最新高中数学选修2-2《分析法》教学案例精品版
高中数学北师大版选修2-2课件:2 分析法
8 7 5 10
f ( x) 2 x 2 12 x 16 在区间 例3、求证:函数
(3,+∞)上是增加的。
6
证明:要证明函数 f ( x) 2 x 12 x 16
2
在区间(3,+∞)上是增加的, 只需证明 对于任意 x1 , 2 ∈(3,+∞),且 x
f ( x1 ) f ( x2 ) 0 , 只需证明 对任意的 x1 > 2 >3,有
特点: 执果索因 即:
要证结果Q,只需证条件P
5
例2、求证: 8 7 5 10 证明:要证明
8 7 5 10
只需证明 ( 8 7 ) 2 ( 5 10 ) 2 即 8 7 2 56 5 10 2 50 只需证明 56 50 即 56>50,这显然成立。 这样就证明了
12
课堂练习:课本 P11 练习1:1、2。
作业:课本P12 习题1-2 4、5。 五、教后反思:
13
7
∵ x1 >
x2
>3 ∴ x1-
x 2 >0,且
x1+ x 2 >6,它保证上式成立。
这样就证明了:函数 f ( x) 2 x 2 12 x 16 在区间(3,+∞)上是增加的。
例4、如图,SA⊥平面ABC,AB⊥BC,过A作SB 的垂线,垂足为E,过E作SC的垂线,垂足为F, 求证 AF⊥SC
(a b)( a 2 2ab b 2 ) 0 , 只需证明
只需证明 (a b)( a b) 2 0 , 只需证明 (a b) 0且(a b) 2 0 。 由于命题的条件“a,b是不相等的正数”,它 保证上式成立。这样就证明了命题的结论。 4
2.2.综合法与分析法-人教A版选修2-2教案
2.2.综合法与分析法-人教A版选修2-2教案
一、教学目标
1.理解综合法和分析法的概念。
2.掌握综合法和分析法的基本原理。
3.能够应用综合法和分析法解决实际问题。
4.培养学生系统思维的能力。
二、教学内容
1.综合法的概念和基本原理。
2.分析法的概念和基本原理。
3.综合法和分析法的应用。
三、教学过程
1. 导入(5分钟)
教师通过提问和讲解,引导学生了解问题解决的两种方法:综合法和分析法,并介绍本节课的教学目标和重点。
2. 讲解(25分钟)
2.1 综合法的概念和基本原理
1.综合法是从整体综合出发,从多个方面考虑,综合分析问题的方法。
2.综合法的基本原理是整体观念、多元观念和系统观念。
2.2 分析法的概念和基本原理
1.分析法是从局部出发,从单个方面考虑,分析问题的方法。
2.分析法的基本原理是简化化、抽象化和精确化。
3. 练习(25分钟)
1.给学生提供综合法和分析法的例子,让学生分别应用综合法和分析法解决问题。
2.针对不同的问题,让学生思考采用哪种方法更适合。
4. 总结(5分钟)
让学生回顾本节课的重点内容,并讲解综合法和分析法的区别和联系。
四、教学反思
本节课通过提供练习例子的方式,让学生更深入地理解了综合法和分析法的概念和应用方法。
同时,通过问题讨论的方式,培养了学生系统思维的能力。
高中数学选修2-2优质学案:2.2.1 综合法和分析法
2.2 直接证明与间接证明2.2.1 综合法和分析法[学习目标] 1.了解直接证明的两种基本方法——综合法和分析法.2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.[知识链接]1.综合法与分析法的推理过程是合情推理还是演绎推理?答 综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”2.必修5中基本不等式a +b 2≥ab (a >0,b >0)是怎样证明的? 答 要证a +b 2≥ab , 只需证a +b ≥2ab ,只需证a +b -2ab ≥0,只需证(a -b )2≥0,因为(a -b )2≥0显然成立,所以原不等式成立.[预习导引]1.综合法 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.2.分析法分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.要点一 综合法的应用例1 已知a ,b 是正数,且a +b =1,求证:1a +1b≥4.证明 方法一 ∵a ,b 是正数且a +b =1,∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1ab≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0,1a +1b ≥2 1ab>0, ∴(a +b )⎝⎛⎭⎫1a +1b ≥4.又a +b =1,∴1a +1b≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b=4.当且仅当a =b 时,取“=”号. 规律方法 利用综合法证明问题的步骤:(1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法.(2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路.(3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法.跟踪演练1 在△ABC 中,三个内角A 、B 、C 对应的边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列,求证:△ABC 为等边三角形.证明 由A 、B 、C 成等差数列,有2B =A +C .①因为A 、B 、C 为△ABC 的内角,所以A +B +C =π.② 由①②,得B =π3.③ 由a 、b 、c 成等比数列,有b 2=ac .④由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac .再由④,得a 2+c 2-ac =ac ,即(a -c )2=0,因此a =c ,从而有A =C .⑤由②③⑤,得A =B =C =π3.所以△ABC 为等边三角形. 要点二 分析法的应用例2 设a ,b 为实数,求证:a 2+b 2≥22(a +b ). 证明 当a +b ≤0时,∵a 2+b 2≥0, ∴a 2+b 2≥22(a +b )成立. 当a +b >0时,用分析法证明如下:要证a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎡⎦⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab . ∵a 2+b 2≥2ab 对一切实数恒成立,∴a 2+b 2≥22(a +b )成立.综上所述,不等式得证. 