实验三 三极管放大电路设计

合集下载

三极管放大电路设计

三极管放大电路设计

东南大学电工电子实验中心实验报告课程名称:电子电路实践第三次实验实验名称:三极管放大电路设计院(系):专业:姓名:学号:实验室:实验组别:同组人员:实验时间:评定成绩:审阅教师:实验三三极管放大电路设计一、实验目的1. 掌握单级放大电路的设计、工程估算、安装和调试;2. 了解三极管、场效应管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概念以及测量方法;3. 了解负反馈对放大电路特性的影响。

4. 掌握多级放大电路的设计、工程估算、安装和调试;5. 掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、函数发生器的使用技能训练。

二、预习思考:1. 器件资料:上网查询本实验所用的三极管9013 的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:图3-3 中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C 以实现稳定直流工作点的作用的,如果R1、R2 取得过大能否再起到稳定直流工作点的作用,为什么?答:分压偏置;利用R1,R2 构成的分压器给三极管基极b 提供电位U B,如果满足电流I1>>I BQ 的条件,基极电位U B 可近似地由下式求得:U B≈R2*V CC/(R1+R2)。

当环境温度升高时,I CQ(I EQ)增加,电阻R E 上的压降增大。

由于基极电位U B 固定,加到发射结上电压减小,从而使I CQ 减小。

通过这样的自动调节过程使I CQ 恒定。

如果R1、R2 R1,R2 电路中电流小,这样就无法忽略基极中的电流,从而不能再稳定直流工作点。

3. 电压增益:(I) 对于一个低频电压放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。

答:β RC //RLa) 共射组态:u =-be。

所以可以通过增大RC 来增大电压增益。

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。

2. 掌握三极管的类型和符号。

教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。

2. 三极管的结构:三极管由发射极、基极和集电极组成。

3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。

4. 三极管的类型:NPN型和PNP型。

5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。

教学活动:1. 讲解三极管的定义、结构和工作原理。

2. 展示三极管的实物图和符号图。

3. 引导学生通过实验观察三极管的工作状态。

章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。

2. 掌握放大电路的基本组成和原理。

教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。

2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。

3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。

4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。

教学活动:1. 讲解放大电路的定义、作用和基本组成。

2. 展示放大电路的原理图和实际电路图。

3. 引导学生通过实验观察放大电路的工作状态。

章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。

2. 掌握三极管的放大原理。

教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。

2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。

教学活动:1. 讲解三极管的放大特性和放大原理。

2. 分析三极管放大电路的输入和输出特性曲线。

3. 引导学生通过实验观察三极管的放大特性。

章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。

2. 掌握三极管放大电路的应用。

教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。

三极管放大电路实验报告范文

三极管放大电路实验报告范文

三极管放大电路实验报告范文要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20~200kHz范围内小于0.1dB2、问题分析:通过分析得出放大电路可以采用三极管放大电路。

2.1对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。

综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。

2.2放大电路的设计思路在此放大电路中采用两级放大的思路。

先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。

3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。

4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。

调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3 VA=R2〃R3〃(1+3)R5/[R2//R3//(1+3)R5+R1],其中由于R1较大因此R2、R3也相对较大。

第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。

则需要适当增大R2,减小R3的阻值。

总输出的调试:如果放大倍数不合适,则调节R4与R5的阻值。

即当放大倍数不足时,应增大R4,减小R5如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。

功率的调试:由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。

实验三三极管放大电路设计

实验三三极管放大电路设计

实验三三极管放大电路设计一、实验目的1.了解三极管的基本工作原理和放大特性。

2.掌握三极管放大电路的设计和调整方法。

二、实验原理三极管放大电路是以三极管为核心元件的放大电路,通过适当的偏置和负反馈,可以实现对输入信号的放大。

三极管放大电路通常由输入端、输出端和三极管组成。

1.BJT三极管BJT三极管的主要结构有NPN型和PNP型两种。

在NPN型三极管中,由两个不掺杂的P型半导体夹着一个高掺杂的N型半导体构成,形成了PN结。

三极管的三个引脚分别为发射极(Emitter),基极(Base)和集电极(Collector)。

在基极与发射极之间加正向偏置电压Ube,使得PN结处于正向偏置状态。

当基极处于正向电压Ube时,使得发射极与集电极间形成一个电流通道。

此时,如果在集电极与发射极间设置一个负电压Uce,集电极的载流子会被集电区的电场吸引,形成集电电流Ic,从而实现了三极管放大器的放大作用。

三极管放大电路分为共发射、共基和共集三种基本结构。

常用的放大电路有共发射放大电路、共射放大电路和共源放大电路。

以下以共发射放大电路为例进行设计。

共发射放大电路的输入端是基极,输出端是集电极。

设计时需要注意以下几个方面:(1)确定输入和输出电阻:输入电阻是指输入端的电压变化引起的输入电流变化的比值,输出电阻是指输出端的电压变化引起的输出电流变化的比值。

