)如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.23.(2019•吉林)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).24.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:25.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.26.(2019•鸡西)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.27.(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.28.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.29.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.30.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC 内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.31.(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.32.(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.33.(2019•海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD 上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.34.(2019•益阳)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.35.(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.36.(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE =DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.37.(2019•兰州)如图,AC=8,分别以A、C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A、B、C、D,连接BD交AC于点O.(1)判断四边形ABCD的形状并说明理由;(2)求BD的长.38.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.39.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB 上,且∠CEF=90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.40.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E 在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2019年全国中考数学真题精选分类汇编:四边形(解答题)含答案解析参考答案与试题解析一.解答题(共40小题)1.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P 在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为BP+QC=EC.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.【分析】(1)由ASA证明△PEQ≌△EGD,得出PQ=ED,即可得出结论;(2)由ASA证明△PEQ≌△EGD,得出PQ=ED,即可得出结论;(3)①当点P在线段BC上时,点Q在线段BC上,由(2)可知:BP=EC﹣QC,求出DE=2,EC=4,即可得出答案;②当点P在线段BC上时,点Q在线段BC的延长线上,由全等三角形的性质得出PQ=DE=2,求出PC=1,得出BP=5;即可得出答案.【解答】解:(1)BP+QC=EC;理由如下:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,由旋转的性质得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,又∵∠EPQ+∠PEC=90°,∠PEC+∠GED=90°,∴∠EPQ=∠GED,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;故答案为:BP+QC=EC;(2)(1)中的结论仍然成立,理由如下:由题意得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,∵四边形ABCD是正方形,∴∠DCB=90°,BC=DC,∴∠EPQ+∠PEC=90°,∵∠PEC+∠GED=90°,∴∠GED=∠EPQ,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;(3)分两种情况:①当点P在线段BC上时,点Q在线段BC上,由(2)可知:BP=EC﹣QC,∵AB=3DE=6,∴DE=2,EC=4,∴BP=4﹣1=3;②当点P在线段BC上时,点Q在线段BC的延长线上,如图3所示:同(2)可得:△PEQ≌△EGD(AAS),∴PQ=DE=2,∵QC=1,∴PC=PQ﹣QC=1,∴BP=BC﹣PC=6﹣1=5;综上所述,线段BP的长为3或5.【点评】本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、直角三角形的性质以及分类讨论等知识;本题综合性强,证明三角形全等是解题的关键.2.(2019•盘锦)如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.