AMOS结构方程模型修正解析
结构方程模型与AMOS使用
二、路径分析的数学模型
x
y1
y2
变量之间的关系:直接、间接、全部(直接和间接) 模型中的变量: 有的变量不受模型内任何变量的影响,只影响其他变量 有的变量既受其它变量影响,又影响其它变量
02
非递归式模型:
A B:A可能影响B,B也可能影响A
独立变量与非独立变量之间的关系,回归系数用 表示(只有箭头出)。 非独立变量之间的关系,回归系数用 表示(箭头有进,或有进有出)。
11
21
x1
31
21
31
32
y1
y2
y3
2
1
3
11
21
x1
2. 变量之间的关系分为两类
i,ij和j是待估的回归系数 i 是残差,表示了变量 yi 的随机误差或模型外的其它变量对 yi 的总体影响。
要求可测变量为连续变量且服从多元正态分布。在大样本(n>200)情况下,该估计的分布近似正态分布。 该估计不受量纲影响。
(2)广义最小二乘法
要求可测变量服从正态分布 大样本情况下,与最大似然估计法的结果很接近。 不受量纲影响
(3)非加权最小二乘法
不要求可测变量总体服从正态分布。 试图使∑中的每个元素与S中对应的元素差距最小。 受量纲影响 不能对参数进行假设检验
假设条件
三、验证性因子分析模型的 基本要素
01.
因子载荷矩阵;
添加标题
02.
潜在变量之间的方差协方差矩阵;
添加标题
03.
误差项的方差协方差矩阵
添加标题
AMOS结构方程模型分析
AMOS结构方程模型分析AMOS(Analysis of Moment Structures)是一种常用的结构方程模型(SEM)分析软件,可用于研究各种不同领域的问题和假设。
SEM是一种统计方法,用于测试和量化复杂的因果关系假设,以及评估模型拟合优度。
本文将介绍AMOS的基本原理、应用案例和分析步骤。
AMOS的基本原理是使用路径图表示模型中的因果关系,然后通过最小二乘估计法对模型进行参数估计。
AMOS还可以用来评估模型拟合度、进行模型比较,以及检验模型中的因果关系。
一个常见的应用案例是研究变量之间的因果关系。
例如,一个研究者可能想要了解自尊对学术成绩的影响。
在这种情况下,自尊是自变量,学术成绩是因变量。
通过收集数据,研究者可以使用AMOS来构建一个模型,来评估这两个变量之间的因果关系,并确定自尊对学术成绩的影响。
使用AMOS进行结构方程模型分析的步骤如下:1.确定研究目的和问题:首先,需要明确研究的目的和问题,确定需要评估的模型。
2.收集数据:根据研究问题,需要收集相关的数据。
数据可以是自己收集的,也可以是从其他研究中获取的。
3.确定模型的变量和参数:根据研究问题和收集到的数据,需要确定模型中的变量和参数。
变量可以是观察变量(直接测量)或潜变量(隐性构念)。
参数可以是路径系数、截距、测量误差等。
4.构建路径图:使用AMOS的图形界面,根据模型的变量和参数,构建路径图。
路径图可以直观地展示变量之间的因果关系。
5.估计模型参数:根据收集到的数据,使用最小二乘估计法对模型参数进行估计。
AMOS会自动计算最优参数估计和拟合度指标。
6.评估模型拟合度:使用拟合度指标(如X2统计量、均方差逼近指数、规范化拟合指数等),评估模型的拟合度。
较小的X2值、较大的均方差逼近指数和规范化拟合指数表示模型拟合度较好。
7.进行模型修正:如果模型的拟合度不满足要求,可以通过增加、删除或修改模型的路径和变量,进行模型修正。
8.进行统计推断:使用AMOS进行统计推断,来确定模型中的因果关系是否显著。
使用AMOS解释结构方程模型
使用AMOS解释结构方程模型结构方程模型(SEM)是一种统计模型,在社会科学研究中经常使用。
它可以用来分析变量之间的复杂关系,并评估这些关系的强度和方向。
AMOS是一种流行的结构方程模型软件,通过图形用户界面提供了易于使用的界面。
在结构方程模型中,我们通常将变量分为两类:观察变量和潜在变量。
观察变量是直接可测量的变量,而潜在变量是不能直接测量的变量,它们通过观察变量的指标进行测量。
结构方程模型的目标是评估潜在变量之间的关系以及它们与观察变量之间的关系,并给出这些关系的显著性。
AMOS的使用步骤通常包括以下几个步骤:1.指定模型:在AMOS中,可以使用图形界面直观地指定结构方程模型。
可以使用不同的图形符号表示观察变量、潜在变量和它们之间的关系。
在此过程中,也可以指定约束、修正指标和错误项等。
2.估计参数:通过最大似然方法或最小二乘法,可以估计模型的参数。
最大似然方法假设数据是从特定的分布中随机抽取的,而最小二乘法假设变量之间的关系是线性的。
参数估计后,可以得到模型的适应度指标,如拟合度、标准化拟合度指标等。
3.模型拟合度:模型拟合度指标可以用来评估模型与数据之间的一致性。
可以使用不同的拟合度指标,如卡方拟合度、比率拟合度、均方根残差等来评估模型的拟合度。
一般来说,拟合度指标的数值越接近1,表示模型与数据之间的一致性越好。
4.异常值和不良拟合指标:在AMOS中,也可以检查是否存在异常值和不良拟合指标。
异常值是指不符合模型假设的数据点,而不良拟合指标是指模型与数据之间的不相符点。
5.修改模型:如果模型与数据之间的拟合度不理想,可以修改模型以提高拟合度。
可以尝试添加或删除路径、重新指定变量间的关系、修复测量误差等。
通过AMOS软件,我们可以进行多个结构方程模型的比较、多组模型的比较以及计算不同变量之间的路径系数和直接效应。