一般来说,输入电阻越大越好,输出电阻越小越好。

(2)确定直流工作点:直流工作点是指三极管在放大器工作状态下的工作点。

选择合适的直流工作点,可以使输出信号对输入信号变化进行放大,同时尽量避免饱和和截至现象。

(3)选取合适的偏置电路:偏置电路用于确保三极管正常工作,在选择时需要保证偏置点稳定、温度稳定和电源稳压等。

三、实验步骤1.搭建共发射放大电路,具体电路如下图所示。

其中,三极管型号为2N39042.调节R1、R2和Re使得三极管的基极电压为0.6V左右,可以通过电压表测量。

晶体管放大倍数β检测电路的设计与实现

晶体管放大倍数β检测电路的设计与实现

课题名称晶体管放大倍数β检测电路的设计与实现一、摘要本实验是简单的三极管放大倍数β检测电路的设计与实现。

主要由三极管类型判别电路、三极管放大倍数档位判断电路、显示电路、报警电路及电源电路五个部分组成。

首先通过普通LED 发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位 (<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。

关键词:三极管、β、LED、电压比较器、报警二、设计任务要求基本要求:设计一个简易晶体管放大倍数β检测电路,该电路能够实现对三极管β值大小的初步判断。

系统电源DC=10V1.通过该电路板块一能够检测出NPN、PNP三极管的类型。

2.电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断。

3.用发光二极管来指示被测三极管的β值属于哪一个档位4.在电路中可以手动调节四个档位值的具体大小。

5.当β超出250时能够闪烁报警。

提高要求1.电路能够将PNP型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断,并且能够手动调节四个档位值的具体大小。

2. NPN、PNP三极管β档位的判断可以通过手动或自动切换三、设计思路和总体结构框图本实验关键之处系如何将三极管放大倍数β的变化用一个便于测量的物理量的变化来表示。

实验室最易测量的量即是电压,并且三极管CE极间电压便可反应集电极电流I c的变化,故不妨用某种手段固定I b值,通过检测CE极间电压的变化间接检测β的变化。

而将电压值分为几个档位很容易想到用电压比较器实现并通过输出电流驱动LED显示出来。

最后,报警电路可利用LED闪烁报警,可由555定时器实现。

四、分块电路、总体电路的设计(电路图)现将实验电路可为“4+1”个板块。

“4”指的是三极管类型判别电路、三极管放大倍数β档位判断电路和显示电路、报警电路和电源电路;“1”指的是从NPN型管β检测到PNP型管β检测的转换电路。

三极管共射放大电路实验

三极管共射放大电路实验

三极管共射放大电路实验一. 实验目的和要求1.学习共射放大电路的设计方法。

2.掌握放大电路静态工作点的测量与调整方法。

3.学习放大电路性能指标的测试方法。

4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。

5.进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。

二. 实验内容和原理1. 静态工作点的调整和测量2. 测量电压放大倍数3. 测量最大不失真输出电压4. 测量输入电阻和输出电阻5. 测量上限频率和下限频率6. 研究静态工作点对输出波形的影响放大器最佳静态工作点:要使放大器不失真地放大,必须选择合适的静态工作点。

初选静态工作点时,可以选取直流负载线的中点,即 VCE =1/2×VC 或 IC =1/2×ICS(ICS 为集电极饱和电流,ICS ≈VCC/Rc) 这样便可获得较大输出动态范围。

当放大器输出端接有负载R L 时,因交流负载线比直流负载线要陡,所以放大器动态范围要变小,如前图所示。

当发射极接有电阻时,也会使信号动态范围变小。

要得到最佳静态工作点,还要通过调试来确定,一般用调节偏置电阻的方法来调整静态工作点。

实验名称: 三极管共射极放大电路 姓名: 学号: 三. 主要仪器设备示波器、信号发生器、晶体管毫伏表 共射电路实验板四.操作方法和实验步骤1. 静态工作点的调整和测量P.2准备工作:(1) 对照电路原理图,仔细检查电路的完整性和焊接质量。