【分析】(1)①由菱形的性质得出AD∥BC,AB=BC=CD=AD,AB∥CD,∠CAD=∠BAD=60°,由平行线的性质得出∠BAD+∠ADC=180°,∠ADC=60°,∠AGE=∠ADC=60°,得出∠AGE=∠EAG=∠AEG=60°,即可得出△AEG是等边三角形;②由等边三角形的性质得出AG=AE,由已知得出AE=CF,由菱形的性质得出∠BCD =∠BAD=120°,得出∠DCF=60°=∠CAD,证明△AED≌△CFD(SAS),得出DE =DF,∠ADE=∠CDF,再证出∠EDF=60°,即可得出△DEF是等边三角形;(2)同(1)①得:△AEG是等边三角形,得出AG=AE,由已知得出AE=CF,由菱形的性质得出∠BCD=∠BAD=120°,∠CAD=∠BAD=60°,得出∠FCD=60°=∠CAD,证明△AED≌△CFD(SAS),得出DE=DF,∠ADE=∠CDF,再证出∠EDF =60°,即可得出△DEF是等边三角形.【解答】(1)①解:△AEG是等边三角形;理由如下:∵四边形ABCD是菱形,∠BAD=120°,∴AD∥BC,AB=BC=CD=AD,AB∥CD,∠CAD=∠BAD=60°,∴∠BAD+∠ADC=180°,∴∠ADC=60°,∵GH∥DC,∴∠AGE=∠ADC=60°,∴∠AGE=∠EAG=∠AEG=60°,∴△AEG是等边三角形;②证明:∵△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∴∠DCF=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS)∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE+∠CDE=60°,∴∠CDF+∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形;(2)解:△DEF是等边三角形;理由如下:同(1)①得:△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∠CAD=∠BAD=60°,∴∠FCD=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE﹣∠CDE=60°,∴∠CDF﹣∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形.【点评】本题是四边形综合题目,考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质等知识;本题综合性强,熟练掌握菱形的性质,证明三角形全等是解题的关键.3.(2019•朝阳)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.【分析】(1)由旋转的性质得:AF=AC,∠AFE=∠ACB,由正方形的性质得出∠ACB =∠ACD=∠F AC=45°,得出∠ACF=∠AFC=67.5°,因此∠DCF═∠EFC=22.5°,由直角三角形斜边上的中线性质得出OE=CF=OC=OF,同理:OD=CF,得出OE =OD=OC=OF,证出∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,得出∠DOE =90°即可;(2)连接CE,DF,根据正方形的性质得到AD=AE根据全等三角形的性质得到CE=DF,∠ECA=∠DF A求得∠ECO=∠DFO根据全等三角形的性质即可得到结论;连接AO,则AO⊥CF,A、C、O、D四点共圆,由圆周角定理得出∠AOD=∠ACD=45°,同理A、E、O、F四点共圆,得出∠AOE=∠AFE=45°,进而得出结论;(3)连接AO,由等腰三角形的性质得出AO⊥CF,∠AOC=90°,得出点O在以AC 为直径的圆上运动,证出点O经过的路径长等于以AC为直径的圆的周长,求出AC=AB=8,即可得出答案.【解答】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠F AC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:连接CE,DF,如图所示:在正方形ABCD中,AB=AD∴AD=AE∵O为CF的中点,∴OC=OF∵AF=AC∴∠ACF=∠AFC∵∠DAC=∠EAF∴∠DAC﹣∠DAE=∠EAF﹣∠DAE∴∠EAC=∠DAF在△ACE和△AFD中,,∴△ACE≌△AFD(SAS)∴CE=DF,∠ECA=∠DF A又∵∠ACF=∠AFC∴∠ACF﹣∠ECA=∠AFC﹣∠DF A,∴∠ECO=∠DFO,在△EOC和△DOF中,,∵EC=DF,∠ECO=∠DFO,CO=FO∴△EOC≌△DOF(SAS)∴OE=OD.连接AO,则AO⊥CF,∴∠AOC=∠ADC=90°,∴A、C、O、D四点共圆,∴∠AOD=∠ACD=45°,同理A、E、O、F四点共圆,∴∠AOE=∠AFE=45°,∴∠DOE=45°+45°=90°,∴OD⊥OE.(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.【点评】本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、圆周长等知识;本题综合性强,证明三角形全等是解题的关键.4.(2019•青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.【分析】(1)由“AAS”可证△AFE≌△DBE;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,即可得四边形ADCF是菱形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,,∴△AFE≌△DBE(AAS)(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD=CD是本题的关系.5.(2019•鄂尔多斯)(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF 绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E 和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是CE+CF=BC.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.【分析】(1)如图1中,结论:CE+CF=BC.证明△BOE≌△COF(ASA),即可解决问题.(2)如图2中,结论不成立.CE+CF=BC.连接EF,在CO上截取CJ=CF,连接FJ.首先证明CE+CF=OC,再利用直角三角形30度角的性质即可解决问题.