此外,AMOS还提供了可视化工具,如路径图和直观的拟合度统计图,以帮助用户更好地理解和解释模型。
AMOS操作讲解
Amos软件操作1.模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos软件进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
2.模型构建的思路根据构建的理论模型,通过设计问卷对留学生学习汉语的学习动机、学习策略和焦虑调查得到实际数据,然后利用对缺失值进行处理后的数据进行分析,并对文中提出的模型进行拟合、修正和解释。
3.潜变量和可测变量的设定模型中共包含2个因素(潜变量):学习动机、学习策略,7个可测变量:融入型动机、工具型动机、焦虑、记忆策略、认知策略、情感策略和社交策略。
4.关于调查数据的收集本次问卷调研的对象为不同国家的留学生5.缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。
数据的的信度和效度检验1).数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。
一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。
稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。
如果问卷设计合理,重复测量的结果间应该高度相关。
由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。
Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表进行内部一致性估计。
2).数据的效度检验效度(validity)指测量工具能够正确测量出所要测量的特质的程度,分为内容效度(content validity)、效标效度(criterion validity)和结构效度(construct validity)三个主要类型。
内容效度也称表面效度或逻辑效度,是指测量目标与测量内容之间的适合性与相符性。
AMOS结构方程模型解读
AMOS结构方程模型解读AMOS是一种统计分析工具,用于构建和评估结构方程模型(SEM)。
结构方程模型是一种多变量统计模型,用于研究变量之间的因果关系。
AMOS通过图形界面和最大似然估计方法,帮助研究人员对结构方程模型进行建模、分析和解释。
在利用AMOS进行结构方程模型分析时,首先需要明确研究目的,确定模型的理论基础和构建逻辑。
然后,根据理论框架和变量之间的关系,绘制出模型图。
模型图可以使用AMOS的绘图工具进行绘制,它能够清晰展示变量之间的因果关系。
在模型图绘制完成后,需要进行模型估计。
AMOS使用最大似然估计方法来对模型进行拟合,估计模型中的参数值。
AMOS通过计算各个路径系数的标准误差、置信区间和显著性水平,来评估模型的拟合程度,判断模型对实际数据的拟合优度。
拟合指标是评估模型拟合度的重要指标之一、AMOS提供了多种拟合指标,包括卡方拟合指数(χ²),比较度指数(CFI)、均方根误差逼近度(RMSEA)等。
这些指标可以告诉研究人员模型是否拟合得良好,是否能够解释变量之间的关系。
在解释模型结果时,需要注意各个路径系数的显著性,判断变量之间的关系是否具有统计学意义。
AMOS会给出路径系数的显著性水平,通常使用α=0.05作为显著性水平进行判断。
如果路径系数的显著性水平小于0.05,说明该路径系数具有统计学意义,反之则没有统计学意义。
此外,在模型结果解释时,还需要考虑到模型的解释力和预测力。
解释力是指模型对变量之间关系的解释程度,包括直接效应和间接效应。
预测力是指模型对未来数据的预测能力,通过模型估计出的参数值,可以用于预测变量的取值。
总之,利用AMOS进行结构方程模型的构建和评估,需要明确研究目的,绘制模型图,估计模型参数,评估模型拟合度和解释模型结果。
使用AMOS可以帮助研究人员深入了解变量之间的关系,为决策提供有力的支持。
AMOS结构方程模型解读
Variances: (Group number 1 - Default model)
M.I. Par Change
Regression Weights: (Group number 1 - Default model)
(内定模型)的自由度计算:21 "样本矩"是6个观测变量的6个样本方差 加上15个协方差构成(也就是6中取2的组合数)。15个参数是模型的6 个回归系数和9个被估计的方差。样本矩与估计参数的差为6个自由度。
(内定模型)迭代过程:极大似然估计是一个迭代过程。这里给出迭代 历史。这个输出是可选的,你不必直接使用它。 基本上没有什么用。
.043 20.577 ***
.431 12.370 ***
Label par_6 par_4 par_5 par_1
par_2
par_3
回归系数是模型中带箭头的路径系数。为了识别模型,部分系数在模型