(2) 开启直流稳压电源,将直流稳压电源的输出调整到12V ,并用万用表检测输出电压。

确认后,先关闭直流稳压电源。

(3) 将电路板的工作电源端与12V 直流稳压电源接通。

然后,开启直流稳压电源。

此时,放大电路、处于工作状态。

静态工作点的调整:调节电位器,使Q 点满足要求(I CQ =1.5mA)。

·直接测电流不方便,一般采用电压测量法来换算电流。

·测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。

模拟实验三---三极管以及放大电路实验--2014

模拟实验三---三极管以及放大电路实验--2014

模拟实验三三极管及其放大电路实验的参考资料请根据给的资料书写自己的预习报告,完成电路的预设方案、测量值的理论计算部分。

本次主要实验内容之一是:射极偏置CE电路的测量,包括:CS9013的β值测量,电压放大倍数的测量(区分有无Ce两种情况),输入、输出电阻,失真的记录(要求记录当时对应的Q的参数值),幅频特性的测试f H。

本次主要内容之二是:积分电路、微分电路的实验,参看实验二的要求。

以下是参考资料:一.实验目的1.对晶体三极管(3DG6、CS9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。

2.学习用数字万用表、模拟万用表对三极管的三极区分以及β值进行测试的方法。

3.三极管(如: CS9013)的β值的测试。

4.研究静态工作点对放大电路动态性能的影响。

5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。

6. 调节射极偏置CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。

7.用Multisim软件完成对射极偏置CE电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。

二.知识要点1.半导体三极管半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。

半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN 型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。

其功耗大于1W的属于大功率管,小于1W的属于小功率管。

半导体三极管的参数主要有电流放大倍数β、极间反向电流I CEO、极限参数(如最高工作电压V CEM、集电极最大工作电流I CM、最高结温T jM、集电极最大功耗P CM)以及频率特性参数等。

放大电路实验报告

放大电路实验报告

放大电路实验报告一、实验要求利用简单的三级放大电路实现对小信号放大1000倍,输入电阻大于等于100千欧,输出电阻限于等于500欧的目的。

二、实验环境Pspice仿真软件。

三、实验过程与分析初步设计:1、初步设计为第一级为共集放大电路,第二、三级为共射放大电路,分两次对信号进行放大。

2、由于输出电阻为500欧,设计第三级R C为500Ω,放大倍数为25倍,射级电阻的目的是保证一定的输入电阻,防止二、三级间损耗过大。

3、第二级放大倍数较大所以设计不带射级电阻,以尽量扩大放大倍数。

但需要考虑到第二级输出电阻不能过大,所以R C不应该过大。

4、第一级应保证足够大的输入电阻,由于共集电路的限制所以暂时没有考虑输出电阻。

5、电源利用正负6V电源。

6、为了使计算方便,三级间的连接方式使用阻容耦合的方式,使其静态工作点不互相影响。

7、利用以上的初步设计计算了电阻,在电阻的选取中主要考虑了各级放大电路的静态工作点,使U CE尽量保持在6V左右,以保证较大的放大幅度。

进行仿真:1、仿真过程中放大倍数没有准确的稳定在1000倍,通过调整了一些电阻的值使其在一定的频率范围内保持了1000(电容的值选取较大)。

2、在输出电阻的测量中没有问题,输出电阻在允许范围内。

3、在测量输入电阻时遇到了较大的问题,比计算中的共集输入电阻小了很多,被这个问题困惑了很久,最终通过仔细分析交流微变等效电路,发现第二级的输入电阻也对第一级的输入电阻产生了很大的影响(相当于负载),由于第二级的Rπ较小,所以极大的影响了第一级的输入电阻。

所以通过进一步的调整第二级的I CQ,来改变第二级的Rπ,使输入电阻达到100KΩ。

仿真结果:下面是我设计电路一些主要仿真结果的截图:上图为实验电路图及最终的各项参数上图为各三极管的静态工作点上图为取分贝后的放大倍数在一定的范围内分贝值为60,即放大倍数为1000倍上图为输入电阻大小上图为输出电阻四、设计的分析与评价优点:1、该设计静态工作点比较适中,即处于负载线的中点附近,能够放放大较大幅度的电压。

实验三 晶体管单管共射放大电路

实验三 晶体管单管共射放大电路

实验三晶体管单管共射放大电路实验三 晶体管单管共射放大电路一、 实验目的:1.学习电子线路安装、焊接技术。

2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。

3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。

4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。

二、实验原理:(一)实验电路图3.1中为单管共射基本放大电路。

1.① R B 基极偏流电阻,提供静态工作点所需基极电流。

R B 是由R 1和RW 串联组成,RW 是可变电阻,用来调节三极管的静态工作点,R 1(3K )起保护作用,避免RW 调至0端使基极电流过大,损坏晶体管。

② R S 是输入电流取样电阻,输入电流I i 流过R S ,在R S 上形成压降,测量R S 两端的电压便可计算出I i 。

③ R C —集电极直流负载电阻。

④ R L —交流负载电阻。

⑤ C1、C2 —耦合电容。

(二)理论计算公式: ① 直流参数计算:CCQ CEQ BQ EQ CQ BEQ BBEQBQ R I VCC V I I I V7.0V ;R V VCC I -=β⋅=≈≈-≈式中:..② 交流参数计算:()CO be B i ViS iVS LC L be'L V'bb EQ 'bb be R R r //R R A R R R A R R R ;r R A 300r (mA)I (mV)26β1r r ≈=*+=='*β-=++≈∥Ω的默认值可取式中:(三)放大电路参数测试方法由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。