规律方法 分析法格式与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件、已经学过的定义、定理、公理、公式、法则等).这种证明的方法关键在于需保证分析过程的每一步都是可以逆推的.它的常见书写表达式是“要证……只需……”或“⇐”.跟踪演练2 如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .证明 要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为EF ⊥SC ),只需证AE ⊥平面SBC ,只需证AE ⊥BC (因为AE ⊥SB ),只需证BC ⊥平面SAB ,只需证BC ⊥SA (因为AB ⊥BC ).由SA ⊥平面ABC 可知上式成立,所以AF ⊥SC .要点三 综合法和分析法的综合应用例3 已知a 、b 、c 是不全相等的正数,且0<x <1.求证:log x a +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c . 证明 要证明:log x a +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c , 只需要证明log x ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·a +c 2<log x (abc ). 由已知0<x <1,只需证明a +b 2·b +c 2·a +c 2>abc . 由公式a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0, 又∵a ,b ,c 是不全相等的正数,∴a +b 2·b +c 2·a +c 2>a 2b 2c 2=abc . 即a +b 2·b +c 2·a +c 2>abc 成立. ∴log x a +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c 成立. 规律方法 综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.跟踪演练3 设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,试证:a x +c y=2. 证明 由已知条件得b 2=ac ,①2x =a +b,2y =b +c .②要证a x +c y=2,只要证ay +cx =2xy , 只要证2ay +2cx =4xy .由①②得2ay +2cx =a (b +c )+c (a +b )=ab +2ac +bc ,4xy =(a +b )(b +c )=ab +b 2+ac +bc =ab +2ac +bc ,所以2ay +2cx =4xy .命题得证.1.已知y >x >0,且x +y =1,那么( )A.x <x +y 2<y <2xy B.2xy <x <x +y 2<y C.x <x +y 2<2xy <y D.x <2xy <x +y 2<y [答案] D[解析] ∵y >x >0,且x +y =1,∴设y =34,x =14,则x +y 2=12,2xy =38, ∴x <2xy <x +y 2<y ,故选D. 2.欲证2-3<6-7成立,只需证( ) A.(2-3)2<(6-7)2 B.(2-6)2<(3-7)2 C.(2+7)2<(3+6)2 D.(2-3-6)2<(-7)2[答案] C[解析] 根据不等式性质,a >b >0时,才有a 2>b 2,∴只需证:2+7<6+3,只需证:(2+7)2<(3+6)2.3.求证:1log 519+2log 319+3log 219<2. 证明 因为1log b a =log a b ,所以左边=log 195+2log 193+3log 192=log 195+log 1932+log 1923=log 19(5×32×23)=log 19360.因为log 19360<log 19361=2,所以1log 519+2log 319+3log 219<2. 4.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α). 证明 要证cos α-sin α=3(cos α+sin α),只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3, 只需证1-tan α=3(1+tan α),只需证tan α=-12, ∵1-tan α2+tan α=1,∴1-tan α=2+tan α, 即2tan α=-1.∴tan α=-12显然成立, ∴结论得证.1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因.2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语.3.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却恰恰相反,是综合法居主导地位,而分析法伴随着它.。
高中数学新湘教版选修2-2 直接证明:分析法与综合法
6.2直接证明与间接证明6.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.已知a ,b 是正数,且a +b =1,求证:1a +1b ≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab ,当且仅当a =b 时等号成立. ∴ab ≤12.∴1a +1b =a +b ab =1ab ≥4. 法二:∵a ,b ∈R +,∴a +b ≥2ab >0,1a +1b ≥21ab>0,当且仅当a =b 时等号成立. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4. 又∵a +b =1,∴1a +1b≥4.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2a b ·b a =4.当且仅当a =b 时,取“=”号.保持例题条件不变,求证:4a +1b ≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b =4(a +b )a +a +bb =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b =(a +b )·⎝⎛⎭⎫4a +1b =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+bc )2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝⎛⎭⎫a 2+c 2-b 22ac 2-1=2⎝⎛⎭⎫b +c 2a 2-1=(b +c )2-2b (b +c )2b (b +c )=c -b 2b ,∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .当a +b [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎡⎦⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立. 综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论 成立.2.已知a >6,求证:a -3-a -4<a -5-a -6. 证明:法一:要证a -3-a -4<a -5-a -6, 只需证a -3+a -6<a -5+a -4 ⇐(a -3+a -6)2<(a -5+a -4)2⇐2a -9+2(a -3)(a -6)<2a -9+2(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐18<20.因为18<20显然成立,所以原不等式a -3-a -4<a -5-a -6成立. 法二:要证a -3-a -4<a -5-a -6, 只需证1a -3+a -4<1a -5+a -6,只需证a -3+a -4>a -5+a -6. ∵a >6,∴a -3>0,a -4>0,a -5>0,a -6>0. 又∵a -3>a -5,∴a -3>a -5, 同理有a -4>a -6,则a -3+a -4>a -5+a -6. ∴a -3-a -4<a -5-a -6.已知△ABC 的三个内角A ,B ,C 为等差数列,且a ,b ,c 分别为角A ,B ,C 的对边,求证:(a +b )-1+(b +c )-1=3(a +b +c )-1.[自主解答] 法一:要证(a +b )-1+(b +c )-1=3(a +b +c )-1,只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,化简,得c a +b +a b +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列,所以B =60°, 所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°. 由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得 c a +b +a b +c=1, 所以⎝⎛⎭⎫c a +b +1+⎝⎛⎭⎫ab +c +1=3.即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用范围(1)综合法适用的范围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等;②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型. (2)分析法适用的范围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y +xy ;(2)设1<a ≤b ≤c ,证明:log a b +log b c +log c a ≤log b a +log c b +log a c . 证明:(1)由于x ≥1,y ≥1,所以 x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 又x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy . 于是,所要证明的不等式即为x +y +1xy ≤1x +1y +xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.已知a ,b ,c ∈R 且不全相等,求证:a 2+b 2+c 2>ab +bc +ca . [证明] 法一:(分析法) 要证a 2+b 2+c 2>ab +bc +ca , 只需证2(a 2+b 2+c 2)>2(ab +bc +ca ),只需证(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0, 只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =BB .A =CC .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos (B +C )2,∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1. 又0<B <π,0<C <π, ∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证: b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 故选C. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x - x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9. 证明:法一:(综合法)左边=⎝⎛⎭⎫1+x +y x ⎝⎛⎭⎫1+x +y y =⎝⎛⎭⎫2+y x ⎝⎛⎭⎫2+x y=4+2⎝⎛⎭⎫y x +x y +1≥5+4=9.法二:(分析法)要证⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9成立, ∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+11-x ≥9成立, 即证(1+x )(1-x +1)≥9x (1-x ),即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0, 即证(2x -1)2≥0,此式显然成立,所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1b D .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0,则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b ,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A .8 B .4 C .1D .14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <πD.