识别中已固定为1 (例如,潜变量67疏离感到观测变量67无力感的路径)。 也给出路径系数的标准误。"C.R." 是临界比,它是回归系数的估计值除 以它的标准误(- 0.614 / 0.056 = - 10.912 )。临界比与原假设有关,在 这个案例中对67疏离感和社会经济地位的原假设是回归系数为 0。如果 我们处理近似标准正态分布的随机变量,在 0.05 的显著性水平上,临 界比估计的绝对值大于 1.96 称之为显著。这样67疏离感和社会经济地 位的回归系数 -10.912 的绝对值大于 1.96,可以说这个回归系数在 0.05 显著性水平上显著地不等于 0 。P 值给出检验原假设总体中参数 是 0 的近似双尾概值。它表示67疏离感和社会经济地位的回归系数显 著地不等于 0,p=0.001。P 值的计算假定参数估计是正态分布,它只 是对大样本正确。
AMOS结构方程模型解读
Regression Weights: (Group number 1 - Default model)
Estimate
67_alienation <---
ses
-.614
71_alienation <--- 67_alienation .705
71_alienation <---
ses
-.174
powles71 <--- 71_alienation .849
Variances: (Group number 1 - Default model)
M.I. Par Change
Regression Weights: (Group number 1 - Default model)
如果不服从正态分布,卡方统计量会更多地拒绝真实模型。不过好在 ML估计比较稳健,所以即使违背了正态分布的假定,模型也能对付着 用。
Maximum Likelihood Estimates
SEM使用最大似然法估计模型,而不是通常的最小二乘法。OLS 寻找
数据点到回归线距离的最小平方和。MLE寻找最大的对数似然,它反映 从自变量观测值预测因变量观测值的可能性有多大。
anomia71 <--- 71_alienation 1.000
powles67 <--- 67_alienation .888
anomia67 <--- 67_alienation 1.000
educatio <---
ses
1.000
SEI
<---
ses
5.331
S.E. C.R. P .056 -10.912 *** .053 13.200 *** .054 -3.213 .001 .042 20.427 ***
amos结构方程模型结果解读
结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,适用于探究变量之间的直接和间接关系。
在这篇文章中,我们将对amos软件中的结构方程模型结果进行解读,以便更好地理解研究中所使用的模型和数据。
1. 模型拟合度分析在进行结构方程模型分析时,首先需要对模型的拟合度进行评估,以确定模型是否能够较好地拟合数据。
在amos中,常用的拟合度指标包括χ²值、df值、χ²/df比值、RMSEA、CFI和TLI等。
这些指标可以帮助我们判断模型的适配程度,通常情况下,χ²/df比值小于3、RMSEA值小于0.08、CFI和TLI值大于0.90则表示模型的拟合度较好。
2. 变量间关系分析在确定模型的拟合度较好之后,接下来需要分析变量之间的直接和间接关系。
结构方程模型能够同时考虑观测变量和潜在变量之间的关系,从而更全面地分析变量之间的影响。
在amos中,我们可以查看路径系数(path coefficient)和标准化间接效应值(standardized indirect effect)来了解变量之间的关系强度和方向。
3. 因果关系验证结构方程模型可以用于验证因果关系,即确定一个变量是否能够直接或间接地影响另一个变量。
在amos中,我们可以通过观察路径系数的显著性水平和间接效应值的大小来判断变量之间的因果关系。
通过验证因果关系,我们可以更深入地理解变量之间的作用机制。
4. 模型修正与改进在对结构方程模型的结果进行初步解读后,我们还可以进一步对模型进行修正与改进,以提高模型的拟合度和解释力。
通过添加或删除路径、改进测量模型、引入中介变量等方式,可以进一步优化模型的结构和效果。
在amos中,我们可以使用模型修改指数(modification indices)来指导模型的修正与改进。
5. 结果解释与实际意义对结构方程模型的结果进行解释与实际意义的探讨非常重要。
AMOS结构方程模型修正经典案例
AMOS结构方程模型修正经典案例第一节模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos7软件1进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
一、模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模型,并以此构建潜变量并建立模型结构。
根据构建的理论模型,通过设计问卷对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理后的数据2进行分析,并对文中提出的模型进行拟合、修正和解释。
二、潜变量和可测变量的设定本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加超市形象。
它包括顾客对超市总体形象及与其他超市相比的知名度。
