三角函数的奇偶性测试题(人教A版)(含答案)

合集下载

人教A版高一数学必修第一册第五章《三角函数》章末练习题卷含答案解析(14)

人教A版高一数学必修第一册第五章《三角函数》章末练习题卷含答案解析(14)

人教A版高一数学必修第一册第五章《三角函数》单元练习题卷10(共22题)一、选择题(共10题)1.函数f(x)=sin2x,x∈R的最小正周期为( )A.π2B.πC.2πD.4π2.已知cotα=2,tan(α−β)=−25,则tan(β−2α)的值是( )A.14B.−112C.18D.−183.如图所示,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(π6x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.104.已知函数f(x)=asin2x−√3cos2x的图象关于直线x=−π12对称,若f(x1)⋅f(x2)=−4,则a∣∣x1−x2∣的最小值为( )A.π4B.π2C.πD.2π5.若函数f(x)=asin2x−bcos2x在x=π6处有最小值−2,则常数a,b的值是( ) A.a=−1,b=√3B.a=1,b=−√3C.a=√3,b=−1D.a=−√3,b=16.函数y=2sin(2x+π3)的图象的一条对称轴方程可以是( )A.x=0B.x=π2C.x=π12D.x=π67.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,∣φ∣<π2)的最小正周期为π,且f(−x)= f(x),则( )A.f(x)在(0,π2)单调递减B.f(x)在(π4,3π4)单调递减C.f(x)在(0,π2)单调递增D.f(x)在(π4,3π4)单调递增8.若角α的终边经过点P(1,−2),则sinα的值为( )A.2√55B.√55C.−√55D.−2√559.如果函数y=3cos(2x+φ)的图象关于点(4π3,0)中心对称,那么∣φ∣的最小值为( )A.π6B.π4C.π3D.π210.函数y=cos2x−sin2x(0<x<π2)的值域为( ) A.(−1,1)B.[−√2,√2] C.[−√2,1]D.(−1,√2]二、填空题(共6题)11.化简sinθ1+sinθ−sinθ1−sinθ的值为.12.已知函数f(x)=√3sinωx+cosωx(ω>0),x∈R,f(x1)=−2,f(x2)=0且∣x1−x2∣的最小值等于π,则ω=.13.已知角θ的顶点为坐标原点,始边为x轴的正半轴.若P(4,y)是角θ终边上一点,且sinθ=−2√55,则y=.14.将下列各角度化为弧度:(1)30∘=;(2)120∘=;(3)−60∘=;(4)−30∘=;(5)−200∘=;(6)180∘=;(7)135∘=;(8)−75∘=;(9)270∘=;(10)0∘=;15.如图,A,B为某市的两个旅游中心,海岸线l可看做一条直线,且与AB所在直线平行,现计划将两个旅游中心与海岸线连接起来,由于地势原因,需在以AB为直径的半圆上选定一点P,修建PA,PB,PQ三段公路,其中PQ⊥l,AB=20km,两平行直线AB与l之间的距离为20km,公路PA和PB段的造价均为6千万元/km,公路PQ段的造价为5千万元/km,为便于筹备充足资金,需要计算该项工程的最大预算,根据以上信息,这三段公路总造价的最大值为千万.,x∈R)的部分图象,则y=f(x)函数16.如图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2解析式为.三、解答题(共6题).17.已知α∈(0,π),cosα=−13−α)的值;(1) 求cos(π4(2) 求sin(2π3+2α)的值.18.设函数f(x)=lg(1−cos2x)+cos(x+θ),θ∈[0,π2).(1) 讨论函数y=f(x)的奇偶性,并说明理由;(2) 设θ>0,解关于x的不等式f(π4+x)−f(3π4−x)<0.19.已知角α的终边上有一点P,OP=3√10,且tanα=−13(π2<α<π),求点P的坐标.20.已知锐角α,β,且tanα=2,cosβ=513,求:(1) sin2α;(2) tan(2α−β).21.已知等腰三角形底角的正弦值为45,求这个三角形顶角的正弦、余弦和正切值.22.写出与下列各角终边相同的角的集合,并找出集合中适合不等式−360∘≤β<360∘的元素β:(1) 60∘;(2) −75∘;(3) −824∘30ʹ;(4) 475∘;(5) 90∘;(6) 270∘;(7) 180∘;(8) 0∘.答案一、选择题(共10题) 1. 【答案】B【知识点】Asin(ωx+ψ)形式函数的性质2. 【答案】B【知识点】两角和与差的正切3. 【答案】C【解析】由图可知 −3+k =2,所以 k =5, 所以 y =3sin (π6x +φ)+5,所以 y max =3+5=8. 【知识点】三角函数模型的应用4. 【答案】B【解析】由辅助角公式知 f (x )=√a 2+3sin (2x +φ),φ∈[0,2π), f (x ) 图象类似于 sinx ,可判断 x =−π12 时取最值, sin (2⋅(−π12)+φ)=±1, φ−π6=π2或32π, φ=23π或53π, 而 sinφ=√3√a 2+3,于是 φ=53π,cosφ=√a 2+3=cos 53π,解得 a =1,f (x )=2sin (2x +53π),f (x 1)⋅f (x 2)=−4 只有一个取 2,一个取 −2, 最大值点与最小值点 ∣x 1−x 2∣min =T2=2π2ω=π2, 于是 a∣∣x 1−x 2∣min ≥π2. 综上,选B .【知识点】Asin(ωx+ψ)形式函数的性质5. 【答案】D【知识点】Asin(ωx+ψ)形式函数的性质6. 【答案】C【知识点】Asin(ωx+ψ)形式函数的性质7. 【答案】A【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】D【知识点】任意角的三角函数定义9. 【答案】A【知识点】Asin(ωx+ψ)形式函数的性质10. 【答案】C【知识点】Asin(ωx+ψ)形式函数的性质二、填空题(共6题)11. 【答案】−2tan2θ【解析】sinθ1+sinθ−sinθ1−sinθ=sinθ−sin2θ−sinθ−sin2θ1−sin2θ=−2sin2θcos2θ=−2tan2θ.【知识点】同角三角函数的基本关系12. 【答案】12【知识点】Asin(ωx+ψ)形式函数的性质13. 【答案】−8【解析】P(4,y)是角θ终边上一点,由三角函数的定义知sinθ=√16+y2,又sinθ=−2√55,所以√16+y2=−2√55,解得y=−8.【知识点】任意角的三角函数定义14. 【答案】π6;2π3;−π3;−π6;−10π9;π;3π4;−5π12;3π2;0【知识点】弧度制15. 【答案】 222【解析】根据题意,设 ∠PAD =θ,则 0≤θ≤π2,过点 P 作 PD ⊥AB ,则 P ,D ,Q 三点共线, 设这三段公路总造价为 y ,又由 AB =20 km ,则 AP =20cosθ km ,BP =20sinθ km , 则 PD =20cosθsinθ km ,又由两平行直线 AB 与 l 之间的距离为 20 km ,则 PQ =(20−20cosθsinθ)km ,则 y=6×(20sinθ+20cosθ)+5×(20−20cosθsinθ)=120(sinθ+cosθ)+100(1−sinθcosθ),设 sinθ+cosθ=t ,则 t =√2sin (θ+π4),则有 1≤t ≤√2,则 sinθcosθ=t 2−12,则 y =120t +100(1−t 2−12)=120t +100(3−t 22)=−50t 2+120t +150,1≤t ≤√2,分析可得:t =65 时,y 取得最大值,且 y max =222.【知识点】三角函数模型的应用、Asin(ωx+ψ)形式函数的性质16. 【答案】 y =2sin(2x +π3)【知识点】Asin(ωx+ψ)形式函数的性质三、解答题(共6题) 17. 【答案】(1) 因为 sin 2α+cos 2α=1,cosα=−13, 所以 sin 2α=89, 又因为 α∈(0,π), 所以 sinα=2√23.又因为 cos (π4−α)=cos π4cosα+sin π4sinα=√22⋅(−13)+√22⋅2√23=4−√26.(2) 因为 sinα=2√23,cosα=−13,所以 sin2α=2sinα⋅cosα=−4√29,cos2α=cos 2α−sin 2α=−79, sin (2π3+2α)=sin2π3⋅cos2α+cos2π3⋅sin2α=√32⋅−79+−12⋅−4√29=4√2−7√318. 【知识点】二倍角公式、两角和与差的余弦、两角和与差的正弦18. 【答案】(1) 根据对数有意义,得 1−cos2x >0, 所以 cos2x ≠1,x ≠kπ(k ∈Z ) 定义域关于原点对称,当函数是偶函数,那么有 f (−x )=f (x ),lg [1−cos2(−x )]+cos (−x +θ)=log (1−cos2x )+cos (x +θ)cos (−x +θ)=cos (x +θ), 展开整理得 2sinxsinθ=0 对一切 x ≠kπ(k ∈Z ) 恒成立, 因为 θ∈[0,π2), 所以 θ=0,当函数是奇函数,那么任意定义域内 x 0 有 f (x 0)+f (−x 0)=0, 例如 x 0=π4,f (π4)+f (−π4)=0,f (−π4)=lg (1−cos (−π2))+cos (−π4+θ)=cos (−π4+θ),f (π4)=lg (1−cos π2)+cos (π4+θ)=cos (π4+θ),f (π4)+f (−π4)=0,推得 cosθ=0,显然这样 θ∈(0,π2) 是不存在的, 所以当 θ∈(0,π2) 时既不是奇函数又不是偶函数,说明假命题只能举反例.(2) f (π4+x)−f (3π4−x)<0 代入得 lg [1−cos2(π4+x)]+cos (π4+x +θ)−lg [1−cos2(3π4−x)]−cos (3π4−x +θ)<0,lg (1+sin2x )+cos (π4+x +θ)−lg (1+sin2x )−cos (3π4−x +θ)<0,化简 cos (π4+x −θ)+cos (π4+x +θ)<0,展开整理得 2cos (x +π4)cosθ<0, 因为 θ∈(0,π2),所以 cosθ>0, 所以 cos (x +π4)<0,所以 { cos (x +π4)<0,π4+x ≠k 1π,3π4−x ≠k 2π, k 1∈Z ,k 2∈Z ,所以不等式解集为 (2mπ+π4,2mπ+3π4)∪(2mπ+3π4,2mπ+5π4),m ∈Z .【知识点】函数的奇偶性、Asin(ωx+ψ)形式函数的性质19. 【答案】设点 P 的坐标为 (x,y ).因为π2<α<π,所以 x <0,y >0.由题意,得 {x 2+y 2=(3√10)2,y x=−13,x <0,y >0.解方程组,得 x =−9,y =3,即点 P 的坐标为 (−9,3).【知识点】任意角的三角函数定义20. 【答案】(1) 因为 tanα=2, 所以 sin2α=2sinαcosα=2sinαcosαsin 2α+cos 2α=2tanαtan 2α+1=2×222+1=45.(2) 因为 tanα=2,所以 tan2α=2tanα1−tan 2α=2×21−22=−43. 因为 cosβ=513,且 β 为锐角,所以 sinβ=√1−cos 2β=√1−(513)2=1213,所以 tanβ=sinβcosβ=1213513=125,所以tan (2α−β)=tan2α−tanβ1+tan2αtanβ=−43−1251+(−43)×125=5633.【知识点】两角和与差的正切、二倍角公式21. 【答案】设底角为 B ,顶角为 A ,则 A =π−2B ,而 sinB =45,则 sinA =sin (π−2B )=sin2B =2425,cosA =725,tanA =247.【知识点】二倍角公式22. 【答案】(1) {β∣ β=60∘+k ⋅360∘,k ∈Z },−300∘,60∘.(2) {β∣ β=−75∘+k ⋅360∘,k ∈Z },−75∘,285∘.(3) {β∣β=−824∘30ʹ+k ⋅360∘,k ∈Z ),−104∘30ʹ,255∘30ʹ.(4) {β∣ β=475∘+k ⋅360∘,k ∈Z },−245∘,115∘.(5) {β∣ β=90∘+k ⋅360∘,k ∈Z },−270∘,90∘.(6) {β∣ β=270∘+k ⋅360∘,k ∈Z },−90∘,270∘.(7) {β∣ β=180∘+k ⋅360∘,k ∈Z },−180∘,180∘.(8) {β∣ β=k ⋅360∘,k ∈Z },−360∘,0∘.【知识点】任意角的概念。