(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.构建方程求出x可得OA=1,再利用(2)中结论即可解决问题.【解答】解:(1)如图1中,结论:CE+CF=BC.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∠OBE=∠OCF=45°,∵∠EOF=∠BOC=90°,∴∠BOE=∠OCF,∴△BOE≌△COF(ASA),∴BE=CF,∴CE+CF=CE+BE=BC.故答案为CE+CF=BC.(2)如图2中,结论不成立.CE+CF=BC.理由:连接EF,在CO上截取CJ=CF,连接FJ.∵四边形ABCD是菱形,∠BCD=120°,∴∠BCO=∠OCF=60°,∵∠EOF+∠ECF=180°,∴O,E,C,F四点共圆,∴∠OFE=∠OCE=60°,∵∠EOF=60°,∴△EOF是等边三角形,∴OF=FE,∠OFE=60°,∵CF=CJ,∠FCJ=60°,∴△CFJ是等边三角形,∴FC=FJ,∠JFC=∠OFE=60°,∴∠OFJ=∠CFE,∴△OFJ≌△EFC(SAS),∴OJ=CE,∴CF+CE=CJ+OJ=OC=BC,(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.在Rt△ABH中,BH=,∵OB=4,∴+x=4,解得x=或,∴OH=或,∴OA=2OH=1或3(舍弃),∵∠COD+∠CAD=180°,∴A,C,O,D四点共圆,∵OA平分∠COD,∴∠AOC=∠AOD=60°,∴∠ADC=∠AOC=60°,∵∠CAD=60°,∴△ACD是等边三角形,由(2)可知:OC+OD=OA,∴OC=1﹣=.【点评】本题属于四边形综合题,考查了正方形的性质,菱形的性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.6.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.【分析】(1)在Rt△ADC中,求出∠DAC的正切值即可解决问题.(2)①分两种情形:当NA=NM时,当AN=AM时,分别求解即可.②∠MBN=30°.利用四点共圆解决问题即可.(3)首先证明△ABM是等边三角形,再证明BN垂直平分线段AM,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴AB=BM=AM,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.(2019•沈阳)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.【分析】(1)根据已知条件得到AF=CE,根据平行线的性质得到∠DF A=∠BEC,根据全等三角形的性质得到AD=CB,∠DAF=∠BCE,于是得到结论;(2)根据已知条件得到△BCG是等腰直角三角形,求得BG=CG=4,解直角三角形得到AG=10,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.【点评】本题考查了平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.8.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的性质得到:EH=GF,同理可得FE=HG,即可得四边形EFGH是平行四边形;(3)由轴对称﹣﹣最短路径问题得到:四边形EFGH的周长一半大于或等于矩形ABCD 一条对角线长度.【解答】证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)四边形EFGH是平行四边形,理由如下:∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.【点评】考查了矩形的性质,全等三角形的判定与性质.灵活运用这些性质进行推理证明是本题的关键.9.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:。
2019年全国各地中考数学真题汇编含答案
详解:原式=1+4-3-3=-1.故答案为:-1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
13.已知一个正数的平方根是 和
,则这个数是__________.
【来源】四川省凉山州 2018 年中考数学试题
2019 年全国各地中考数学真题汇编含答案
【答案】 【解析】分析:由于一个非负数的平方根有 2 个,它们互为相反数.依此列出方程求解即可. 详解:根据题意可知:3x-2+5x+6=0,解得 x=- ,所以 3x-2=- ,5x+6= ,
【来源】山东省淄博市 2018 年中考数学试题
【答案】B
【解析】分析:由题意可知 36 与 37 最接近,即 与 最接近,从而得出答案.
详解:∵36<37<49,
∴ < < ,即 6< <7,
∵37 与 36 最接近,
∴与 最接近的是 6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与 最接近,所以 =6 最接近.
2019 年全国各地中考数学真题汇编含答案
【详解】
=
,=
,
而
,4< <5,所以 2<
<3,
所以估计
的值应在 2 和 3 之间,故选 B.
【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题 的关键.
11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品 不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一 枚图钉(例如,用 9 枚图钉将 4 张作品钉在墙上,如图),若有 34 枚图钉可供选用,则最多可以展示绘画作 品( )
2019年数学中考试卷及答案