它与顾客期望,感知价格和顾客满意有关,设计的模型见表7-1。
模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量(Eugene W. Anderson & Claes Fornell,2000;殷荣伍,2000)。
2.1、顾客满意模型中各因素的具体范畴1本案例是在Amos7中完成的。
2见spss数据文件“处理后的数据.sav”。
参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄别调查的结果,模型中各要素需要观测的具体范畴,见表7-2。
三、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
问卷内容包括7个潜变量因子,24项可测指标,3正向的,采用Likert10级量度从“非常低”到“非常高”本次调查共发放问卷500份,收回有效样本436份。
amos结构方程结果解读
amos结构方程结果解读
Amos 是一个用于结构方程模型分析的软件,它可以用于探究变量之间的关系,特别是在地理空间分析领域。
当使用 Amos 进行结构方程模型分析时,输出结果会包括一些参数和信息,这些参数和信息可以帮助我们更好地理解模型,以及确定模型是否拟合良好。
以下是Amos 输出结果的一些参数和信息:
1. Outputpath diagram:在 Outputpath diagram 模块中,可以查看模型的非标准化结果和标准化结果。
非标准化结果表示模型中的变量和残差,而标准化结果则表示变量之间的回归系数的 R 方。
这些结果可以帮助我们了解变量之间的因果关系和权重大小。
2. Amos Output:在 Amos Output 模块中,可以查看模型的分析摘要和其他详细信息。
分析摘要包括模型的时间、标题和其他相关信息。
其他详细信息包括模型的拟合指数、变量总结和备注等信息,这些信息可以帮助更好地理解模型。
3. Notes for Group:在 Notes for Group 模块中,可以查看模型的备注。
这些备注包括模型的类型、内生变量间的因果关系、样本大小等信息,这些信息可以帮助更好地理解模型。
4. Variable Summary:在 Variable Summary 模块中,可以查看模型中的变量总结。
这些总结包括变量的类型、观测变量和内生变量等信息,这些信息可以帮助更好地理解模型中的变量。
通过以上参数和信息,我们可以更好地理解 Amos 输出的结果,从而更好地评估模型拟合度和确定模型的研究方向。
amos结构方程结果解读
amos结构方程结果解读
结构方程模型(Structural Equation Modeling, SEM)是一种
统计分析方法,用于探索变量之间的因果关系。
Amos是一种常用的
结构方程建模软件,可以用来估计和验证结构方程模型。
Amos的结构方程结果包括路径系数、标准误、t值和p值等。
路径系数表示变量之间的关系强度和方向,标准误表示路径系数的抽样误差,t值表示路径系数显著性检验的结果,p值表示路径系数是否显著。
解读Amos结构方程结果时,首先要关注路径系数。
路径系数的正负
值表示变量之间的正向或负向关系,数值越大表示关系强度越大。
如果路径系数为0,则表示两个变量之间没有直接关系。
其次要关注标准误和t值。
标准误表示路径系数的抽样误差,数值越小表示结果越稳定。
t值表示路径系数的显著性检验结果,一般认为当t值大于1.96时,路径系数是显著的(p < 0.05)。
最后要关注p值。
显著性检验的p值表示路径系数是否显著。
当p值小于0.05时,表示路径系数显著;当p值大于0.05时,表示路径系数不显著。
除了路径系数,Amos还可以提供模型拟合度指标,如卡方值、自由
度、适配度指数(如比较拟合指数CFI、规范化拟合指数NFI等)等。
这些指标用于评估构建的模型与观测数据的拟合程度。
通常情况下,较小的卡方值、较大的适配度指数表示模型的拟合度较好。
对于Amos结构方程结果的解读,需要综合考虑路径系数、标准误、t 值、p值以及模型拟合度指标等多个因素。
通过对这些结果的综合分析,可以得出结论并进行进一步解释和讨论。
AMOS结构方程模型修正解析
图-1 正指数计算
二、修正指标
2. 临界比率(Critical Ratio)
临界比率用于模型限制,是计算模型中的每一 对待估参数(路径系数或载荷系数)之差,并 除以相应参数之差的标准差所构造出的统计量。 在模型假设下,CR统计量服从正态分布,所以 可以根据CR值判断两个待估参数间是否存在显 著性差异。若两个待估参数间不存在显著性差 异,则可以限定模型在估计时对这两个参数赋 以相同的值。 若要使用临界比率,需要在Analysis Properties中的Output项选择Critical Ratio for Difference项(如图-2)。
当模型效果很差时,研究者可以根据初始模型的参数显著性结果和Amos提供的模 型修正指标进行模型扩展(Model Building)或模型限制(Model Trimming)。 模型扩展是指通过释放部分限制路径或添加新路径,使模型结构更加合理,通常在 提高模型拟合程度时使用;模型限制是指通过删除或限制部分路径,使模型结构更 加简洁,通常在提高模型可识别性时使用。
三、案例简要
设计的结构路径图 基本路径假设
.