2021新教材人教版高中数学A版必修第一册模块练习题--3.2.2 奇偶性

2021新教材人教版高中数学A版必修第一册模块练习题--3.2.2 奇偶性

3.2.2奇偶性基础过关练题组一函数奇偶性的概念及其图象特征1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于()A.-1B.1C.0D.22.若y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a))C.(-a,-f(-a))D.(a,f(-a))3.下列图象表示的函数中具有奇偶性的是()4.(2020北京通州高一上期末)能说明“若f(x)是奇函数,则f(x)的图象一定过原点”是假命题的一个函数是f(x)=.5.(1)如图①,给出奇函数y=f(x)的部分图象,试作出y轴右侧的图象并求出f(3)的值;(2)如图②,给出偶函数y=f(x)的部分图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.题组二函数奇偶性的判定6.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数7.(2019四川雅安中学高一上第一次月考)下列函数中是偶函数,且在区间(0,1)上为增函数的是( ) A.y=|x| B .y=3-x C.y=1xD.y=-x 2+4 8.若函数f(x)={1,x >0,-1,x <0,则f(x)( )A.是偶函数B.是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 9.判断下列函数的奇偶性: (1)f(x)=√x 2-1+√1-x 2;(2)f(x)=2x 2+2x x+1;(3)f(x)={x(1-x)(x <0),x(1+x)(x >0).题组三 函数奇偶性的综合运用10.已知函数f(x)=mx 2+nx+2m+n 是偶函数,其定义域为[m+1,-2n+2],则( )A.m=0,n=0B.m=-3,n=0C.m=1,n=0D.m=3,n=011.(2020广西柳州二中高一上月考)已知函数f(x)是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)=( ) A.20 B.12 C.-20 D.-1212.(2020广东珠海高一上期末学业质量检测,)已知函数f(x)为R 上的奇函数,且在(-∞,0)上是增函数, f(5)=0,则xf(x)>0的解集是 .13.已知y=f(x)是奇函数,当x<0时,f(x)=x 2+ax,且f(3)=6,则a 的值为 .14.(2020广东湛江一中高一上期中)已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且f(x)-g(x)=x 3+x 2+1,则f(1)+g(1)= . 15.(2019天津南开高一上期末)已知f(x)是定义在R 上的偶函数,当x ≥0时, f(x)=x 2-2x.(1)求函数f(x)的解析式,并画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间和值域.能力提升练题组一函数奇偶性的概念及其图象特征1.()已知y=f(x)是偶函数,其图象与x轴有4个交点,则方程f(x)=0的所有实数根之和是()A.4B.2C.1D.02.(多选)()若f(x)为R上的奇函数,则下列四个说法正确的是()A.f(x)+f(-x)=0B.f(x)-f(-x)=2f(x)C.f(x)·f(-x)<0D.f(x)=-1f(-x)3.()f(x)是定义在R上的奇函数,其在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.题组二函数奇偶性的判定4.(2020黑龙江哈三中高一上第一次阶段性验收,)下列函数是偶函数的是()A.f(x)=x3-1x B.f(x)=√1-x2|x-2|-2C.f(x)=(x-1)√1+x1-xD.f(x)=|2x+5|+|2x-5|5.()已知F(x)=(x3-2x)f(x),且f(x)是定义在R上的奇函数,f(x)不恒等于零,则F(x)为()A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数6.()已知f(x+y)=f(x)+f(y)对任意实数x,y都成立,则函数f(x)是()A.奇函数B.偶函数C.既是奇函数,也是偶函数D.既不是奇函数,也不是偶函数7.(多选)()设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.|f(x)|g(x)是奇函数B.f(x)|g(x)|是奇函数C.f(x)+|g(x)|是偶函数D.|f(x)|+g(x)是偶函数题组三函数奇偶性的综合运用8.(2020河北承德一中高一上月考,)若偶函数f(x)在(-∞,-1]上单调递增,则()A.f(-32)<f(-1)<f(2)B.f(-1)<f(-32)<f(2)C.f(2)<f(-1)<f(-32)D.f(2)<f(-32)<f(-1)9.(2020黑龙江大庆实验中学高一上月考,)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-1)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,2]D.[1,3]10.(2020河南郑州高一上期末,)已知定义在R上的奇函数f(x)满足f(x+4)=f(x)恒成立,且f(1)=1,则f(3)+f(4)+f(5)的值为(深度解析)A.-1B.1C.2D.011.(2020江西临川一中高一上月考,)已知函数f(x)与g(x)分别是定义域上的奇函数与偶函数,且f(x)+g(x)=x2-1x+1-2,则f(2)=()A.-23B.73C.-3D.11312.(2019四川成都高一上期末调研,)已知f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)={-x,0≤x ≤1,-1,1<x <2,x -3,x ≥2.若对任意的x ∈R,不等式f(x)>f(x-√2a)恒成立,则实数a 的取值范围是 . 13.(2019天津河西高一上期末,)(1)若奇函数f(x)是定义在R 上的增函数,求不等式f(2x-1)+f(3)<0的解集;(2)若f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数,求不等式f(2x-1)-f(-3)<0的解集.14.(2020安徽师大附中高一上月考,)已知函数f(x)=ax+b1+x 2是定义在(-1,1)上的奇函数,且f (12)=25.(1)求函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数; (3)解关于实数t 的不等式f(t-1)+f(t)<0.15.(2020山东菏泽高一上期末联考,)已知函数f(x)=x 2+2a-3x是奇函数.(1)求函数f(x)的解析式;(2)若函数f(x)在(0,√p)上单调递增,试求p的最大值.16.()设函数f(x)=x2-2|x-a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数.你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单调递增区间.深度解析答案全解全析基础过关练1.A因为该奇函数的定义域为{-1,2,a,b},且奇函数的定义域关于原点对称,所以a与b中一个等于1,一个等于-2,所以a+b=1+(-2)=-1,故选A.2.B∵f(x)为奇函数,∴f(-a)=-f(a),∴点(-a,-f(a))在函数y=f(x)的图象上.3.B选项A中的图象关于原点或y轴均不对称,故排除;选项C、D中的图象所示的函数的定义域不关于原点对称,不具有奇偶性,故排除;选项B中的图象关于y轴对称,其表示的函数是偶函数.故选B.(答案不唯一)4.答案1x,答案不唯一.解析举出x=0不在定义域内的奇函数即可,如f(x)=1x5.解析(1)由奇函数的性质可作出它在y轴右侧的图象,如图①所示,易知f(3)=-2.(2)由偶函数的性质可作出它在y轴右侧的图象,如图②所示,易知f(1)>f(3).6.B∵x∈(-a,a),其定义域关于原点对称,且F(-x)=f(-x)+f(x)=F(x),∴F(x)是偶函数.7.A选项A中,函数y=|x|为偶函数,且在区间(0,1)上为增函数,故A符合题意;选项B中,函数y=3-x为非奇非偶函数,且在区间(0,1)上为减函数,故B不符合题意;选项C中,函数y=1为奇函数,且在区间(0,1)上为减x函数,故C不符合题意;选项D中,函数y=-x2+4为偶函数,在区间(0,1)上为减函数,故D不符合题意.8.B作出函数f(x)的图象,如图所示,可以看出该图象关于原点对称,故f(x)为奇函数.9.解析(1)依题意得x2-1≥0,且1-x2≥0,即x=±1,因此函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0.∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(2)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.(3)易得函数f(x)的定义域是D=(-∞,0)∪(0,+∞),关于原点对称.任取x∈D,当x>0时,-x<0,∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x);当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x),∴f(x)为奇函数.10.B由f(x)=mx2+nx+2m+n是偶函数,得n=0.又函数的定义域为[m+1,-2n+2],所以m+1=2n-2,则m=-3.11.B由题意得f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.12.答案(-∞,-5)∪(5,+∞)解析∵f(x)为R上的奇函数,∴f(0)=0.∵f(x)在(-∞,0)上是增函数,f(5)=0,∴f(x)在(0,+∞)上是增函数,f(-5)=0.可大致用图象表示:∵xf(x)>0等价于x与f(x)同号,且均不为0,∴结合图象知解集是(-∞,-5)∪(5,+∞).13.答案5解析因为f(x)是奇函数,所以f(-3)=-f(3)=-6,所以(-3)2+a×(-3)=-6,解得a=5.14.答案1解析由题意可得f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.15.解析(1)∵x≥0时,f(x)=x2-2x,∴当x<0时,-x>0,∴f(-x)=x2+2x,∴f(-x)=f(x)=x 2+2x. 故函数f(x)的解析式为 f(x)={x 2-2x,x ≥0,x 2+2x,x <0,函数f(x)的图象如图所示.(2)由(1)中函数的图象可知,函数f(x)的单调递增区间为[-1,0],[1,+∞);单调递减区间为(-∞,-1],[0,1].函数f(x)的值域为[-1,+∞).能力提升练1.D 因为y=f(x)是偶函数,所以y=f(x)的图象关于y 轴对称,所以f(x)=0的所有实数根之和为0.2.AB ∵f(x)在R 上为奇函数,∴f(-x)=-f(x),∴f(x)+f(-x)=f(x)-f(x)=0,故A 正确; f(x)-f(-x)=f(x)+f(x)=2f(x),故B 正确;当x=0时,f(x)·f(-x)=0,故C 不正确;当x=0时,f(x)f(-x)的分母为0,无意义,故D 不正确.3.解析 (1)根据奇函数的图象关于原点对称,可得f(x)的图象如图所示.(2)xf(x)>0即图象上点的横坐标与纵坐标同号,且均不为0.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).4.D 在选项A 中,f(x)=x 3-1x(x ≠0), f(-x)=-x 3+1x,f(-x)=-f(x),是奇函数;在选项B 中,f(x)=√1-x 2|x -2|-2=√1-x 2-x(-1≤x ≤1,x ≠0),f(-x)=√1-x 2x, f(-x)=-f(x),是奇函数;在选项C 中,f(x)=(x-1)·√1+x 1-x(-1≤x<1),是非奇非偶函数;在选项D中,f(x)=|2x+5|+|2x-5|(x ∈R), f(-x)=|-2x+5|+|-2x-5|=|2x+5|+|2x-5|, f(x)=f(-x),是偶函数,故选D.5.B 依题意得F(x)的定义域为R,且F(-x)=(-x 3+2x)f(-x)=(x 3-2x)f(x)=F(x),所以F(x)为偶函数,故选B. 6.A 令x=y=0,得f(0)=f(0)+f(0), 所以f(0)=0.又因为f(x-x)=f(x)+f(-x)=0,所以f(-x)=-f(x),所以f(x)是奇函数,故选A. 7.BD A 中,令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|·g(x)=h(x),∴A 中函数是偶函数,A 错误;B 中,令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴B 中函数是奇函数,B 正确;C 中,由f(x)是奇函数,可得f(-x)=-f(x),由g(x)是偶函数,可得g(-x)=g(x),由f(-x)+|g(-x)|=-f(x)+|g(x)|知C 错误;D 中,由|f(-x)|+g(-x)=|-f(x)|+g(x)=|f(x)|+g(x),知D 正确.故选BD.8.D 由f(x)是偶函数且在(-∞,-1]上单调递增,得f(x)在[1,+∞)上单调递减, f (-32)=f (32),f(-1)=f(1),又因为2>32>1,所以f(2)<f (32)<f(1),即f(2)<f (-32)<f(-1),故选D. 9.C 因为f(x)为奇函数,且f(1)=-1,所以f(-1)=1, 所以-1≤f(x-1)≤1等价于f(1)≤f(x-1)≤f(-1).由函数f(x)在(-∞,+∞)上单调递减,可得-1≤x-1≤1,解得0≤x ≤2. 故选C.10.D ∵f(x)是R 上的奇函数, f(1)=1, ∴f(-1)=-f(1)=-1, f(0)=0.依题意得f(3)=f(-1+4)=-f(1)=-1,f(4)=f(0+4)=f(0)=0,f(5)=f(1+4)=f(1)=1. 因此, f(3)+f(4)+f(5)=-1+0+1=0,故选D.陷阱提示 在有关奇函数f(x)的求值问题中,要注意当f(x)在x=0处有意义时, f(0)=0这个特殊情况,否则可能会出现已知条件不足,导致问题解决不了的情况. 11.A ∵f(x)+g(x)=x 2-1x+1-2①,∴f(-x)+g(-x)=(-x)2-1-x+1-2=x 2-1-x+1-2,又∵函数f(x)与g(x)分别是定义域上的奇函数与偶函数, ∴f(-x)=-f(x),g(-x)=g(x), ∴f(-x)+g(-x)=-f(x)+g(x)=x 2-1-x+1-2②, 联立①②消去g(x),得f(x)=-12x+2+1-2x+2,∴f(2)=-12×2+2+1-2×2+2=-23.故选A.12.答案 (3√2,+∞)解析 由已知条件画出函数f(x)的图象(图中实线部分),若对任意的x ∈R,不等式 f(x)>f(x-√2a)恒成立,则函数f(x)的图象始终在函数f(x-√2a)的图象的上方.当a<0时,将函数f(x)的图象向左平移,不能满足题意,故a>0,将函数f(x)图象向右平移时的临界情况是当D 点与B 点重合,且临界情况不满足题意,由图可知,向右平移的√2a 个单位长度应大于6,即√2a>6,解得a>3√2,故答案为(3√2,+∞).13.解析 (1)由题知f(x)为奇函数,且在R 上是增函数,则f(2x-1)+f(3)<0⇒f(2x-1)<-f(3)⇒f(2x-1)<f(-3)⇒2x-1<-3,解得x<-1,即不等式的解集为(-∞,-1).(2)由题知f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数, 则f(2x-1)-f(-3)<0⇒f(2x-1)<f(3)⇒f(|2x-1|)<f(3)⇒|2x-1|<3,解得-1<x<2, 即不等式的解集为(-1,2). 14.解析 (1)因为函数f(x)=ax+b 1+x 2是定义在(-1,1)上的奇函数,所以f(0)=0,得b=0. 又知f (12)=25,所以12a 1+14=25,解得a=1,所以f(x)=x1+x 2.(2)证明:∀x 1,x 2∈(-1,1),且x 1<x 2,则f(x 2)-f(x 1)=x 21+x 22-x 11+x 12=(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22),由于-1<x 1<x 2<1,所以-1<x 1x 2<1,即1-x 1x 2>0, 所以(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22)>0,即f(x 2)-f(x 1)>0,所以f(x)在(-1,1)上是增函数.(3)因为f(x)是奇函数, 所以f(-x)=-f(x),所以f(t-1)+f(t)<0等价于f(t-1)<-f(t)=f(-t),即f(t-1)<f(-t), 又由(2)知f(x)在(-1,1)上是增函数,所以{-1<t -1<1,-1<-t <1,t -1<-t,解得0<t<12,即原不等式的解集为{t |0<t <12}.15.解析 (1)因为函数f(x)=x 2+2a -3x是奇函数,所以f(x)=-f(-x),即x 2+2a -3x=-x 2+2a+3x,化简得a=0, 所以f(x)=x 2+2-3x.(2)f(x)=x 2+2-3x =-13(x 2+2x)=-13·(x +2x ),任取x 1,x 2∈(0,+∞)且x 1≠x 2,则Δf(x)Δx=f(x 2)-f(x 1)x 2-x 1=-13(x 2+2x 2)-[-13(x 1+2x 1)]x 2-x 1=-13(x 2-x 1+2x 2-2x 1)x 2-x 1=-13·(x 2-x 1)(1-2x 1x 2)x 2-x 1=-13·x 1x 2-2x 1x 2.因为x 1,x 2∈(0,+∞),所以x 1x 2>0. 当x 1,x 2∈(0,√2]时,x 1x 2-2<0,从而Δf(x)Δx>0;当x 1,x 2∈[√2,+∞)时,x 1x 2-2>0,从而Δf(x)Δx<0.因此f(x)在(0,√2]上是增函数, f(x)在[√2,+∞)上是减函数.由题知f(x)在(0,√p]上单调递增,所以√p的最大值为√2,即p的最大值为2.16.解析(1)我同意王鹏同学的观点.理由如下:假设f(x)是奇函数,则由f(a)=a2+3,f(-a)=a2-4|a|+3,可得f(a)+f(-a)=0,即a2-2|a|+3=0,显然a2-2|a|+3=0无解,∴f(x)不可能是奇函数.(2)若f(x)为偶函数,则有f(a)=f(-a),即a2+3=a2-4|a|+3,解得a=0.经验证,此时f(x)=x2-2|x|+3是偶函数.(3)由(2)知f(x)=x2-2|x|+3,其图象如图所示,由图可得,其单调递增区间是(-1,0)和(1,+∞).解题模板利用奇偶性确定函数解析式中参数的值时,选择题、填空题中可用特殊值法简化运算;解答题中要结合定义写出完整的解题过程,若用特殊值法得到参数的值仍需要进一步证明.。