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ). ∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc <0. 答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b ) ⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b 6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系是______________. 解析:利用函数单调性.设f (x )=ln xx ,则f ′(x )=1-ln x x 2,∴0<x <e 时,f ′(x )>0,f (x )单调递增; x >e 时,f ′(x )<0,f (x )单调递减. 又a =ln 44,∴b >a >c .答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________.解析:p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p . 答案:p >q 8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:∵a ≥xx 2+3x +1=1x +1x +3对任意x >0恒成立, 设μ=x +1x +3(x >0).∴只需a ≥1μ恒成立即可.又∵μ=x +1x +3≥5,当且仅当x =1时“=”成立.∴0<1μ≤15.∴a ≥15.答案:⎣⎡⎭⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立, 只需证⎝⎛⎭⎫1a 2+4b 2(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b 2≥4. 根据基本不等式,有b 2a 2+4a 2b 2≥2 b 2a 2·4a 2b 2=4成立, 当且仅当b 2=2a 2时等号成立.所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b2=2m -1>0, 所以m ≥72.。
人教版高中数学(选修2-2)《分析法》教学案例
人教版高中数学(选修2-2)《分析法》教学案例本节课的教学课题是:人民教育出版社出版的普通高中课程标准实验教科书《数学(选修2-2)》,第二章“2.2.1综合法和分析法”中“分析法”的第一课时。
一、设计要点本教案在挖掘教材中的创新因素和蕴涵的数学思想方法的基础上,以“创设情境、切入主题、感受新知、合作交流、尝试练习、感悟探究、综合提高、回顾小结”为基本教学过程,通过揭示知识的发现和发生过程,使学生在掌握分析法的同时,体验有关的数学思想,提高观察与交流、分析与解决问题的能力,培养“用数学”的意识和合作意识。
二、教学目标1.知识与技能:结合数学实例,了解用分析法思考问题的过程和特点,对分析法的有一个较完整的认识;2.过程与方法:通过学习分析法,掌握探索和分析问题的基本方法,培养思维的灵活性和深刻性,提高分析问题、解决问题的能力,提高观察、交流能力和发散性思维能力;3.情感、态度与价值观:体会数学证明的特点,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,激发勇于探索、创新的精神,磨练意志品质。
三、教学重点、难点、关键1.重点:(1)了解分析法的思考过程和特点;(2)运用分析法证明数学问题。
2.难点:对分析法的思考过程和特点的概括。
3.关键:展现知识的内在联系,启发学生思考、探索。
四、教学方法启发式与探究式相结合五、教学过程1.创设情境教师请全体学生一起完成如下填空。
已知:如图,SA ⊥平面ABC,AB ⊥BC,D 为直线BS 上一点,求证:BC ⊥AD证明:∵SA ⊥平面ABC∵BC ⊂平面ABC∴(___________________)∵(___________________)∴BC ⊥平面SAB∵点D 在直线BS 上∴AD ⊂平面SAB∴BC ⊥AD教师教学时注意知识点拨:综合法表述形式:因为…,所以…;综合法思维过程:由因导果;综合法推理特点:顺推。
并通过思路分析启发学生产生新的证明思路和方法。
高中数学选修2-2精品课件2:2.2.1 综合法和分析法
考点2: 分析法的应用
用分析法证明如下: 要证 a2+b2≥ 22(a+b), 只需证( a2+b2)2≥[ 22(a+b)]2. 即证 a2+b2≥12(a2+b2+2ab),即证 a2+b2≥2ab. ∵a2+b2≥2ab 对一切实数恒成立, ∴ a2+b2≥ 22(a+b)成立.综上所述,不等式得证.
∵f(x)=sinx-x,∴f′(x)=cosx-1,∴当x≥0时,f′(x)≤0, ∴f(x)在[0,+∞)上单调递减. ∴当x≥0时,f(x)max=f(0)=0,∴sinx-x≤0成立. ∴原不等式成立. 【方法规律总结】在实际解决问题中,分析法与综合法往 往结合起来使用,先分析由条件能产生什么结论,再分析要产生 需要的结论需要什么条件,逐步探求两者之间的联系,寻找解答 突破口,确定解题步骤,然后用综合法写出解题的过程.
得到一个明显 Q⇐P1 P1⇐P2 P2⇐P3 … 成立的条件
知识辨析
1. 综合法在逻辑推理过程中有何特点? 提示:综合法是中学数学证明中最常用的方法,它是从已知 到未知,从题设到结论的逻辑推理方法,是一种由因导果的证明 方法.
知识辨析
2. 分析法在逻辑推理过程中有何特点? 提示:分析法也是数学证明中的常用方法,它是由命题的结 论出发,逐步推出保证此结论成立的条件的判断,而当这些判断 恰都是已知的命题(或定义、公理、定理、法则、公式等)时,命 题得证,是一种执果索因的证明方法.
第二章 推理与证明
2.2.1 综合法和分析法
2018学年高中数学北师大版选修2-2课件:1.2.2 分析法 精品
法二:(综合法) 因为 a,b,c∈R, 所以(a-b)2≥0,(b-c)2≥0,(c-a)2≥0. 又因为 a,b,c 不全相等, 所以(a-b)2+(b-c)2+(c-a)2>0, 所以(a2+b2-2ab)+(b2+c2-2bc)+(c2+a2-2ca)>0, 所以 2(a2+b2+c2)>2(ab+bc+ca), 所以 a2+b2+c2>ab+bc+ca.
∵12- +ttaann
α α=1,∴1-tan
α=2+tan
α,即 2tan
α=-1.
∴tan α=-12显然成立,∴结论得证.
[探究共研型] 综合法与分析法的综合应用 探究 1 综合法与分析法的推理过程是合情推理还是演绎推理?