设计和制作电路前,必须对使用的元器件参数有全面深入的了解。

有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。

工作在放大区的pnp三极管,三个级的电位_解释说明

工作在放大区的pnp三极管,三个级的电位_解释说明

工作在放大区的pnp三极管,三个级的电位解释说明1. 引言1.1 概述工作在放大区的pnp三极管是一种常见的电子器件,它在电子电路中具有重要的应用。

该器件通过控制输入信号,可以放大输出信号,并且具有较高的增益和频率响应特性。

本文将详细介绍工作在放大区的pnp三极管的工作原理、放大区工作条件以及其优点与应用。

1.2 文章结构本文共分为五个部分:引言、工作在放大区的pnp三极管、三个级的电位解释说明、实验结果与分析以及结论与展望。

在引言部分,我们将介绍文章涉及到的主题,并对整篇文章进行简要概述。

接下来,在第二部分,我们将详细讨论工作在放大区的pnp三极管的工作原理,包括其内部结构和基本工作方式。

此外,我们还会探讨该器件所需满足的放大区工作条件,并解释为什么这些条件是必要的。

第三部分将着重介绍三个级别(即第一级、第二级和第三级)电位解释说明。

我们会详细阐述各个级别所代表的意义以及它们之间相互影响的关系。

接下来,第四部分将介绍实验的设计和步骤,并对数据进行收集和处理。

最后,我们将分析实验结果,并进行讨论。

最后,在第五部分,我们将总结文章中的主要结论,并提出该领域研究的局限性和未来发展方向。

1.3 目的本文的目的是全面解释工作在放大区的pnp三极管以及三个级别电位之间的关系。

通过深入探讨该主题,希望可以增进读者对该器件的理解,并为相关领域的研究和应用提供有价值的参考。

同时,本文也旨在鼓励进一步研究和探索该领域未知问题。

2. 工作在放大区的pnp三极管2.1 工作原理PnP三极管是一种双极型晶体管,由一对P型半导体夹在中间的N型半导体构成。

工作原理基于PN结和两个接触点之间形成的二极管效应。

当正向偏置施加到基结处时,电子从发射极流入基端,同时集电极流入基端。

这个过程涉及电荷转移和电流放大。

2.2 放大区工作条件放大器是以三个不同级别工作的多级放大器来实现信号增益。

它使用放大区工作状态,即把PnP三极管调整为放大模式。

三极管的电流放大作用教案

三极管的电流放大作用教案

三极管的电流放大作用教案一、教学目标:1. 让学生了解三极管的结构和基本工作原理。

2. 使学生掌握三极管的电流放大作用及其在电子电路中的应用。

3. 培养学生动手实验和分析问题的能力。

二、教学内容:1. 三极管的结构和基本工作原理2. 三极管的电流放大作用3. 三极管在电子电路中的应用4. 实验操作:测量三极管的电流放大系数β5. 分析实验结果,探讨三极管电流放大作用的影响因素三、教学重点与难点:1. 教学重点:三极管的结构和基本工作原理,三极管的电流放大作用及其在电子电路中的应用。