超市形象
超市形象对质量期望有路径影响 质量期望对质量感知有路径影响
顾客抱怨
质量感知对感知价格有路径影响
质量期望对感知价格有路径影响 感知价格对顾客满意有路径影响
质量期望
感知价值 质量感知
顾客满意
顾客满意对顾客忠诚有路径影响 超市形象对顾客满意有路径影响
顾客忠诚
超市形象对顾客忠诚有路径影响
表-1设计的结构路径图和基本路径假设
三、案例简要
2.1.顾客满意模型中各因素的具体范畴
参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄 别调查的结果,模型中各要素需要观测的具体范畴,见表-2。
最新AMOS结构方程模型修正
2.潜变量和可测变量的设定
本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加 超市形象。它包括顾客对超市总体形象及与其他超市相比的知名度。它与顾客 期望,感知价格和顾客满意有关,设计的模型见表-1。 模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、 顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是 结果变量,前提变量综合决定并影响着结果变量。
结构方程模型修正
Structural Equation Modeling
主讲:王东峰
摘要
2.修正指标
4.案例修正
1.修正思路
3.案例摘要
5.最优展示
一、修正思路
模型拟合指数和系数显著性检验固然重要,但对于数据分析更重要的是模型结论一 定要具有理论依据,换言之,模型结果要可以被相关领域知识所解释。因此,在进 行模型修正时主要考虑修正后的模型结果是否具有现实意义或理论价值,当模型效 果很差时可以参考模型修正指标对模型进行调整。
可测变量 某超市总体形象的评价(a1) 与其它超市相比的形象(a2) 与其它超市相比的品牌知名度(a3) 购物前,对某超市整体服务的期望(a4) 购物前,期望某超市商品的新鲜程度达到的水平(a5) 购物前,期望某超市营业时间安排合理程度(a6) 购物前,期望某超市员工服务态度达到的水平(a7) 购物前,期望某超市结账速度达到的水平(a8) 购物后,对某超市整体服务的满意程度(a9) 购物后,认为某超市商品的新鲜程度达到的水平(a10) 购物后,认为超市营业时间安排合理程度(a11) 购物后,认为某超市员工服务态度达到的水平(a12) 购物后,认为某超市结账速度达到的水平(a13) 您认为某超市商品的价格如何(a14) 与其他超市相比,您认为某超市商品的价格如何(a15) 对某超市的总体满意程度(a16) 和您消费前的期望比,您对某超市的满意程度(a17) 和您心目中的超市比,您对某超市的满意程度(a18)
AMOS结构方程模型修正经典案例
AMOS构造方程模型修正经典案例第一节模型设定构造方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos7软件1进展计算,阐述在实际应用中构造方程模型的构建、运算、修正与模型解释过程。
一、模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的根底上,提出了一个新的模型,并以此构建潜变量并建立模型构造。
根据构建的理论模型,通过设计问卷对某超市顾客购物效劳满意度调查得到实际数据,然后利用对缺失值进展处理后的数据2进展分析,并对文中提出的模型进展拟合、修正和解释。
二、潜变量和可测变量的设定本文在继承ASCI模型核心概念的根底上,对模型作了一些改进,在模型中增加超市形象。
它包括顾客对超市总体形象及与其他超市相比的知名度。
它与顾客期望,感知价格和顾客满意有关,设计的模型见表7-1。
模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量(Eugene W. Anderson & Claes Fornell,2000;殷荣伍,2000)。
1本案例是在Amos7中完成的。
2见spss数据文件“处理后的数据.sav〞。
表7-1 设计的构造路径图和根本路径假设2.1、顾客满意模型中各因素的具体畴参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小围甄别调查的结果,模型中各要素需要观测的具体畴,见表7-2。
表7-2 模型变量对应表三、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校的各类学生〔包括全日制本科生、全日制硕士和博士研究生〕,并且近一个月在校某超市有购物体验的学生。
调查采用随机拦访的方式,并且为防止样本的同质性和重复填写,按照性别和被访者经常光临的超市进展控制。
问卷容包括7个潜变量因子,24项可测指标,7个人口变量,量表采用了Likert10级量度,如对超市形象的测量:3正向的,采用Likert10级量度从“非常低〞到“非常高〞本次调查共发放问卷500份,收回有效样本436份。
amos模型修正
在输出的系数值方面,,Chi Square为956.207, p=0.000<0.05,显然模型与数据拟合度非常低。在输出报表 上,我们可以看到RMSEA=0.24>0.05,更证实了模型与数 据拟合度非常低。
在Modification Indices中,我们看到M.i.值最大的是 225.06,这是指:如果建立e6与e7的关联,将使Chi Square减少225.06
基于以上的了解,我们可以再建立一个 模型,称为模型B
模型B的输出报表如下