【提示】 综合法与分析法的推理过程是演绎推理,它们的每一步推理都 是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的 “猜想”.
1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明 过程中所需要用的知识不太明确、具体时,往往采用分析法.
2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析, 由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定 要证a+1 b+b+1 c=a+3b+c, 即证a+a+b+b c+a+b+b+c c=3, 即证a+c b+b+a c=1, 只需证 c(b+c)+a(a+b)=(a+b)(b+c), 只需证 c2+a2=ac+b2. ∵A,B,C 成等差数列,
∴2B=A+C, 又 A+B+C=180°,∴B=60°. ∵c2+a2-b2=2accos B, ∴c2+a2-b2=ac, ∴c2+a2=ac+b2, ∴a+1 b+b+1 c=a+3b+c成立.
分析法数学高中教资教案
分析法数学高中教资教案教时:2课时教学目标:1.理解分析法数学的基本概念和原理。
2.掌握分析法数学的具体应用方法。
3.能够运用分析法数学解决实际问题。
教学重点:1.分析法数学的基本概念和原理。
2.分析法数学在解决实际问题中的应用方法。
教学难点:1.如何灵活运用分析法数学解决不同类型的实际问题。
教学准备:1.黑板、彩色粉笔。
2.课件或其他教学辅助资料。
3.教学目标和教学重点难点。
教学过程:第一课时:1.导入:通过一个简单的实际问题引入分析法数学的概念,激发学生的兴趣和思考。
2.讲解分析法数学的基本概念和原理,引导学生理解其作用和意义。
3.举例说明分析法数学在解决实际问题中的应用方法,让学生能够掌握具体操作步骤。
4.布置作业:要求学生根据所学内容,自行解决一道与日常生活相关的实际问题。
第二课时:1.复习上节课的内容,检查学生对分析法数学的掌握情况。
2.学生自主展示作业解答过程,并进行讨论和评价。
3.针对学生表现较好的部分,进行深入拓展,拓展更多实际问题的解决方法。
4.总结:对本节课所学内容进行总结,强调分析法数学在实际问题中的应用价值和意义。
5.课后作业:要求学生通过课上所学内容,自行解决一道较为复杂的实际问题,并写出解题过程和步骤。
教学反思:通过以上教学过程,学生可以全面掌握分析法数学的基本概念、原理和应用方法,通过实际问题的解决,提高了学生的问题分析和解决能力,进一步增强了他们的数学应用能力和实践能力。
在今后的教学中,可以结合更多的实际问题,进一步引导学生灵活运用分析法数学解决不同类型的问题,培养他们的数学思维和创新能力。
人教版高中数学选修2-2学案:2.2.1综合法和分析法
2.2.1综合法和分析法【学习目标】1.了解直接证明的两种基本方法:分析法和综合法;2.了解分析法和综合法的思考过程、特点.【新知自学】新知梳理:1.综合法:(1)一般地,利用,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法. (2)框图表示:(3)要点:顺推证法,由____导_____.2.分析法(1)一般地,从要证明的 出发,逐步寻求使它成立的 ,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.(2)框图表示(3)要点:逆推证法;执____索_____. 对点练习:确的有( )A .2个B .3个C .4个D .5个2.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b3.求证:对于任意角θ,44cos sin cos 2θθθ-=.4.求证3526【合作探究】典例精析:例1. 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.变式练习:设在四面体P ABC -中,090=∠ABC , PA=PB=PC,D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.例2. 在四面体S ABC -中,,SA ABC AB BC ⊥⊥面,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证AF SC ⊥.变式练习:已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.规律总结:用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论. (2)分析法证题的一般规律分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.【课堂小结】【当堂达标】1.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足________.2. 设23451111log 11log 11log 11log 11P =+++,则( ) A .01P << B .12P << C .23P << D .34P << 3.求证3725<4.已知a ,b ,c 是全不相等的正实数,求证:3b c a a c b a b c a b c+-+-+-++>.【课时作业】1. 如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a < C .5481a a a a +>+ D .5481a a a a =2.若关于x 的不等式22133(2)(2)22x x k k k k --+<-+的解集为1(,)2+∞,则k 的范围是____ .3.设,a b R +∈,且a b ≠,求证:3322a b a b ab +>+5.已知m >0,a ,b ∈R ,求证:⎝⎛⎭⎫a +mb 1+m 2≤a 2+mb21+m .6.设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1. 求证:f(0)=1,且当x<0时,有f(x)>1.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321AC1FDAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠F AE=45°,求证:EF=BE+DF45°DBa+b-aa 45°A BE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠F AE=45°DBa+b-aa 45°A BEa+bx-aa 45°D Ea +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°. (1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.AB CFEDCDC。
人教A版高中数学选修2-2课件高三:2.2.1综合法和分析法之分析法.pptx
Q P1
P1 P2
P2 P3
…
得到一个明显 成立的结论
也可以是经过 证明的结论
例:已知数列{an}的通项an>0,(n∈N*),它
的前n项的和记为sn,数列{s2n}是首项为3, 公差为1的等差数列.(1)求an与sn的解析 式;(2)试比较sn与3nan(n∈N*),的大小.