2. 教学难点:三极管的电流放大作用原理,实验数据分析。

四、教学方法:1. 采用讲授法,讲解三极管的结构、工作原理和电流放大作用。

2. 采用实验法,让学生动手测量三极管的电流放大系数β。

3. 采用讨论法,分析实验结果,探讨三极管电流放大作用的影响因素。

五、教学过程:1. 导入新课:介绍三极管在电子电路中的重要作用,激发学生学习兴趣。

2. 讲解三极管的结构和基本工作原理,引导学生理解三极管的电流放大作用。

3. 学生动手实验:测量三极管的电流放大系数β,注意操作规范和安全。

4. 分析实验结果,探讨三极管电流放大作用的影响因素,如温度、工作点等。

六、课后作业:1. 绘制三极管的伏安特性曲线。

2. 分析三极管的电流放大作用在实际电路中的应用。

3. 查阅资料,了解三极管的温度特性。

七、教学评价:1. 学生对三极管的结构和基本工作原理的理解程度。

2. 学生动手实验的能力,如操作规范、数据分析等。

3. 学生对本节课知识的掌握情况,如课后作业的完成质量。

八、教学资源:1. 教材、课件等教学资料。

2. 三极管实验仪器的准备,如晶体管测试仪、示波器等。

3. 网络资源,用于学生课后查阅相关资料。

九、教学进度安排:1. 第一课时:讲解三极管的结构和基本工作原理。

2. 第二课时:讲解三极管的电流放大作用及其在电子电路中的应用。

3. 第三课时:学生动手实验,测量三极管的电流放大系数β。

模电实验 晶体管共射极放大电路

模电实验 晶体管共射极放大电路
1.放大器静态工作点的调试和测量:
晶体管的静态工作点对放大电路能否正常工作起着重要的作用。对安装好的晶体管放大电路必须进行静态工作点的测量和调试。
1静态工作点的测量:
晶体管的静态工作点是指VBEQ、IBQ、VCEQ、ICQ四个参数的值。这四个参数都是直流量,所以应该使用万用电表的直流电压和直流电流档进行测量。
放大器的幅率特性就是测量不同频率信号时的电压放大倍数AU。为此,可采用前述测AU的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。
3DG 9011(NPN)
晶体管共射极放大电路
一、实验目的
1、学习放大电路静态工作点的测试及调整方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理
图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
(a) (b)
图1-2静态工作点对uO波形失真的影响
改变电路参数UCC、RC、RB(RB1、RB2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。
图1-3电路参数对静态工作点的影响
最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

三极管及放大电路基础教案

三极管及放大电路基础教案

一、教学目标:1. 让学生了解三极管的结构、种类和功能。

2. 让学生掌握三极管的导通和截止条件。

3. 让学生了解放大电路的原理和应用。

4. 让学生能够分析判断放大电路的工作状态。

二、教学内容:1. 三极管的结构和种类教学要点:三极管由发射极、基极和集电极组成,分为NPN型和PNP型。

2. 三极管的导通和截止条件教学要点:三极管导通需要基极-发射极电压大于一定值,集电极-发射极电压小于一定值;截止则相反。

3. 放大电路的原理教学要点:放大电路利用三极管的放大作用,将输入信号放大后输出。

4. 放大电路的应用教学要点:放大电路广泛应用于电子设备中,如音频放大、信号放大等。

5. 放大电路的工作状态分析教学要点:分析判断放大电路的工作状态,包括静态工作点和动态工作状态。

三、教学方法:1. 采用讲授法,讲解三极管及放大电路的基本概念、原理和应用。

2. 利用多媒体课件,展示三极管及放大电路的实物图片和电路图,增强学生的直观认识。

3. 进行实验演示,让学生亲自动手操作,观察放大电路的工作状态。

4. 案例分析,分析实际应用中的放大电路,提高学生的应用能力。

四、教学准备:1. 教学课件和教案。

2. 三极管实物和放大电路演示电路。

3. 实验器材和工具。

五、教学评价:1. 课堂问答:检查学生对三极管及放大电路的基本概念、原理和应用的理解。

2. 实验报告:评估学生在实验中的操作技能和分析判断能力。

3. 课后作业:巩固学生对三极管及放大电路的知识点掌握。

4. 期末考试:全面考核学生对三极管及放大电路的学习效果。

六、教学内容:6. 放大电路的类型教学要点:放大电路分为三种类型:共发射极放大电路、共基极放大电路、共集电极放大电路;其中共发射极放大电路应用最广泛。

7. 放大电路的静态工作点教学要点:静态工作点是指放大电路中的三极管在直流工作状态下,各极的电位处于一种稳定的状态,对于放大电路的性能有很大影响。

8. 放大电路的动态分析教学要点:动态分析是指在输入信号的作用下,放大电路中三极管的工作状态和工作参数的变化。

晶体管放大电路实验报告

晶体管放大电路实验报告

电子电路综合设计实验实验三晶体管放大倍数β检测电路的设计与实现实验报告信息与通信工程学院摘要:简易晶体管放大倍数β检测电路由三极管类型判别电路,三极管放大倍数档位判别电路,显示电路,报警电路和电源电路五部分构成。

三极管有电流放大功能,当放大后的电流大小不同时,三极管的集电极电压也不同。

一般三极管分为PNP和NPN两种类型。

三极管类型判别电路的功能是利用NPN型和PNP型三极管电流流向相反的特性,通过判断发光二极管亮灭判断三极管的类型是NPN型还是PNP型。

三极管放大倍数β检测电路是用以判别三极管类型并予以检测放大倍数β的检测电路。

其首先是利用三极管NPN和PNP电流流向相反判断三极管类型,在利用三极管的电流放大功能,将β的测量转化为对三极管集电极或发射集电流的测量,再通过电阻转换为电压信号的测量,同时实现对档位的手动调节,并利用比较器的原理,实现档位的判断。