(易错题)高中数学必修四第一章《三角函数》测试(含答案解析)(5)

(易错题)高中数学必修四第一章《三角函数》测试(含答案解析)(5)

一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+3.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3B .3C 3D 34.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 5.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.我国著名数学家华罗庚先生曾倡导“0.618优选法”,0.618是被公认为最具有审美意义的比例数字,我们称为黄金分割.“0.618优选法”在生产和科研实践中得到了非常广泛的应用,华先生认为底与腰之比为黄金分割比51510.61822⎛⎫≈ ⎪ ⎪⎝⎭的黄金三角形是“最美三角形”,即顶角为36°的等腰三角形.例如,中国国旗上的五角星就是由五个“最美三角形”与一个正五边形组成的.如图,在其中一个黄金ABC 中,黄金分割比为BCAC.试根据以上信息,计算sin18︒=( )A 51- B 51- C 51+ D 357.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=- 9.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ=12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.14.已知函数()f x 的定义域为R ,且()2()f x f x π+=,当[0,)x π∈时,()sin f x x =.若存在0(,]x m ∈-∞,使得0()43f x ≥m 的取值范围为________.15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 16.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.17.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为212⎡-⎢⎣⎦,,则w 的取值范围是______18.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个.19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增;③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.22.已知函数2()1ax bf x x +=+是定义在R 上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)若存在实数θ,使得不等式()2(sin 2)2sin 10f f t θθ-+++<成立,求正实数t的取值范围.23.已知函数()sin()f x x ωϕ=+,其中π0,(0,)2ωϕ>∈.从条件①、条件②、条件③这三个条件中选择两个作为已知条件,求: (Ⅰ)()f x 的单调递增区间; (Ⅱ)()f x 在区间[0,]2π的最大值和最小值.条件①:函数()f x 最小正周期为π; 条件②:函数()f x 图象关于点π(,0)6-对称; 条件③: 函数()f x 图象关于π12x =对称. 24.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值. 25.已知函数()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,R x ∈.(1)求函数()f x 的最小正周期T 及()f x 的图象的对称轴;(2)完成表格,并在给定的坐标系中,用五点法作出函数()f x 在一个周期内的图象.x3π24u x =+()f x26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C. 【点睛】关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.3.A解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==.又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ,则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=- ⎪⎝⎭,()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.B解析:B利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.B【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B 【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.B解析:B 【分析】先由ABC 是一个顶角为36°的等腰三角形,作其底边上的高,再利用sin18sin DAC ︒=∠,结合腰和底之比求其结果即可.【详解】依题意可知,黄金ABC 是一个顶角为36°的等腰三角形,如图,51,BC AB AC AC -==,36BAC ∠=︒,过A 作AD BC ⊥于D ,则AD 也是三角形的中线和角平分线,故11112sin18sin 224BCDC DAC AC AC ︒=∠===⋅=. 故选:B. 【点睛】本题解题关键在于读懂题意,将问题提取出来,变成简单的几何问题,即突破结果.7.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】 A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D .因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.10.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.11.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫- ⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 084f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.【分析】由最值求得由周期求得由最高点的坐标求得【详解】由题意所以又所以所以故答案为:【点睛】方法点睛:由函数图象确定三角函数的解析式主要参考正弦函数图象中五点法由最大值和最小值确定由周期确定利用点的解析:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【分析】由最值求得A ,由周期求得ω,由最高点的坐标求得ϕ. 【详解】由题意2A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,所以22πωπ==, 2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,2,62k k Z ππϕπ+=+∈,又2πϕ<,所以3πϕ=.所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭. 故答案为:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【点睛】方法点睛:由函数图象确定三角函数的解析式,主要参考正弦函数图象中“五点法”,由最大值和最小值确定A ,由周期确定ω,利用点的坐标确定ϕ,这样可得出表达式()sin()f x A x ωϕ=+.14.【分析】由f (x+)=2f (x )得f (x )=2f (x ﹣)分段求解析式结合图象可得m 的取值范围【详解】解:∵∴∵当时∴当时当时当时作出函数的图象:令解得:或若存在使得则故答案为:【点睛】本题考查函数与解析:10[,)3π+∞ 【分析】由f (x +π)=2f (x ),得f (x )=2f (x ﹣π),分段求解析式,结合图象可得m 的取值范围. 【详解】解:∵()()2f x f x π+=,∴()()2f x f x π=-,∵当0,x 时,()sin f x x =.∴当[),2x ππ∈时,()()2sin f x x π=-.当[)2,3x ππ∈时,()()4sin 2f x x π=-.当[)3,4x ππ∈时,()()8sin 3f x x π=-.作出函数的图象:令()8sin 343x π-=103x π=,或113π, 若存在(]0,x m ∈-∞,使得()043f x ≥,则103m π≥, 故答案为:10[,)3π+∞ 【点睛】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴,故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析: 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.17.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:3342⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.18.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ; 又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π, ∴212T πω=,即2(12)123k +,∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩,根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错. 故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论;(2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x ex x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 22.(1)2()1xf x x=+;(2)(0,)+∞. 【分析】(1)由已知条件建立不等式组,解之可得函数的解析式;(2)先由函数的单调性证明函数()f x 在(1,)+∞上单调递减,再由函数的单调性和奇偶性求解不等式可得22sin 12sin t θθ++>-,运用二次函数的最值可得范围. 【详解】(1)因为函数2()1ax bf x x +=+是定义在R 上的奇函数,且1225f ⎛⎫= ⎪⎝⎭, 所以()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,即2201+01+22511+2ba b ⎧=⎪⎪⎪⎨=⎪⎪⎛⎫ ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩,所以2()1x f x x =+, (2)设12x x <,由(1)得()()()()()12121212222212121()1111x x x x x x f x f x x x x x ---=-=++++, 所以当121x x <<时,221212120101>01>0x x x x x x -<-<++,,,,所以()12()>0f x f x -,所以()f x 在(1,)+∞上单调递减,又()2(sin 2)2sin10f f t θθ-+++<等价于()22sin 1(2sin )f t f θθ++<-,22sin 11t θ++>,2sin 1θ-≥,22sin 12sin t θθ∴++>-,即2212sin sin +12sin +9+84t θθθ⎛⎫>--=- ⎪⎝⎭,又1sin 1θ-≤≤,()2min2sin sin 12t θθ∴>--+=-,(0,)t ∴∈+∞.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.23.答案见解析. 【分析】若选择条件①②,(Ⅰ)根据最小正周期求出ω,根据对称中心求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果. 若选择条件①③,(Ⅰ)根据最小正周期求出ω,根据对称轴求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式.【详解】若选择条件①②,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=.因为()f x 图象关于点π(,0)6-对称,所以πsin[2()]06ϕ⨯-+=, 所以3k πϕπ-=,k Z ∈,所以3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=. 因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择条件①③,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=. 又函数()f x 图象关于π12x =对称,所以有πsin(2)112ϕ⨯+=±,所以62k ππϕπ+=+,k Z ∈,即3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=. 因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式.【点睛】关键点点睛:根据函数性质确定函数解析式是解题关键.24.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】(1)由已知可得A =52()63πT ππ=-=,所以22=πωT =,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤:(1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口. 25.(1)最小正周期为π,对称性ππ28k x =-,Z k ∈;(2)答案见解析. 【分析】(1)利用函数siny A =()x ωϕ+的周期性和对称性,求得()f x 的最小正周期和对称轴.(2)利用五点法作图,结合题意即可列表,进而作出函数的一个周期内的图象. 【详解】解:(1)∵()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,故它的最小正周期为2ππ2=, 令3ππ2π42x k +=+,Z k ∈, ππ28k x =-,Z k ∈(2)由题意可得表格如下:x38π-8π-8π 38π 58π 3π24u x =+0 2π π32π 2π()f x22-【点睛】本题考查求正弦型函数的周期与对称性,考查“五点法”画图,掌握正弦函数的性质是解题。