2019年数学中考试卷及答案一、选择题1.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.2.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差4.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个5.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C53D.36.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .9210.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.正六边形的边长为8cm ,则它的面积为____cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.解方程:x 21x 1x-=-. 22.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,53在Rt△OAE中,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.6.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 7.A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.C解析:C【解析】【分析】 先化简后利用的范围进行估计解答即可.【详解】 =6-3=3, ∵1.7<<2, ∴5<3<6,即5<<6, 故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:416.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, ∵解不等式①得:x≤﹣4,解不等式②得:x >﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,C D=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.。
(3套)2019年中考数学试题(解析版)
2019年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣22.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣53.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.49.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。
2019年全国中考数学真题简单计算题集锦
2019年全国中考数学真题简单计算题集锦1.(江苏 连云港)计算:11(1)24()3--⨯++.2.(2019四川南充)计算:011(1)|23|12()2π--+--+3. (2019浙江台州)计算:()12+131---.4. (甘肃陇南)计算:(-2)2-|-2|-2cos45°+(3-π)05.(甘肃天水)计算:(﹣2)3+﹣2sin30°+(2019﹣π)0+|﹣4|6. (甘肃威武)(6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)07.(甘肃) 计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.8. (2019广东深圳)计算:9➖2cos60°+(18)-1+(π➖3.14)0. 9. (2019广西北部湾) 计算:()()()()22-16962+--+-÷.10. (2019广西省贵港市)(1)计算:0214(33)()4sin302---+-︒; 11. (2019广西河池)计算:02138()|3|2-+-+-.12. (2019贵州省毕节市) 计算:|﹣12|+(﹣1)2019+2﹣1﹣(2﹣2)0+2cos45°.13. (2019贵州黔西南州) (1)计算:||+(﹣1)2019+2﹣1﹣(π﹣3)0;14. (2019贵州遵义)计算2sin60°+31-8--1-2-3)(+15. (2019海南)(1)计算:9×3-2+(-1)3-4; 16.(2019·湖南张家界)计算:20190145cos 212)14.3()(-+︒--+-π. 17. (2019湖北十堰)计算:(﹣1)3+|1|.18. (2019湖北仙桃)(1)计算:(﹣2)2﹣|﹣3|(﹣6)0;19. (2019湖北孝感)计算:|1|﹣2sin60°+()﹣1.20. (2019湖南郴州)计算:(3﹣π)0﹣2cos30°+|1|+()﹣1.21. (2019湖南湘西)计算:2sin30°﹣(3.14﹣π)022. (2019山东东营)(1)计算:(12019)-1+(3.14-π)0+232-+2in45°-12.23. (2019年陕西省)(本题5分)计算:221(3)3520()2----++ .24. (2019北京市) 计算:()011342604sin π----+︒+()25. (2019年广西柳州市) 计算:22+|﹣3|﹣+π0.26. (2019贵州省安顺市)计算:(﹣2)﹣1﹣9+cos60°+(2019-2018)0+82019×(﹣0.125)2019. 27. (2019黑龙江大庆)计算(2019-π)0+|1-3|-sin60°.28.(江苏常州)计算:(1)0121()(3)2π-+-;(2)(x -1)(x +1)-x (x -1) .29. 2019·江苏镇江)(1)计算: 011(22)()3--+-2cos60°;(2)化简:21(1)11xx x +÷--. 30.(2019广西桂林)计算:20190(1)12tan 60( 3.14)π--+︒+-. 31. (2019广西贺州)计算:20190(1)( 3.14)162sin 30π-+--+︒. 32. (2019广西梧州)计算:1523(1)3-⨯+÷-- 33. (2019湖北荆州)已知:a =(1)(1)+|1|,b2sin45°+()﹣1,求b ﹣a 的算术平方根.34. (2019湖南邵阳)13127()|2|cos603-+-︒35. (2019江苏常州)计算: (1)π0+()﹣1﹣()2;(2)(x ﹣1)(x +1)﹣x (x ﹣1).36. (2019四川泸州)计算:(π+1)0+(﹣2)2sin30°.37. (2019四川省雅安市)(1)计算:02920192sin30-+--︒38. (2019江苏徐州)计算:(1)π0-9+213-()-|-5|; 39. (2019浙江省衢州市)计算,|-3|+(π-3)0- 4+tan45°40. (2019浙江省金华市)计算:|-3|-2tan60°+12+113-() 41. (2019浙江湖州)计算:(-2)3+12×8. 