我们可以看出,Chi Square=6.383,比原先的 模型A减少了65.16。Probability level=0.271 已经不在拒绝区域之内。同时, RMSEA=0.02<0.05。所以我们可以了解,经 过修正之后的模型B是合理的可用于分析的模 型。同时,在修正指标的输出报表中,M.I. Par Change也没有数据显示,表示没有再调 整的必要。
在e4与e11建立关系后,所输出的报表如下。 RMSEA仍然维持在0.11.表示无进步空间。 而RMSEA=0.11>0.05,显然模型与数据不 配合。此时,此模型要重新修订。比较严 谨的做法是从问卷设计开始重新检查讨论。
在输出的报表中,M.I.值最大的是e8与服务质量的关系29.5。 但是要注意的是我们不能在误差与潜在变量之间建立关系, 因为如果在其建立关系就会违反SEM假设:残差与现在变 量无关。 所以要选第二大的数据,我们如果建立e4与e11之间的关系, 将使Chi Square减少15.95。
我们在e6和e7之间建立关系之后,所 得到的的输出如下。RMSEA=0.11, 显然有进步,但是仍然>0.05。
基于以上的了解我们可以再建立一个模型称为模型b模型b的输出报表如下我们可以看出chisquare6383比原先的模型a减少了6516probabilitylevel0271已经不在拒绝区域之内
AMOS结构方程模型解读
Regression Weights: (Group number 1 - Default model)
Estimate
67_alienation <---
ses
-.614
71_alienation <--- 67_alienation .705
71_alienation <---
ses
-.174
powles71 <--- 71_alienation .849
注释:设置的数值可以是1,也可以是其它数,这些数对回归系数 没有影响,但对误差有影响,在标准化的情况下,误差项的路径系数平 方等于它的测量方差。
3. 解释模型。
模型设置完毕后,在图形模式中点击工具栏中计算估计按钮 运
行分析。点击浏览文本按钮 是AMOS输出的一部分。
。输出如下。蓝色字体用于注解,不
Title
M.I. Par Change
eps2 <--> delta1 5.905 -.424
eps2 <--> eps4 26.545 .825
eps2 <--> eps3 32.071 -.988
eps1 <--> delta1 4.609
.421
M.I. Par Change eps1 <--> eps4 35.367 -1.069 eps1 <--> eps3 40.911 1.253
Variable Summary (Group number 1)
Your model contains the following variables (Group number 1)
Observed, endogenous variables anomia67 powles67 anomia71 powles71 educatio SEI Unobserved, endogenous variables 71_alienation 67_alienation Unobserved, exogenous variables eps1 eps2 eps3 eps4 ses delta1 zeta1 zeta2 delta2
AMOS结构方程模型解读
以上是标题,全是英文,自己翻译去吧,没有什么价值,一堆垃圾。
Notes for Group (Group number 1)
The model is recur
各组注释:Group number 1 是模型内定的模型名称,因为你还没有给模 型取名。它告诉你模型为递归模型,样本量为 932。
Variable Summary (Group number 1)
Your model contains the following variables (Group number 1)
Observed, endogenous variables anomia67 powles67 anomia71 powles71 educatio SEI Unobserved, endogenous variables 71_alienation 67_alienation Unobserved, exogenous variables eps1 eps2 eps3 eps4 ses delta1 zeta1 zeta2 delta2
方差的估计,标准误和临界比和P 值的解释同上。
用表格看数据总是让人眼花缭乱,还是看图示舒服些,这是上面表格数 字的图形显示。
Modification Indices (Group number 1 - Default model) Covariances: (Group number 1 - Default model)
C.R. P Label 10.379 *** par_7 10.967 *** par_8 9.623 *** par_9 11.186 *** par_10 11.242 *** par_11 9.443 *** par_12
AMOS结构方程模型修正经典案例DOC
AMOS结构方程模型修正经典案例第一节模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos7软件1进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
一、模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模型,并以此构建潜变量并建立模型结构。
根据构建的理论模型,通过设计问卷对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理后的数据2进行分析,并对文中提出的模型进行拟合、修正和解释。