高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)

高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)

第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。

人教A版必修第一册 3-2-2 第2课时 函数奇偶性的应用(习题课) 课件(25张)

人教A版必修第一册 3-2-2 第2课时 函数奇偶性的应用(习题课) 课件(25张)
则f(-x)+g(-x)=(-x)2+(-x)-2=x2-x-2,
又f(x)为偶函数,g(x)为奇函数,
所以f(x)-g(x)=x2-x-2,②
联立①②可得f(x)=x2-2,g(x)=x.
[例3] 偶函数f(x)的定义域为R,当x∈(-∞,0)时,f(x)单调递增,则f(-π),
f(2),f(3)的大小关系是(
)
A.f(-π)>f(2)>f(3)
B.f(-π)>f(3)>f(2)
C.f(-π)<f(2)<f(3)
D.f(-π)<f(3)<f(2)
解析:因为f(x)是定义域为R的偶函数,当x∈(-∞,0)时,f(x)单调递增,
解析:(2)定义在R上的奇函数f(x)在区间(-∞,0)上单调递增,且f(3)=0,
则f(x)在(0,+∞)上单调递增,
且f(-3)=-f(3)=0,
由f(x)>0得,-3<x<0或x>3.故选C.
当堂检测
1.偶函数y=f(x)在区间[0,4]上单调递减,则有(
A
A.f(-1)>f(2)>f(-3)
所以函数的图象关于原点对称,且关于 x=1 对称,
( )-( )
当 x1,x2∈[0,1],且 x1≠x2 时,
f(-2)=0,
其大致图象如图所示,
-
>0,即函数在[0,1]上单调递增,f(2)=f(0)=
< ≤ , - ≤ < ,
则当-3≤x≤1 时,不等式 xf(x)>0 可转化为
意分类讨论.

针对训练 4:(1)设 f(x)是定义在(-1,1)上的偶函数,且 f(x)在[0,1)上单调递减,f(- )=1,

专题46 《三角函数》综合测试卷(B)--《2022-2023学年高中数学人教A版》(解析版)

专题46 《三角函数》综合测试卷(B)--《2022-2023学年高中数学人教A版》(解析版)