42. (2019四川省自贡市)计算:|-3|-4sin 450++(π-3)0.43. (2019四川省眉山市)计算:(21436sin 45183-⎛⎫---+︒ ⎪⎝⎭.44.(四川省凉山市)计算:tan 45° + (3-2)0-(-21)-2+ ︱3-2︱. 45. (2019四川省乐山市)计算:()︒-+--⎪⎭⎫ ⎝⎛30sin 220192101π.46. (2019四川达州) 计算:8-2721-14.3-32-0+)()(π 47. (2019四川巴中)计算(-12)2+(3-π)032|+2sin60848. (2019山东省济宁市) 计算:016sin 6012320182⎛⎫︒ ⎪⎝⎭49. (2019江苏省无锡市) (1) 01)2009()21(3-+--50. (2019湖南省岳阳市)计算:0120191(21)2sin 30()(1)3--︒++-51. (2019湖南怀化) 计算:()020194sin 60123π-+︒-+- 52. (2019四川南充)计算:02|2|(31)(2)tan 45--++--︒. 53. (2019贵州黔东南) (1)计算:||+(﹣1)2019+2﹣1﹣(π﹣3)0;54. (2019江苏宿迁)计算:()﹣1﹣(π﹣1)0+|1|.55. (2019江苏盐城)计算:01|2|(sin36)4tan 452-+︒--+︒. 56. (2019江苏扬州)计算或化简: (1)08(3)4cos 45π---︒;(2)2111a a a+--. 57. (2019四川成都)(1)计算:(π﹣2)0﹣2cos30°|1|.58. (2019四川广安)计算:40(1)|13|6tan 30(327)---+︒--. 59.(2019四川绵阳)计算:2|()﹣1|﹣2tan30°﹣(π﹣2019)0; 60.(2019山东菏泽)已知x ,那么x 2﹣2x 的值是_________61. (2019四川宜宾)(1)计算:012(20192)2|1|sin 45---+-+︒ 62. (2019浙江温州)计算: (1)0|6|9(12)(3)--+---. (2)224133x x x x x +-++. 63. (2019江苏扬州)计算20182019(52)(52)-+= . 64.(2019山东菏泽)已知x ,那么x 2﹣2x 的值是_________。
2019年全国中考数学试题分类解析汇编(159套63专题)3
2019年全国中考数学试题分类解析汇编(159套63专题)专题19:反比例函数的应用一、选择题1. (2019福建福州4分)如图,过点C(1,2)分别作x 轴、y 轴的平行线,交直线y =-x+6于A 、B两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是【 】A .2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8 【答案】A 。
【考点】反比例函数综合题,曲线上点的坐标与方程的关系,二次函数的性质。
【分析】∵ 点C(1,2),BC∥y 轴,AC∥x 轴,∴ 当x =1时,y =-1+6=5;当y =2时,-x +6=2,解得x =4。
∴ 点A 、B 的坐标分别为A(4,2),B(1,5)。
根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小。
设与线段AB 相交于点(x ,-x +6)时k 值最大, 则k =x(-x +6)=-x 2+6x =-(x -3)2+9。
∵ 1≤x≤4,∴ 当x =3时,k 值最大,此时交点坐标为(3,3)。
因此,k 的取值范围是2≤k≤9。
故选A 。
2. (2019湖北黄石3分)如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x=图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2【答案】D 。
【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。
【分析】∵把A 11(,y )2,B 2(2,y )分别代入反比例函数1y x =得:y 1=2,y 2=12, ∴A(12 ,2),B (2,12)。
∵在△ABP 中,由三角形的三边关系定理得:|AP -BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA -PB=AB , 即此时线段AP 与线段BP 之差达到最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2019年中考数学试题
班级______ 姓名______
一. 选择题:
1. 1
2
-的绝对值是( )
A. 12-
B. 1
2
C. 2
D. 2-
2. 成人每天维生素D 的摄入量约为0.0000046克,数据“0.0000046”用科学记数法表示为( ) A. 74610-⨯ B.74.610-⨯ C. 64.610-⨯ D. 50.4610-⨯
3. 如图,,75,27AB CD B E ∠=︒∠=︒P ,则D ∠的度数为( ) A. 45° B. 48° C. 50° D. 58°
4. 下列计算正确的是( )
A. 236a a a +=
B.()2
236a a -=
C. (
)2
22
x y x y -=-
D.=5. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②. 关于平移后几何体的三视图,下列说法正确的是( )
A. 主视图相同
B. 左视图相同
C. 俯视图相同
D. 三种视图都不相同
6. 一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 只有一个实数根 D. 没有实数根
图2
E
D
C B
A
7. 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价( ) A. 1.95 元 B. 2.15元 C. 2.25元
D. 2.75元
8. 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为(
)
A. -2
B. - 4
C. 2
D. 4
9. 如图,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3
,分别以A ,C 为
圆心,以大于1
2
AC 的长为半径画弧,两弧交于点E ,作射线BE 交AD 于点F ,
交AC 于点O ,若点O 是AC 的中点,则CD 的长为
( )