显示电路的功能是利用发光二极管将测量结果显示出来。

报警电路的功能是当所测三极管的β值超出测量范围时,能够进行报警提示。

电源电路的功能是为各模块电路提供直流电源。

关键字:类型判别,电流放大,比较器,测量转换放大倍数β,protel设计软件一、设计任务要求1.基本要求:设计简易晶体管放大倍数β检测电路,该电路能够实现对三极管β值大小的初步判断。

1)电路能够检测出NPN、PNP三极管的类型;2)电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断;3)用发光二极管来指示被测三极管的β值属于哪一个档位;4)在电路中可以手动调节四个档位值的具体大小;5)当β超出250时能够光闪烁报警;2.提高要求:1)电路能够将PNP型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断,并且能够手动调节四个档位值的具体大小;2)NPN、PNP三极管β档位的判断可以通过手动或自动切换。

三极管放大电路设计

三极管放大电路设计

实验名称 三极管放大电路设计日期 姓名专业一、实验目的(详细指明输入输出)1、深入研究三极管单级放大器的工作原理,学会选取相应参数的元件设计并制作电路 。

2、掌握三极管单级放大器的静态工作点的调试方法,探讨三极管单级放大器的输入输出变化后的频率响应 ,学会用示波器等工具测量相关参数。

3、设计出能够实现不失真稳定的放大, 满足3dB 带宽10Hz~1MHz ,增益≥20dB ,输出幅值≥10Vpp ,采用单电源供电的三极管放大电路。

二、实验原理(详细写出理论计算、理论电路分析过程)实验电路如下图所示,三极管s8050的β=252.由于IB 非常小,所以在计算时可认为其近似等于0 基极电压:VBQ = Rb2/(Rb1+Rb2)*VCC射极电压:VEQ = VBQ-VBE ;射极电流:IEQ = VE/Re集电极电流:ICQ ≈ IEQ ;集电极电压:VCQ = VCC-ICQ*Rc 基极电流:IBQ = IE/(1+β) 电路放大倍数:Au = RC/Re因为实验要求:输出幅值≥10Vpp ,3dB 带宽10Hz~1MHz ,所以本实验中假定Vce =8V ,Ie=15mA, 则Rc+Re=466Ω为了满足增益≥20dB ,则取Re=36Ω,Rc=430Ω。

则B 点电位为1.3V ,取RB2=2.4K Ω,RB1=24K Ω。

该电路利用电阻R b1、R b2的分压固定基极电位VBQ 。

如果满足条件I1>>IB ,当温度升高时,ICQ ↑→VEQ ↑→VBE ↓→IBQ ↓→ICQ ↓,结果抑制了ICQ 的变化,从而获得稳定的静态工作点。

由于有电容器的存在,该电路受频率的影响。

电容的容量越大,频率较低时电容的阻抗越小。

22uF 22uF V i R e 36ΩR c 430ΩRb2 2.4k Ω R b1 24k Ω V 0 +18VIN OUT三、实验过程(记录实验流程,提炼关键步骤)a)通过查阅资料,选定s8050三极管进行放大电路设计,利用multisim仿真软件进行仿真设计,并进行参数修改,设计电路图如图所示:b)按照电路原理图焊接电路板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学电工电子实验中心实验报告课程名称:电子电路实验第 3 次实验实验名称:三极管放大电路设计院(系):吴健雄学院专业:电类强化班姓名:梅王智汇学号:61012215实验室: 101 实验组别:同组人员:实验时间:2014年 5 月 4 日评定成绩:审阅教师:实验三 三极管放大电路设计一、实验目的1. 掌握单级放大电路的设计、工程估算、安装和调试;2. 了解三极管、场效应管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概念以及测量方法; 3. 了解负反馈对放大电路特性的影响。

4. 掌握多级放大电路的设计、工程估算、安装和调试;5. 掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源 、交流毫伏表、函数发生器的使用技能训练。

二、预习思考:1. 器件资料:上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:2. 偏置电路:图3-3中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C 以实现稳定直流工作点的作用的,如果R 1、R 2取得过大能否再起到稳定直流工作点的作用,为什么?答:该偏置电路是分压偏置电路,利用R1,R2对电源电压进行了分压,保证了基极电压稳定为:212BQ CC R U V R R =+。

这样就为电路提供了稳定的工作点。

就是当环境温度升高时,I CQ ≈I EQ 增加,U EQ =I EQ R E 增大,由于U BQ 的基本固定,U BEQ =U BQ -U EQ 减小,又使I EQ 减小,抑制I CQ 增加,通过这样的自动调节就稳定了静态工作点。