作业:P102 A组4,B组3
只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
C
B
因为:SA⊥平面ABC成立 所以.AF⊥SC成立
例.
已知α,β≠
kπ+π(k 2
Z),且
sinθ+ cosθ= 2sinα
sinθgcosθ= sin2β
求证:
1 - tan2α = 1 - tan2β . 1 + tan2α 2(1 + tan2β)
所以成a 立+ b 2
ab
一般地,从要证明的结论出发,逐步寻求 推证过程中,使每一步结论成立的充分条 件,直至最后,把要证明的结论归结为判 定一个明显成立的条件(已知条件、定理、 定义、公理等)为止,这种证明的方法叫
做分析法.
特点:执果索因.
用框图表示分析法的思考过程、特点.
得到一个明显
Q P1
P1 P2
P2 P3
…
成立的结论
例:设a,b,c为一个三角形的三
边,且s2=2ab,s = 1(a + b + c),
2
试证s<2a
例:如图,SA⊥平面ABC,AB⊥BC,过A作SB
的垂线,垂足为E,过E作SC的垂线,垂足
北师大版高中数学选修2-2第一章第2节《综合法与分析法》课件(灵璧一中 裴恒永)
明格式为:因为×××,所以×××,所以××ׄ„
所以×××成立. 2.分析法证明问题时,是从“未知”看“需知”,执 果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立 的充分条件.它的证明格式:要证×××,只需证
×××,只需证×××……因为×××成立,所以
×××成立.
[例 1]
1 1 已知 a,b 是正数,且 a+b=1,求证:a+b≥4.
2 0 ≤ ( a b ) 只要证
a b 2 ab ≥ 0 a b ≥ 2 ab ab ≥ 2 ab
因为最后一个不等式成 立,故结论成立。
综合法
分析法
表达简洁!
目的性强,易于探索!
1.综合法是从“已知”看“可知”逐步推向未知,由 因导果通过逐步推理寻找问题成立的必要条件.它的证
已知
1 1 x>0,y>0,x+y=1,求证:1+x 1+y ≥9.
【精彩点拨】 证明.
解答本题可由已知条件出发,结合基本不等式利用综合法
【自主解答】 1 所以 xy≤ . 4
法一:因为 x>0,y>0,1=x+y≥2 xy,
1 1 1 1 1 所以 1+x 1+y =1+x +y +xy
8 7 5 10.
8 7 5 10,
( 8 7 )2 ( 5 10)2 .
8 7 2 56 5 10 2 50.
.
只需证 2 56 2 50,即56 50. 故不等式成立. 注:从求证的结论出发,逐步寻求使结论成立的条件。
分析法
(1)含义:从求证的 结论 出发,一步一步地探索保证 前一个结论成立的 充分条件 ,直到归结为这个命题的 条件 ,或者归结为 定义、公理、定理 等.这种证明问 题的思维方法称为分析法(又称倒推证法).
高中数学选修2-2精品课件10:2.2.1 综合法和分析法
例 3:(1)△ABC 的三个内角 A、B、C 成等差数列,A、B、 C 的对边分别为 a、b、c.求证:a+1 b+b+1 c=a+3b+c.
(2)已知函数 f(x)=tanx,x∈0,2π,若 x1、x2∈0,π2,且 x1≠x2.求证:12[f(x1)+f(x2)]>fx1+2 x2.
【解析】(1)条件与结论跨越较大,不易下手,可考虑 用分析法证明;由于分析法是执果索因,逐步寻找使 结论成立的充分条件,因此分析法的逆过程就是综合 法. (2)原结论直接证明不易入手,可用分析法化弦探索.
题型二:分析法的应用
例2:如图,SA⊥平面ABC,AB⊥BC,过点A作SB的垂 线,垂足为点E;过点E作SC的垂线,垂足为F. 求证:AF⊥SC.