A. B. 4 C. 3 D.
10. 如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB
与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )
A. (10,3)
B. (-3,10)
C. (10,-3)
D. (3,-10) 二. 填空题
11. 12-=___________
12. 不等式组1
274
x
x ⎧≤-⎪⎨⎪-+>⎩的解集是_________________
13. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个
黄球2个红球,这些球除颜色外完全相同。
从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是______________
15%
10%20%
55%
D C B
A A
14. 如图,在扇形AOB 中,∠AOB=120°,半径OC 交弦AB 于点D ,且OC ⊥AO ,若
OA=____________
15. 如图,在矩形ABCD 中,AB=1,BC=a ,点E 在边BC 是,且BE=3
5
a ,连接
AE ,将△ABE 沿AE 折叠,若点B 的对应点B ’落在矩形ABCD 的边上,则a 的值为_______
三. 解答题 16. 先化简,再求值
22121,244
x x x x x x +-⎛⎫
-÷
⎪--+⎝⎭
其中,x =
17. 如图,在△ABC 中,BA=BC ,∠ABC=90°,以AB 为直径的半圆O 交AC 于
点D ,点E 是»BD 上不与点B 、D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G (1)求证:△ADF ≌△BDG (2)填空:
① 若AB=4,且点E 是»BD
的中点,则DF 的长为_____________ ② 取»
AE 的中点H ,当∠EAB 的度数为_______时,四边形OBEH 为菱形.
B
A
18. 某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析. 部分信息如下:
a 七年级成绩频数分布直方图:
b . 七年级成绩在7080x ≤<这一组的是:
70 72 74 75 76 76 77 77 77 78 79
c .七、八年级成绩的平均数,中位数如下:
(1) 在这次测试中,七年级在80分以上(含80分)的有____________人; (2) 表中m 的值为___________
(3) 在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断
这两位学生在各自年级的排名谁更靠前,并说明理由;
(4) 该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩
超过平均数76.9分的人数.
成绩/分
100
90
80
70
60
19. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度,如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,3≈1.73)
20. 学校计划为“我和我的祖国”演讲比赛购买奖品。
已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元,
(1)求A、B两种奖品的单价;
(2)学校准备购买A、B两种奖品共30个,且A奖品的数量不少于B奖品数量
的1 3
请设计出最省钱的购买方案,并说明理由。
C
21.模具厂计划生产面积为4,周长为m 的矩形模具。
对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从”图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为x 、y .由矩形的面积为4,得xy =4,即4
y x
=;由周长为m ,得2()x y m +=即2
m
y x =-+,满足要求的(x ,y )应该是两个函数图象在第_____象限内交点的生标 (2)画出函数图象 函数4y x =(x >0)的图象如图所示,而函数2
m
y x =-+的图象可由y x =-平移得到。
请在同一直角坐标系中画出直线y x =- (3)平移直线y x =-,观察函数图象 ①当直线平移到与函数4
y x
=(x >0)的图形有唯一交点(2,2)时,周长m 的值为_________
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应周长m 的取值范围。
(4)得出结论
若能生产出面积为4的矩形模具,则周长m 的取值范围是___________
22. 在△ABC 中,CA=CB,∠ACB=α,点P 是平面内不与点A 、C 重合的任意一点,连接AP ,将线段AP 绕点逆时针旋转α得到线段DP ,连接DP ,BD ,CP (1)观察精想
如图1,当α=60°时,
BD
CP
的值是_______,直线BD 与直线CP 相交所形成的较小角的度数是___________
(2)类比探究
如图2,当α=90°时,请直接写出
BD
CP
的值及直线BD 与直线CP 相交所形成的较小角的度数,并就图2的情形说明理由
(3)解决问题
当α=90°时,若点E 、F 分别是CA 、CB 的中点,点P 在直线EF 上,请直接写
出点C 、P 、D 在同一直线上时AD
CP
的值
备用图
图2
图1
A
P
23. 如图,抛物线21
2
y ax x c =+
+交x 轴于A 、B 两点,交y 于点C ,直线1
22
y x =--经过点A 、C.
(1)求抛物线的解析式:
(2)点P 是抛物线上一动点,过点P 作x 轴的垂线,交直线AC 于点M ,设点P 的横坐标为m 、
①当△PCM 是直角三角形时,求点P 的坐标;
②作点B 关于点C 的对称点B ’,则平面内存在直线l ,使点M 、B 、B ’到该直线的距离都相等。
当点P 在y 轴右侧的抛物线上,且与点B 不重合时,请直接写出直线l :y kx b =+的解析式(可用含m 的式子表示)
备用图。