二、潜变量和可测变量的设定本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加超市形象。
它包括顾客对超市总体形象及与其他超市相比的知名度。
它与顾客期望,感知价格和顾客满意有关,设计的模型见表7-1。
模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量(Eugene W. Anderson & Claes Fornell,2000;殷荣伍,2000)。
2.1、顾客满意模型中各因素的具体范畴1本案例是在Amos7中完成的。
2见spss数据文件“处理后的数据.sav”。
参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄别调查的结果,模型中各要素需要观测的具体范畴,见表7-2。
三、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
问卷内容包括7个潜变量因子,24项可测指标,3正向的,采用Likert10级量度从“非常低”到“非常高”本次调查共发放问卷500份,收回有效样本436份。
使用AMOS解释结构方程模型
AMOS输出解读惠顿研究惠顿数据文件在各种结构方程模型中被当作经典案例,包括AMOS 和LISREL。
本文以惠顿的社会疏离感追踪研究为例详细解释AMOS的输出结果。
AMOS同样能处理与时间有关的自相关回归。
惠顿研究涉及三个潜变量,每个潜变量由两个观测变量确定。
67疏离感由67无力感(在1967年无力感量表上的得分)和67无价值感(在1967年无价值感量表上的得分)确定。
71疏离感的处理方式相同,使用1971年对应的两个量表的得分。
第三个潜变量,SES(社会经济地位)是由教育(上学年数)和SEI (邓肯的社会经济指数)确定。
解读步骤1.导入数据。
AMOS在文件ex06-a.amw中提供惠顿数据文件。
使用File/Open,选择这个文件。
在图形模式中,文件显示如下。
虽然这里是预定义模式,图形模式允许你给变量添加椭圆,方形,箭头等元素建立新模型2.模型识别。
潜变量的方差和与它关联的回归系数取决于变量的测量单位,但刚开始谁知道呢。
比如说要估计误差的回归系数同时也估计误差的方差,就好像说“我买了10块钱的黄瓜,然后你就推测有几根黄瓜,每根黄瓜多少钱”,这是不可能实现的,因为没有足够的信息。
如何告诉你“我买了10块钱的黄瓜,有5根”,你便可以推出每根黄瓜2块钱。
对潜变量,必须给它们指定一个数值,要么是与潜变量有关的回归系数,要么是它的方差。
对误差项的处理也是一样。
一旦做完这些处理,其它系数在模型中就可以被估计。
在这里我们把与误差项关联的路径设为1,再从潜变量指向观测变量的路径中选一条把它设为1。
这样就给每个潜变量设置了测量尺度,如果没有这个测量尺度,模型是不确定的。
有了这些约束,模型就可以识别了。
注释:设置的数值可以是1,也可以是其它数,这些数对回归系数没有影响,但对误差有影响,在标准化的情况下,误差项的路径系数平方等于它的测量方差。
3.解释模型。
模型设置完毕后,在图形模式中点击工具栏中计算估计按钮运行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a5
<---
a4
<---
a6
<---
a7
<---
a8
<---
a10
<---
a9
<---
a11
<---
a12
<---
a13
<---
a18
<---
a17
<---
a15
<---
a14
<---
a16
<---
a24
<---
a23
<---
超市形象 质量期望 质量期望 质量感知 超市形象 超市形象 感知价格 超市形象 顾客满意 超市形象 超市形象 超市形象 质量期望 质量期望 质量期望 质量期望 质量期望 质量感知 质量感知 质量感知 质量感知 质量感知 顾客满意 顾客满意 感知价格 感知价格 顾客满意 顾客忠诚 顾客忠诚
内涵
可测变量
根据MARTENSEN在固定电话、移动电话、超市等行业中的调查研究,企业 形象是影响总体满意水平的第一要素,这里将超市形象要素列为影响因素, 可以从以下几个方面进行观测。
质量期望是指顾客在使用某超市产品前对其的期望水平。顾客的质量期望会 影响顾客价值,而且质量期望还会顾客感知造成影响.还有学者指出,对于顾 客期望要素,至少可以从整体感觉、个性化服务、可靠性三个方面来观测。 结合上述因素,可以从几个方面衡量对某超市的质量期望。
2.潜变量和可测变量的设定
本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加 超市形象。它包括顾客对超市总体形象及与其他超市相比的知名度。它与顾客 期望,感知价格和顾客满意有关,设计的模型见表-1。 模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、 顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是 结果变量,前提变量综合决定并影响着结果变量。
三、案例简要
图-7 建模区域的版式调整
图-8 建立潜变量
三、案例简要
图-9 潜变量命名
图-10 命名后的潜变量
三、案例简要
图- 11 设定潜变量关系
图-12 设定可测变量及残差变量
三、案例简要
图-13 可测变量指定与命名
图-14 初始模型设置完成
三、案例简要
图-15 数据配置 图-16 数据读入
表-1设计的结构路径图和基本路径假设
三、案例简要
2.1.顾客满意模型中各因素的具体范畴
参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄 别调查的结果,模型中各要素需要观测的具体范畴,见表-2。
潜变量 一超市形象
一质量期望
.