证明:要证AF⊥SC,而EF⊥SC, 故只需证SC⊥平面AEF,只需证AE⊥SC,而AE⊥SB, 只需证AE⊥BC,而AB⊥BC, 故只需证BC⊥平面SAB,只需证BC⊥SA. 由SA⊥平面ABC可知,SA⊥BC,即上式成立. 所以AF⊥SC成立.
由余弦定理,有 b2=c2+a2-2cacos 60°, 得 c2+a2=ac+b2, 等式两边同时加上 ab+bc 得 c(b+c)+a(a+b)=(a+b)(b+c), 等式两边同除以(a+b)(b+c)得,a+c b+b+a c=1, ∴a+c b+1+b+a c+1=3, 即a+1 b+b+1 c=a+3b+c.
证明:(1)分析法: 要证a+1 b+b+1 c=a+3b+c, 即证a+a+b+b c+a+b+b+c c=3, 也就是a+c b+b+a c=1, 只需证 c(b+c)+a(a+b)=(a+b)(b+c), 需证 c2+a2=ac+b2,
又△ABC 三内角 A、B、C 成等差数列,故 B=60°, 由余弦定理,有 b2=c2+a2-2accos60°,即 b2=c2+a2-ac, 故 c2+a2=ac+b2 得证. 综合法: 证明:∵△ABC 三内角 A、B、C 成等差数列, ∴B=60°.
推荐-高中数学人教B版选修2-2课件2.2.1 综合法与分析法(1)
−
1 ������������-1
=
13.
∴
1 ������������
是首项为1,公差为
1 3
的等差数列.
目标导航 题型一 题型二 题型三
知识梳理
重难聚 焦
典例透析 随堂演练
反思 应用综合法证明问题是从已知条件出发,经过逐步地运算和 推理,得到要证明的结论,并在其中应用一些已经证明的或已有的 定理、性质、公式等.综合法的特点是:从已知看可知,再由可知逐 步推向未知,其逐步推理,实际上是寻找它的必要条件.步骤可以归 结为P0(已知)⇒P1⇒P2⇒P3⇒…⇒Pn(结论).
求得
������
=
5 2
.
故选B.
答案:B
12345
目标导航
知识梳理
重难聚 焦
典例透析 随堂演练
4已知三棱锥S-ABC的三视图如图所示,在原三棱锥中给出下列命
题:
①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.
其中正确的命题是
.(填序号)
12345
目标导航
知识梳理
重难聚 焦
典例透析 随堂演练
分析:本题要求证明数列为等差、等比数列,思路是用定义证明,
所以恰当的处理递推关系是关键.
目标导航 题型一 题型二 题型三
知识梳理
重难聚 焦
典例透析 随堂演练
证明:(1)由(3-m)Sn+2man=m+3,得
(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,m≠-3,∴
目标导航 题型一 题型二 题型三
知识梳理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高中数学选修2-2《分析法》教学
案例精品版
人教版高中数学(选修2-2)《分析法》教学案例本节课的教学课题是:人民教育出版社出版的普通高中课程标准实验教科书《数学(选修2-2)》,第二章“2.2.1综合法和分析法”中“分析法”的第一课时。
一、设计要点
本教案在挖掘教材中的创新因素和蕴涵的数学思想方法的基础上,以“创设情境、切入主题、感受新知、合作交流、尝试练习、感悟探究、综合提高、回顾小结”为基本教学过程,通过揭示知识的发现和发生过程,使学生在掌握分析法的同时,体验有关的数学思想,提高观察与交流、分析与解决问题的能力,培养“用数学”的意识和合作意识。
二、教学目标
1.知识与技能:结合数学实例,了解用分析法思考问题的过程和特点,对分析法的有一个较完整的认识;
2.过程与方法:通过学习分析法,掌握探索和分析问题的基本方法,培养思维的灵活性和深刻性,提高分析问题、解决问题的能力,提高观察、交流能力和发散性思维能力;
3.情感、态度与价值观:体会数学证明的特点,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,激发勇于探索、创新的精神,磨练意志品质。
三、教学重点、难点、关键
1.重点:(1)了解分析法的思考过程和特点;
(2)运用分析法证明数学问题。
2.难点:对分析法的思考过程和特点的概括。
3.关键:展现知识的内在联系,启发学生思考、探索。
四、教学方法
启发式与探究式相结合
五、教学过程
1.创设情境
教师请全体学生一起完成如下填空。
已知:如图,SA⊥平面ABC,AB⊥BC,D为直线BS上一点,求证:BC⊥AD
证明:∵SA⊥平面ABC
∵BC⊂平面ABC
∴(___________________)
∵(___________________)
∴BC⊥平面SAB
∵点D在直线BS上
∴AD⊂平面SAB
∴BC⊥AD
教师教学时注意知识点拨:综合法表述形式:因为…,所以…;综合法思维过程:由因导果;综合法推理特点:顺推。
并通过思路分析启发学生产生新的
证明思路和方法。
思路分析:
要证BC⊥AD
只需证BC⊥平面SAB( ∵______________)
只需证BC⊥SA( ∵____________________)
由SA⊥平面ABC知上式成立
∴BC⊥AD成立
设计意图:利用立体几何问题创设情境,既使学生自然地融入情境之中,又拓展了分析法的知识背景。
让学生通过综合法的证明及思路分析,从数学问题本身探究新的思维方法,温故知新,体验新旧知识的密切联系,激发探索的热情。
2.切入主题
一般地, 从要证明的结论出发, 逐步寻找使它成立的充分条件, 直至最后, 把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等), 这种证明方法叫做分析法.