如果R1,R2取值过大,以至于接近输入电阻R i ,就会导致流入基极的电流不可忽略,工作点不稳定。

3. 电压增益:(I) 对于一个低频电压放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。

答:为了提高增益,需要调节参数, 共发射极组态电路增益为: (//)C L beR R A r β=-共基级组态电路增益为: ()//beC L R R A r β=共集电极组态电路增益为:()()1'1'beL L R A r R ββ+=++ 注意到通过调大共发射极组态电路的R C 与负载R L 可以获得更大的放大倍数增益,但是在调节R C 的时候会增大其输出电阻,故应当适当调节。

也可以通过引入正反馈的办法来提高电压增益,但是这会影响电路工作的稳定性,一般只用于整形和波形发生电路。

(II) 实验中测量电压增益的时候用到交流毫伏表,试问能否用万用表或示波器,为什么?答:不可以。

输入电压信号非常小,为5MV 左右,在示波器中显示出来的具有很大的干扰谐波,测量值也会跳动非常厉害。

万用表,测量的误差也非常大。

所以用交流毫伏表是最好的选择。

4. 输入阻抗:1) 放大器的输入电阻R i 反映了放大器本身消耗输人信号源功率的大小,设信号源内阻为R S ,试画出图3-3中放大电路的输入等效电路图,通过连线回答下面的问题,并做简单解释: R i = R S 放大器从信号源获取较大电压R i << R S 放大器从信号源吸取较大电流 R i >> R S 放大器从信号源获取最大功率答:根据2()S i i SU P R R R =+,可知R i = R S 时,放大器可获得最大功率。

当R i << R S 时,由于总的阻抗比较小,故可获较大电流。

当R i >> R S 时,由分压原理,放大器可获得较大电压。

输入等效电路如下:2) 图3-1是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S 的取值不能太大也不能太小。

图3-1 放大器输入阻抗测量原理图答:若R s 太小,则U s ≈U i ,会导致电流过大,若R s 太大,则U i 会很小。

所以为了保证器件的直流工作点,保证器件正常工作,所以R s 不能太大也不能太小3) 对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高图3-3中放大电路的输入阻抗。

答:答: 由于该电路为共发射极放大电路输入阻抗12////be Ri R R r =由于()()'261be bb EQmA r r I β=++基本不变,所以可以适当提高R 1与R 2的阻值。

或者计入电压串联负反馈,也可以增大输入电阻。

5. 输出阻抗:1) 放大器输出电阻R O 的大小反映了它带负载的能力,试分析图3-3中放大电路的输出阻抗受那些参数的影响,设负载为R L ,画出输出等效电路图,通过连线回答下面的问题,并做简单解释。

R O = R L 负载从放大器获取较大电压 R O << R L 负载从放大器吸取较大电流 R O >> R L 负载从放大器获取最大功率答:由2()oL o LU P R R R =+可知,当R O = R L 时,负载从放大器获取最大功率;当R O << R L时,由分压原理,负载从放大器获取较大电压;当R O >> R L时,由于总电阻较小,负载从放大器吸取较大电流。

输出等效电路:2)图3-2是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。

图3-2 放大器输出阻抗测量原理图答:输出电流'0LUIR R =+输出电压'LLU R UR R=+要保证输出电流与输出电压都不能太小,负载电阻不能太大也不能太小。

3)对于小信号电压放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减小图3-3中放大电路的输出阻抗。

答:对于共发射极放大电路。

其输出电阻是RC。

所以要减小电路的输出阻抗,减小RC 即可。

或者加入电压串联负反馈也可减小输出阻抗。

6.计算图3-3中各元件参数的理论值,其中已知:V CC=12V,U i=5mV,R L=3KΩ,R S=1KΩ,T为9013指标要求:A u>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA)用Multisim软件对电路进行仿真实验,仿真结果填写在预习报告中。

1)仿真原理图2)参数选择计算输入电阻12////i be R R R r =,又26200(1)be Er I β=++, 其中I E 取2mA ,所以r be 约为2k Ω,这样只要R B =R 1//R 2>1k Ω,那么就可以满足Ri>1k Ω 输出电阻R o <R C ,所以要符合R o <3k Ω,所以R C 取3k Ω在此实验中,电容应当取得大一些,这样才能够使得下限频率低一些,均选用了100μF 。

3) 仿真结果增益A u =U o /U i ≈126符合要求 通过波特仪观察幅频曲线,下限频率为33.4Hz上线频率为64.492Hz ,符合要求。

7. 对于小信号放大器来说一般希望上限频率足够大,下限频率足够小,根据您所学的理论知识,分析有哪些方法可以增加图3-3中放大电路的上限频率,那些方法可以降低其下限频率。