第五章 专题46 《三角函数》综合测试卷(B )第I 卷 选择题部分(共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022·湖北·3) A .2sin15cos15︒︒ B .22sin 15cos 15︒+︒ C .22sin 151︒- D .22cos 15sin 15︒-︒【答案】D【分析】运用倍角公式逐项计算即可. 【详解】1A.2sin15cos15sin302︒︒=︒=,不成立; B. 22sin 15cos 151︒+︒=,不成立 C. 232sin 151cos302︒-=-︒=-,不成立; D. 223cos 15sin 15cos302︒-︒=︒=,成立 故选:D.2.(2022·安徽省宿州市苐三中学高一期中)已知sin 63α⎛⎫+= ⎪⎝⎭,则cos 2+3α⎛⎫= ⎪⎝⎭( )A .79-B .23-C .23D .79【答案】D【分析】利用倍角公式2cos 212s πin 36παα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,即得. 【详解】因为π1sin 63α⎛⎫+= ⎪⎝⎭,所以2ππcos 212sin 36171299αα⎛⎫⎛⎫+=-+=-⨯ ⎪ ⎭⎝⎭=⎪⎝.故选:D.3.(2021·上海市光明中学高一期中)已知180360α<<,cos 2的值等于( ) A 1cos 2α+B 1cos 2α-C .1cos 2α+D .1cos 2α--【答案】C 【分析】求出2α的取值范围,结合二倍角的余弦公式可得结果. 【详解】因为180360α<<,则901802α<<,所以,cos 02α<,又因为2cos 2cos12αα=-,解得1cos cos22αα+=-. 故选:C.A 21m-B 21m-C 21m -D 21m -【答案】D【分析】根据二倍角的余弦公式结合平方关系及商数关系化弦为切,计算即可得解.【详解】解:222222cos 50sin 501tan 50cos100cos 50sin 501tan 50m ︒-︒-︒︒===︒+︒+︒,即()221tan 501tan 50m -︒=+︒,解得21tan501m m-︒=+(211m m --+舍去).故选:D.5.(2022·江苏·滨海县五汛中学高一阶段练习)已知cos(),cos()33αβαβ+=-=,则cos cos αβ的值为( )A .0B .12-C .12D .0或±12【答案】C【分析】利用两角和差的余弦公式结合条件即得. 【详解】因为()1cos cos cos sin sin 3αβαβαβ+=-= ()2cos cos cos sin sin 3αβαβαβ-=+=两式相加可得2cos cos 1αβ=,即1cos cos 2αβ=.故选:C.6.(2022·上海市向明中学高一期末)要得到函数2)4y x π+的图象,只需将函数2y x =的图象上所有的点的( )A .横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动8π个单位长度 B .横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动8π个单位长度 C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动8π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度 【答案】A【分析】先将函数2sin(2)4y x π=+化为2sin(2)2cos 244y x x ππ⎛⎫=+=- ⎪⎝⎭,再根据三角函数图象的平移变换即可得到答案.【详解】根据题意得2sin(2)2cos 244y x x ππ⎛⎫=+=- ⎪⎝⎭,所以要得到函数2sin(2)4y x π=+的图象,只需将函数2cos y x =的图象上所有的 点横坐标缩短到原来的12倍(纵坐标不变)得到2cos 2y x =,再向右平行移动8π个单位长度即可得到函数2cos 22cos 284y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.故选:A.7.(2022·辽宁·沈阳市第四十中学高一阶段练习)函数()()2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[0,2]上恰有两个最大值点,则ω的取值范围为( ) A .[π,2π) B .9,2ππ⎡⎫⎪⎢⎣⎭C .139,122ππ⎡⎫⎪⎢⎣⎭D .917,88ππ⎡⎫⎪⎢⎣⎭【答案】D【分析】首先代入求4x πω+的取值范围,再根据三角函数的图象,列式求ω的取值范围.【详解】当[]0,2x ∈时,,2444x πππωω⎡⎤+∈+⎢⎥⎣⎦,若函数在此区间恰取得两个最大值,则592242πππω≤+<,解得:91788ππω≤<. 故选:D8.(2022·江苏省灌云高级中学高一期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( ) A .1 B .4 C .8 D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题 【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥-. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x -()222222(1-cos )1=151cos =17+16cos cos cos x x x x x ---⎛⎫ ⎪⎝⎭ 22117216cos 9cos x x≤-=, 当且仅当21cos 4x =时等号成立,故9m ≥,故选:D.选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是( )A .cos y x =B .cos y x =C .sin 2y x π⎛⎫=- ⎪⎝⎭D .tan cos y x x =-【答案】AB【分析】逐一研究函数的奇偶性与单调性即可.【详解】对于A ,∵cos cos x x -=,且函数cos y x =的定义域为R ,∴函数cos y x =为偶函数,又0x >时,cos cos x x =,且函数cos y x =在0,2π⎛⎫⎪⎝⎭上单调递减,∴函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,故A 符合题意;对于B ,∵()cos cos x x -=,且函数cos y x =定义域为R ,∴函数cos y x =为偶函数,当,02x π⎛⎫∈- ⎪⎝⎭时,cos cos y x x ==,且函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,∴函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,故B 符合题意;对于C ,∵sin cos 2y x x π⎛⎫=-=- ⎪⎝⎭,∴函数sin 2y x π⎛⎫=- ⎪⎝⎭在,02π⎛⎫- ⎪⎝⎭上单调递减,故C 不符合题意;对于D ,记()tan cos y f x x x ==-,则()()()tan cos tan cos f x x x x x -=---=--,∴()()f x f x -≠, ∴函数tan cos y x x =-不是偶函数,故D 不符合题意. 故选:AB.αx 过点(1,2)-,则下列式子正确的是( ) A .sin cos 1sin 7cos 9αααα+=--B .5cos(5)πα-=C .2232sin sin cos 3cos 5αααα+-=D .若α为钝角,则223ππα<<【答案】CD【分析】根据终边上的点求出三角函数值进行计算,诱导公式,余弦函数在第二象限单调递减即可解决.【详解】解:因为角α终边经过点(1,2)-, 则222222515sin ,cos ,55(1)2(1)2αα-====--+-+对于A :255sin cos 155sin 7cos 9257555αααα-+==-+,故A 错误; 对于B :5cos(5)cos 5παα-=-=,故B 错误; 对于C :224255132sin sin cos 3cos 2()355555αααα+-=⨯+⨯--⨯=,故C 正确;对于D :因为当[,]2παπ∈,cos y α=单调递减,而15cos 025α-<=-<,即2coscos cos 32ππα<<,所以223ππα<<,故D 正确. 故选:CD.11.(2022·辽宁·沈阳市第四十中学高一阶段练习)已知函数())222sin cos 3sin cos f x x x x x =-,判断下列给出的四个命题,其中正确的命题有( ) A .对任意的x ∈R ,都有()23f x f x π⎛⎫-= ⎪⎝⎭B .将函数()y f x =的图象向左平移12π个单位,可以得到偶函数 C .函数()y f x =在区间7,1212ππ⎛⎫⎪⎝⎭上是减函数D .“函数()y f x =取得最大值”的一个充分条件是“12x π=”【答案】BCD【分析】首先利用二倍角公式,辅助角公式化简函数,再根据函数的性质,采用代入法,判断选项.【详解】()()222sin cos 3sin cos f x x x x x =--sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,当3x π=时,013f π⎛⎫=≠± ⎪⎝⎭,所以不关于3x π=对称,故A 错误; 函数()f x 图象向左平移12π个单位,得函数2sin 22sin 22cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是偶函数,故B 正确;当71212x ππ<<,则32232x πππ<+<,函数()f x 单调递减,故C 正确; 当12x π=时,12232πππ⨯+=,所以212f π⎛⎫= ⎪⎝⎭,函数取得最大值,故D 正确. 故选:BCD12.(2022·江苏·连云港市赣马高级中学高一期末)将函数()sin f x x =的图象向左平移3个单位长度,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),得到()g x 的图象,则( )A .函数π3g x ⎛⎫- ⎪⎝⎭是偶函数B .π6x =-是函数()g x 的一个零点C .函数()g x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()g x 的图象关于直线π12x =对称 【答案】BCD【分析】根据三角函数图象变换可得π()sin 23g x x ⎛⎫=+ ⎪⎝⎭,根据函数()g x 图象性质逐项判断即可.【详解】解:将函数()sin f x x =的图象向左平移π3个单位长度,可得πsin 3y x ⎛⎫=+ ⎪⎝⎭,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),可得π()sin 23g x x ⎛⎫=+ ⎪⎝⎭,对于A 选项,令()ππππsin 2sin 23333h x g x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,则π06h ⎛⎫= ⎪⎝⎭,π2πsin 063h ⎛⎫⎛⎫-=-≠ ⎪ ⎪⎝⎭⎝⎭,故函数π3g x ⎛⎫- ⎪⎝⎭不是偶函数,A 不正确;对于B 选项,因为πsin 006g ⎛⎫-== ⎪⎝⎭,故π6x =-是函数()g x 的一个零点,B 正确;对于C 选项,当5,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,2,322x πππ⎡⎤+∈-⎢⎥⎣⎦,所以函数()g x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,C 正确;对于D 选项,因为对称轴满足2π,Z 32x k k ππ+=+∈,解得ππ,Z 122k x k =+∈, 则0k =时,π12x =,所以函数()g x 的图象关于直线π12x =对称,D 正确. 故选:BCD .第II 卷 非选择题部分(共分)三、填空题:本大题共4小题,每小题5分,共20分.13.(2022·上海市曹杨中学高一期末)已知函数π()sin 23f x x ⎛⎫=+ ⎪⎝⎭,若存在12,x x ∈R ,有()()122f x f x -=,则12x x -的最小值为______. 