用Q 表示要证明的结论,则分析法可用框图表示如下:
表述形式:要证命题Q 成立,
只需证命题P 1 成立,
只需证命题P 2 成立,
……
只需证命题P 成立,
已知P 成立,
所以Q 成立.
教师教学时应强调当已知条件和结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件的方法,也就是分析法。
3.感受新知
例1.求证:5273<+
教师和学生一起分析要证明的不等式,并发现已知条件和结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体,用综合法证明比较困难,可尝试用分析法证明。
然后根据分析法的证明过程,用综合法完成证明。
分析法证明过程中,要强调不等式两边同时平方,两边都为正数时,不等号方向不变,两边都为负数时,不等号方向改变。
设计意图:通过师生合作,可增进师生之间的交流。
例1虽然简单,但通过证明过程,可让学生体验分析法的思维过程、推理特点和表述形式,并通过要求书写规范,可以培养学生好的答题习惯。
授之以渔,让学生认识特殊到一般和一般到特殊的辨证思想。
4.合作交流
教师请学生通过分组讨论的形式,比较例1两种证明方法的思维过程、推理特点及表述形式,完成如下表格。
填表:
设计意图:表格的形式增强了对比性,可让学生印象更深刻。
通过分组讨论,合作交流,可提高学生学习数学的主观能动性,并培养学生归纳、概括的能力,以及团队精神。
5.尝试练习
求证:7632-<-
设计意图:通过适当的变形,及时巩固所学,并培养学生发现问题,解决问题的能力,体现用数学的理念,更让学生体验成功的乐趣。
6.感悟探究
__________
)36()72)(4()73()62)(3()76()32)(2()76()32)(1(76322
2222
22
2以上真命题的序号为,只需证
探究:要证+<+->-->--<--<-
试比较哪种方法更简便?
设计意图:引导学生发现解决问题方法的多样性,并通过比较,发现利用
(4)证明的过程更为简便,更可引导学生发现“2+7=6+3”的对称美,增加课堂的趣味性,激发学生学习数学的热情。
另外,除了上述方法之外,还可引导学生利用分子有理化的方法进行证明。
7632求证:-<-
7632-<-证明:要证
76)76)(76(32)32)(32(++-<++-只需证
7
61321+-<+-只需证
)32()76(+-<+-只需证
3276+>+只需证
成立37,26>>
成立3276+>+∴
原不等式成立
∴ 设计意图:适当的提高可激发学生的求知欲和思维的积极性,拓展学生的思维空间,培养学生的创新意识和实践能力。
7.综合提高
例2.已知0,0>>b a ,求证:1122++≤+b a b a
例3.tan sin tan sin tan sin tan sin αααααααα
+=-求证:
设计意图:通过例2巩固利用分析法证明不等式的知识,通过例3利用分析法证明等式,让学生体验分析法应用的广泛性,及其与其他数学知识(如三角公式)联系的紧密性,沟通了知识的内在联系,深化学生的认知,使学生明确,牢固掌握基础知识是灵活应用分析法解决问题的前提。
8.回顾小结
问题:本节课的收获是什么?
设计意图:通过开放式小结,及时了解学生的学习状况,培养学生的发散性思维和学习的主动性,增强学生的语言表达能力。
六.教学反思
教是为了达到不教。
本节课通过引导学生从现有的知识和经验出发,从知识的归纳进一步延伸到思想方法的提炼,从概念的认知到技巧方法的掌握,把数学学习作为提高学生数学素养和文化水平的有效途径。