一质量感知
一感知价值 一顾客满意
一顾客抱怨
一顾客忠诚
图-1 修正指数计算
二、修正指标
2. 临界比率(Critical Ratio)
临界比率用于模型限制,是计算模型中的每一 对待估参数(路径系数或载荷系数)之差,并 除以相应参数之差的标准差所构造出的统计量。 在模型假设下,CR统计量服从正态分布,所以 可以根据CR值判断两个待估参数间是否存在显 著性差异。若两个待估参数间不存在显著性差 异,则可以限定模型在估计时对这两个参数赋 以相同的值。 若要使用临界比率,需要在Analysis Properties中的Output项选择Critical Ratio for Difference项(如图-2)。
结构方程模型修正
Structural Equation Modeling
主讲:王东峰
摘要
2.修正指标
4.案例修正
1.修正思路
3.案例摘要
5.最优展示
一、修正思路
模型拟合指数和系数显著性检验固然重要,但对于数据分析更重要的是模型结论一 定要具有理论依据,换言之,模型结果要可以被相关领域知识所解释。因此,在进 行模型修正时主要考虑修正后的模型结果是否具有现实意义或理论价值,当模型效 果很差时可以参考模型修正指标对模型进行调整。
1.024
0.058
1
1.16
0.065
0.758
0.068
1.101
0.069
0.983
0.067
1
1.039
0.034
1
0.972
0.127
1.009
0.033
1
1表.20-85 系数估计结0.果092
C.R. 6.68 7.633 3.722 -1.467 -0.07 21.389 -1.036 1.653 4.988
未标准化路径系数估计
S.E.
0.301
0.045
0.434
0.057
0.329
0.089
-0.121
0.082
-0.005
0.065
0.912
0.043
-0.029
0.028
0.167
0.101
0.5
0.1
1
1.008
0.036
0.701
0.048
1
0.79
0.061
0.891
0.053
1.159
0.059
质量感知和质量期望相对应,质量期望考虑的是在购买商品前的期望,质量 感知是在购买商品后的实际感受。可以从几个方面衡量。
根据ANDERSON和FOMELL(EUGENEW.ANDERSON&CLAESFOMELL, 2000)对美国顾客满意指数模型的进一步研究,认为对于顾客价值部分可以 从性价比来衡量。
Amos提供了两种模型修正指标,其中修正指数(Modification Index)用于模型 扩展,临界比率(Critical Ratio)用于模型限制。
二、修正指标
1. 修正指数(Modification Index)
修正指数用于模型扩展,是指对于模型中某个受限制 的参数,若容许自由估计(譬如在模型中添加某条路 径),整个模型改良时将会减少的最小卡方值。 使用修正指数修改模型时,原则上每次只修改一个参 数,从最大值开始估算。但在实际中,也要考虑让该 参数自由估计是否有理论根据。 若要使用修正指数,需要在Analysis Properties中的 Output项选择Modification Indices项(如图-1)。 其后面的Threshold for Modification Indices指的是 输出的开始值。
➢购物后,对某超市整体服务的满意程度(a9) ➢购物后,认为某超市商品的新鲜程度达到的水平(a10) ➢购物后,认为超市营业时间安排合理程度(a11) ➢购物后,认为某超市员工服务态度达到的水平(a12) ➢购物后,认为某超市结账速度达到的水平(a13)
➢您认为某超市商品的价格如何(a14) ➢与其他超市相比,您认为某超市商品的价格如何(a15)
1 质量期望 1
z2
1
e14 1
a14 1
1 感知价格
z3
e15 a15
e11 e21 e31 a1 1 a2 a3
超市形象
1
e17
a17
1
1
e16 1
a16 1 顾客满意
z4
e18
a18
1
e23 a23
1
1
e22 1
a22 1
顾客忠诚
z5
e24 a24
图-5 初始模型结构
图-6 Amos Graphics初始界面图
图-2 临界比率计算
三、案例简要
结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释 四个步骤。下面以一个研究实例作为说明,使用Amos7软件进行计算,重点阐 述在实际应用中结构方程模型的修正过程。
三、案例简要
1.模型构建的思路
本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模 型,并以此构建潜变量并建立模型结构。根据构建的理论模型,通过设计问卷 对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理 后的数据进行分析,并对文中提出的模型进行拟合、修正和解释。过程。
三、案例简要
图-3 信度分析的选择
图-4 信度分析变量及方法的选择
三、案例简要
Reliability Statistics
Cronbach's Alpha
N of Items
.892
24
表-3 信度分析结果
潜变量 超市形象 质量期望 质量感知 感知价格 顾客满意 顾客抱怨 顾客忠诚
可测变量个数 3 5 5 2 3 3 3
三、案例简要
设计的结构路径图
基本路径假设.超市形象源自➢超市形象对质量期望有路径影响
➢质量期望对质量感知有路径影响
质量期望
顾客抱怨
➢质量感知对感知价格有路径影响 ➢质量期望对感知价格有路径影响
质量感知
感知价值
顾客满意 顾客忠诚
➢感知价格对顾客满意有路径影响 ➢顾客满意对顾客忠诚有路径影响 ➢超市形象对顾客满意有路径影响 ➢超市形象对顾客忠诚有路径影响
三、案例简要
图-17 参数估计选择
图-18 标准化系数计算
三、案例简要
图-19 模型运算完成图
图-20 参数估计结果图
质量期望
<---
质量感知
<---
感知价格
<---
感知价格
<---
感知价格
<---
顾客满意
<---
顾客满意
<---
顾客忠诚
<---
顾客忠诚
<---
a1
<---