【答案】π2【分析】由三角函数的性质可得()()122f x f x -=时12min 2T x x -=. 【详解】∵()f x 的周期2ππ2T ==,由()()122f x f x -=得12minπ22T x x -==. 故答案为:π2.14.(2021·上海市光明中学高一期中)已知0πα<<,sin cos 2αα+=,则cos α=____________.【答案】174- 【分析】将1sin cos 2αα+=两边平方,结合平方关系可求得sin cos αα,从而可得cos α的符号,再利用平方关系即可得解. 【详解】解:因为1sin cos 2αα+=, 所以221sin cos 2sin cos 4αααα++=,则3sin cos 8αα=-, 又0πα<<,所以sin 0,cos 0αα><,则22221sin cos cos cos 12αααα⎛⎫+=-+= ⎪⎝⎭,解得17cos 4α-=或174+(舍去). 故答案为:174-. 15.(2022·全国·高一课时练习)已知()()()()sin cos tan π22tan πsin πf θθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---. (1)若()13f θ=,则tan θ的值为______;(2)若π163f θ⎛⎫-= ⎪⎝⎭,则5π6f θ⎛⎫+ ⎪⎝⎭的值为______. 【答案】 22或22- 13-【分析】利用诱导公式化简得出()cos f θθ=.(1)对角θ的终边位置进行分类讨论,结合同角三角函数的基本关系可求得tan θ的值; (2)利用诱导公式可求得5π6f θ⎛⎫+ ⎪⎝⎭的值.【详解】解:()()()()()()3π3πsin cos tan πcos sin tan 22cos tan πsin πtan sin f θθθθθθθθθθθθ⎛⎫⎛⎫++- ⎪ ⎪-⋅⋅-⎝⎭⎝⎭===-+-⋅-. (1)()1cos 3f θθ==,当θ为第一象限角时,222sin 1cos 3θθ=-=,tan θsin 22cos θθ==; 当θ为第四象限角时,222sin 1cos 3θθ=--=-,sin tan 22cos θθθ==-.综上所述,tan 22θ=±. (2)π5ππ66θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且ππ1cos 663f θθ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 所以,5π5πππ1cos cos πcos 66663f θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+=--=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:(1)22±;(2)13-.16.(2022·辽宁·东北育才学校高一期中)若α,0,2β⎛⎫∈ ⎪⎝⎭,且()21sin sin sin cos cos αβααβ+=,则tan β的最大值为______.【答案】24【分析】由题意结合商数关系及平方关系可得2tan tan 2tan 1=+αβα,再利用基本不等式即可得出答案.【详解】解:由()21sin sin sin cos cos αβααβ+=,得2222sin cos sin cos tan tan 1sin 2sin cos 2tan 1αααααβαααα===+++,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以()tan 0,α∈+∞,则2tan 112tan 12tan 1412tan 22tan tan tan αβααααα==≤=++⋅,当且仅当12tan tan αα=,即2tan 2α=时,取等号, 所以tan β的最大值为24. 故答案为:24. 步骤.17.(2022·福建漳州·高一期末)已知,A B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记AOB α∠=且3sin 5α=. (1)求点B 的坐标;(2)求()()sin sin 24tan ππααπα⎛⎫++- ⎪⎝⎭-的值.【答案】(1)43,55B ⎛⎫- ⎪⎝⎭(2)715-【分析】(1)根据角α的终边与单位交点为()cos ,sin αα,结合同角三角函数关系和3sin 5α=,可得B 点坐标;(2)利用诱导公式化简()()sinsin 24tan ππααπα⎛⎫++- ⎪⎝⎭-,将(1)中结果代入,即可得到答案.(1)解:设点B 坐标为(),B x y ,则3sin 5y α==, 因为点B 在第二象限,所以2234cos 1sin 155x αα⎛⎫==--=--=- ⎪⎝⎭,点B 坐标为43,55B ⎛⎫- ⎪⎝⎭.(2)解:由诱导公式可得()()sin sin sin cos 24tan 4tan ππααααπαα⎛⎫++- ⎪-+⎝⎭=--由(1)知34sin ,cos 55αα==-,所以sin 3tan cos 4ααα==-, 所以()()7sin sin sin cos 72534tan 4tan 1544ππααααπαα⎛⎫++--⎪-+⎝⎭===---⨯. 18.(2022·上海市金汇高级中学高一期末)函数()3sin(2)6f x x π=+的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间[,]122ππ上的最大值和最小值.【答案】(1)周期为π,076x π=,03y = (2)最大值是3,最小值是32-【分析】(1)根据周期公式求周期,结合图象求00,x y ; (2)首先求26x π+的范围,再求函数的最值. 【详解】(1)222T πππω===, 令2262x k πππ+=+,Z k ∈,解得:,Z 6x k k ππ=+∈,由图可知,当1k =时,076x π=,此时函数取得最大值03y =; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,72,636x πππ⎡⎤+∈⎢⎥⎣⎦,此时1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦所以函数()3sin(2)6f x x π=+的最大值是3,最小值是32-19.(2022·江苏·滨海县五汛中学高一阶段练习)已知(0,),(,0)22αβ∈∈-,32cos(),sin 5αββ-== (1)求α;(2)若角γ的终边落在点(1,2)P -,求cos()γα+的值. 【答案】(1)π4α= (2)31010-【分析】(1)推导出(0,π)αβ-∈,4sin()5αβ-=,72cos 10β=,由正弦两角和公式求解sin α,即可求解角α;(2)根据三角函数的定义得cos ,sin γγ,在根据余弦两角和公式求解cos()γα+的值即可. 【详解】(1)解:π(0,)2α∈,π(,0)2β∈-,且3cos()5αβ-=,2sin 10β=-,(0,π)αβ∴-∈,则24sin()1cos ()5αβαβ-=--=,272cos 1sin 10ββ=-=, sin sin[()]sin()cos cos()sin ααββαββαββ∴=-+=-+-472322()5105102. π(0,)2α∈,π4α∴=. (2)解:角γ的终边落在点(1,2)P -,则()()222215225cos ,sin 551212γγ-==-==-+-+则()52252310cos cos cos sin sin 525210γαγαγα+=-=-⨯-⨯=-. (1)求函数()(π)y f x f x =⋅-的单调递增区间;(2)求函数2π()(2)4y f x f x =+-的值域.【答案】(1)ππ,π2k k ⎡⎤+⎢⎥⎣⎦()k Z ∈(2)13,13⎡⎤-+⎣⎦【分析】(1)利用诱导公式及其余弦的二倍角公式化简,即为cos2y x =-,然后利用余弦函数的性质求其单调递增区间即可;(2)利用正弦的二倍角公式及其辅助角公式化简,即为13sin(2+)y x ϕ=-,利用正弦函数的性质求值域即可. (1)∵()()(sin cos )sin πcos π(sin cos )(sin cos )y x x x x x x x x =---=-+⎡⎤⎣⎦-22sin cos cos2x x x =-=-∴π2π22ππππ2k x k k x k ≤≤+⇒≤≤+()k Z ∈, 即所求单调递增区间为:()ππ,π2k k k ⎡⎤+∈⎢⎥⎣⎦Z ;(2)2ππ(sin cos )sin 2cos 244y x x x x ⎡⎤⎛⎫⎛⎫-+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣=⎦-π1sin 22sin(2)2x x =-+-1sin 22cos 2x x =--13sin(2+)x ϕ=-,其中tan 2ϕ= ,即13,13y ⎡⎤∈-+⎣⎦.21.(2021·江苏苏州·高一期末)已知2sin 4sin22αα=-.(1)求()()()cos 1sin 223sin sin 2παπαπαπα⎛⎫-++ ⎪⎝⎭⎛⎫-++ ⎪⎝⎭的值;(2)若()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,2tan 6tan 10ββ+-=,求2αβ+的值.【答案】(1)65(2)34π 【分析】(1)先根据二倍角公式和诱导公式化简,再根据同角的平方关系构造“齐次分式”,即可求解.(2)根据题目条件,求出tan 2β,根据1tan 203β=>,精确2β的范围,再根据正切的和差公式,即可求解. (1)∵2sin 4sin22αα=-,∴1cos sin 422cos 2ααα-⎛⎫=-=-⎪⎝⎭,∴tan 2α,∴cos (1sin(2))sin (1sin 2)23sin cos sin()sin 2παπαααααπαπα⎛⎫-++ ⎪-⎝⎭=-⎛⎫-++ ⎪⎝⎭ 2sin (sin cos )sin (sin cos )sin cos αααααααα-==--22222sin sin cos tan tan 6sin cos tan 15αααααααα--===++.(2)∵2tan 6tan 10ββ+-=,∴22tan 1tan 21tan 3βββ==-, ∴152tan tan 233tan(2)1151tan tan 21(2)33αβαβαβ-+-++====----⨯, 又∵(0,)απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,1tan 203β=>,∴20,2πβ⎛⎫∈ ⎪⎝⎭,320,2παβ⎛⎫+∈ ⎪⎝⎭,∴324παβ+=. 22.(2020·重庆·巫山县官渡中学高一阶段练习)已知函数()6sin()62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【分析】(1)化简函数()π3sin 26f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【详解】(1)对于函数π3313()6cos sin 6cos sin cos 62222f x x x x x x ⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()23331cos 2331π3sin cos 3cos sin 233sin 2cos 23sin 22222226x f x x x x x x x x ⎛⎫+⎛⎫=-+=-⨯+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k xk k ,则ππππ,Z 63k xk k ,∴函数()f x 的单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.(2)令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎥⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭, ∴013a≤≤,得03a ≤≤ 故实数a 的取值范围是[].。