答:上限频率()''112////H bb s B b e M f r R R r C π=+⎡⎤⎣⎦,其中C M 为密勒电容,若要增大上限频率,可同比例增大R B ,即同比例增大R 1与R 2。

其中CM 为密勒电容。

所以为了增大上限截止频率,可以同比例地增大R1与R2. 下限频率 ()()121103C r R f be S L ⋅+⋅≥π~,()()221103C R R f L C L ⋅+⋅≥π~,()EbeS E L C r R R f ⋅++⋅≥)//(~βπ12131所以为了减小下限频率,可以适当增大C 1、C 2、C E 。

8. 负反馈对放大器性能的影响答:1. 负反馈会减小电路的放大倍数。

2. 负反馈可以提高电路的稳定性。

3. 负反馈可以扩展通频带。

4. 负反馈可以减小非线性失真(反馈环内)。

5. 负反馈对于输入输出电阻也有一定影响。

6. 负反馈可抑制干扰与噪声。

9. 设计一个由基本放大器级联而成的多级放大器,已知:V CC =12V ,U i =5mV ,R L =1K Ω,T 为9013要求满足以下指标:| A u |>100,R i >1 K Ω,R O <100Ω 1) 仿真原理图2) 参数选择计算a) 输入电阻由共源放大级决定,R i =R 2+R 3//R 4>1M Ω;b) 输出电阻由共集放大级决定,281114//////1be o o r R R R R R β+=+,其中R o2≈R 9,计算可得,R o ≈80Ωc) 第一级共源放大级的增益A u1=-g m (R 6//R i2) ,R i2为第二级放大电路的输入电阻,R i2=R 7//R 10//r be ≈2.2k Ω,A u1≈-1.29;第二级共射放大级的增益A u2=-β(R 9//R i3)/r be ,R i3为第三级放大电路的输入电阻,R i3=R 8//R 11//[r be +(1+β)(R 14//R 16)]≈13.2kΩ,A u2≈-190;第三级共集放大级的增益()()()()1416314161//1//u be R R A r R R ββ+=++≈0.98; 故整个放大器的增益A u =A u1A u2A u3=240;3) 仿真结果注:由于仿真实验中选用场效应管与三极管与实际做实验的三极管的型号不一致,故导致放大倍数有较大差距,但仍可反映本电路三级放大的主要特点。

CH1-输入CH2-U oCH3-U o1CH4-U o2三、实验内容1. 基本要求:图3-3 射极偏置电路1)研究静态工作点变化对放大器性能的影响(1)调整R W,使静态集电极电流I CQ=2mA,测量静态时晶体管集电极—发射极之间电压U CEQ。

记入表3-3中。

(2)在放大器输入端输入频率为f=1kHz的正弦信号,调节信号源输出电压U S 使Ui=5mV,测量并记录U S、U O和U O’(负载开路时的输出电压)的值并填于表3-1中。

注意:用双踪示波器监视U O及Ui的波形时,必须确保在U O基本不失真时读数。

(3)根据测量结果计算放大器的A u、Ri、Ro。

表3-1 静态工作点变化对放大器性能的影响静态工作点电流I CQ(mA)1 2测量值测量值理论值误差输入端接地U BQ(V) 1.62 2.62 2.60 0.8% U CQ(V) 8.85 5.93 6.00 1.2% U EQ(V) 1.02 2.00 2.00 0输入信号U i=5mV U S(mV) 5.15 5.15 5.14 0.2% U O(V) 0.322 0.504 0.525 4% U O’ (V)0.656 0.992 1.05 5.5%计算值U BEQ0.6 0.62 0.6 3.3% U CEQ7.83 3.93 4.00 1.8% A u64.4 100.8 105 4% Ri/kΩ 1.6 1.6 1.8 11% R O/kΩ 2.9 3.1 3 3.3%实验结果分析:由测量值与理论值的比较,发现大多数测量值与理论值误差在5%以内,基本吻合; 输入电阻的误差达到了11%由输入电阻 s ii S irU R U U =-通过分析可知误差主要来自于以下几点原因1. 当U s 与U i 差量相当小时,只要r s 测量稍有误差,对于输入电阻的测量影响就会相当大,而实验选用的r s 的误差为5%金环电阻,故对输入电阻的测量影响较大; 2. U s 与U i 均为小信号,交流毫伏表的分度值为0.1mV/div 测量本身就有误差; 3. 计算所得输入电阻为估算得到,亦有一定误差; 4. 三极管本身具有离散性,参数选择上有误差。

相关文档
最新文档