专题33 三角函数的单调性、奇偶性、对称性与周期性题2021高中数学必做黄金100题(解析版

专题33   三角函数的单调性、奇偶性、对称性与周期性题2021高中数学必做黄金100题(解析版
第33题 三角函数的单调性、奇偶性、对称性与周期性
一.题源探究·黄金母题
(求函数 的单调递增区间.
【解析】设 ,函数 的单调递增区间为 .由 ,得 .易知 .
【试题来源】人教版A版必修4第39页例5.
【母题评析】本题考查三角函数单调区间的求法,是历年来高考的一个常考点.
【思路方法】限定区间上三角函数单调区间的求法:先用整体思想求
【技能方法】解决三角函数的单调性有关的问题,要结合函数的图象及其性质。
考向6已知三角函数的奇偶性、对称性或周期求参数的值
已知函数 ( , ),其图像与直线 相邻两个交点的距离为 ,若 对于任意的 恒成立,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】令 ,可得 ,
∵函数 ( , )的图像与直线 相邻两个交点的距离为 ,
∴函数 的图象与直线 相邻两个交点的距离为 ,
∴函数 的周期为 ,故 ,∴ .∴ .
由题意得“ 对于任意的 恒成立”等价于“ 对于任意的 恒成立”.∵ ,∴ ,
∴ ,∴ .
故结合所给选项可得C正确.选C.
【技能方法】本题难度较大,解题时根据题意得 在 上的取值范围是 的子集去处理,由此通过不等式可得 的范围,结合选项得解.
④将 的图象向右平移 个单位可得到图像 .
【答案】①②③
【解析】对于 ,
令 ,求得f(x)=−1,为函数的最小值,故它的图象C关于直线 对称故①正确.
令x= ,求得f(x)=0,可得它的图象C关于点( ,0)对称,故②正确.
令 ,可得 ,故函数f(x)在区间 是增函数,故③正确,
由 的图象向右平移 个单位长度可以得到 故排除④,
【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等.

高中三角函数专题练习题(附答案)

高中三角函数专题练习题(附答案)

高中三角函数专题练习题(附答案)一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________. 3.在ABC 中,7AB =3BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △3②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.4.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________. 5.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.6.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.7.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.8.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6 B .-8C .-9D .-1212.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b c a <<D .b a c <<13.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+⎪⎝⎭,x ∈R D .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R14.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .⎣D .32⎡⎢⎣15.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π16.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论:①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( ) A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.将函数()sin 2g x x =向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).24.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.25.函数()()sin tan f x x ω=,其中0ω≠. (1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.26.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 27.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值28.已知函数()()()2331?0f x cos x sin x cos x ωωωω=+-->,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值. 29.已知函数2()2cos 23sin cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.6π23(21)+ 3.①③4.165385.4242[ 6.π3##60°7.258159.(2,310.-7二、单选题11.A 12.D 13.D 14.A 15.A 16.B 17.A 18.B 19.B 20.C 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-. 【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)2()2sin 233f x x π⎛⎫=-+ ⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x 的解析式;(2)令()t fx =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭. (2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以1cos x =2cos x = ②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以1cos x2cos x =③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题.24.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围. 【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥, 所以31x ≤-(舍)或36x ≥,故31log 2x ≥+, 所以2(())0f g x ≥的解集为[31log 2,)++∞. (2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值.当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a≤-即2a ≤-时,()min 5h t a =-; 当12a>即2a >时, ()min –5h t a =-. 故2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题.25.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析. 【解析】(1)根据奇偶函数的定义进行判断即可;(2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()11112122g x x x x x ⎛⎫=+≥⨯⋅= ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个,当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198. 【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.26.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1- 【解析】【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域 【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+. (2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈- ⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=- 时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 27.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.28.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2) 15. 【解析】【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果. 【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤, ∴32(2)113sin x πω-≤+-≤, ∴()f x 的最大值为1,最小值为3-.又()()121,3f x f x ==-,且12min 2x x π-=, ∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=, ∴()2(2)13f x sin x π=+-. 由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴4sin 35πβ⎛⎫-= ⎪⎝⎭. ∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭. ∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭,∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解. 29.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m 【解析】【分析】 (Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间; (Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果. 【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭, 由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈ 所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭. 因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册

高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册

第1课时正弦函数、余弦函数的周期性与奇偶性知识点一周期函数1.周期函数状元随笔关于最小正周期(1)并不是所有的周期函数都有最小正周期,如常数函数f(x)=C,对于任意非零常数T,都有f(x+T)=f(x),即任意常数T都是函数的周期,因此没有最小正周期.(2)对于函数y=A sin(ωx+φ)+B,y=A cos(ωx+φ)+B,可以利用公式T=2π|ω|求最小正周期.知识点二正弦函数、余弦函数的周期性和奇偶性状元随笔关于正、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点(0,0)对称,余弦曲线关于y轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.提醒:诱导公式三是正弦函数、余弦函数的奇偶性的另一种表示形式.[教材解难]1.教材P202思考函数的周期性与解析式中x的系数有关.2.教材P202思考知道了一个函数的周期性和奇偶性能更容易画出函数的图象,从而得到函数的性质. [基础自测]1.下列函数中,周期为π2的是( )A .y =sin x 2B .y =sin 2xC .y =cos x4D .y =cos 4x解析:对于A ,T =2π12=4π,对于B ,T =2π2=π,对于C ,T =2π14=8π,对于D ,T =2π4=π2.答案:D2.函数f (x )=sin(-x )的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数,故选A.答案:A3.下列函数中是偶函数的是( ) A .y =sin 2x B .y =-sin x C .y =sin|x | D .y =sin x +1解析:A 、B 是奇函数,D 是非奇非偶函数,C 符合f (-x )=sin|-x |=sin|x |=f (x ),∴y =sin|x |是偶函数.答案:C 4.函数y =sin ⎝⎛⎭⎪⎫π2-x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =π2对称解析:因为y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x , 又因为cos(-x )=cos x ,为偶函数,所以根据余弦函数的图象和性质可知其图象关于y 轴对称. 答案:B题型一 求三角函数的周期[教材P 201例2] 例1 求下列函数的周期: (1)y =3sin x ,x ∈R ; (2)y =cos 2x ,x ∈R ;(3)y =2sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .【解析】 (1)∀x ∈R ,有3sin(x +2π)=3sin x . 由周期函数的定义可知,原函数的周期为2π.(2)令z =2x ,由x ∈R 得z ∈R ,且y =cos z 的周期为2π,即cos(z +2π)=cos z ,于是cos(2x +2π)=cos 2x ,所以cos 2(x +π)=cos 2x ,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令z =12x -π6,由x ∈R 得z ∈R ,且y =2sin z 的周期为2π,即2sin(z +2π)=2sinz ,于是2sin ⎝ ⎛⎭⎪⎫12x -π6+2π=2sin ⎝ ⎛⎭⎪⎫12x -π6,所以2sin ⎣⎢⎡⎦⎥⎤12(x +4π)-π6=2sin ⎝ ⎛⎭⎪⎫12x -π6.由周期函数的定义可知,原函数的周期为4π.状元随笔 通常可以利用三角函数的周期性,通过代数变形,得出等式f(x +T)=f(x)而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2(x +T)=cos 2x ,x∈R ; 对于(3),应从正弦函数的周期性出发,通过代数变形得出sin ⎣⎢⎡⎦⎥⎤12(x +T )-π6=sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .教材反思求函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω>0),可利用T =2πω来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.跟踪训练1 (1)下列函数中,不是周期函数的是( ) A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |(2)函数y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的周期为________. 解析:(1)画出y =sin|x |的图象,易知y =sin|x |不是周期函数.(2)方法一 因为2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6. 所以y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.方法二 函数的周期T =2π|ω|=2π13=6π.答案:(1)D (2)6π(1)作出函数的图象,根据周期的定义判断.(2)利用周期的定义,需要满足f(x +T)=f(x) ;也可利用公式T =2π|ω|计算周期.题型二 正、余弦函数的奇偶性问题[经典例题] 例2 判断下列函数的奇偶性. (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2; (2)f (x )=sin(cos x ).【解析】 (1)函数的定义域为R .且f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x .因为f (-x )=-sin(-2x )=sin 2x =-f (x ),所以函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2是奇函数.(2)函数的定义域为R .且f (-x )=sin[cos(-x )]=sin(cos x )=f (x ), 所以函数f (x )=sin(cos x )是偶函数.先用诱导公式化简,再利用定义法判断函数的奇偶性.方法归纳利用定义判断函数奇偶性的三个步骤注意:若函数f (x )的定义域不关于原点对称,无论f (-x )与f (x )有何关系,f (x )仍然是非奇非偶函数.跟踪训练2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解析:(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. (1)利用定义法判断函数的奇偶性.(2)由偶次根式被开方数大于等于0求出cos x 的值以及x 的值,最后判断函数的奇偶性.题型三 三角函数的奇偶性与周期性的综合应用[经典例题]例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解析】 因为f (x )的最小正周期是π, 所以f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3, 因为f (x )是R 上的偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.利用周期性 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫53π-2π=f ⎝ ⎛⎭⎪⎫-π3,再利用奇偶性f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3,最后代入求值.方法归纳三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.(2)判断函数y =A sin(ωx +φ)或y =A cos(ωx +φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y =A sin ωx (A ω≠0)或y =A cos ωx (A ω≠0)其中的一个.跟踪训练3 若本例中函数的最小正周期变为π2,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π的值.解析:因为f (x )的最小正周期是π2,所以f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6=sin π6=12利用周期性f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫π6代入求值.课时作业 34一、选择题1.函数y =-5cos(3x +1)的最小正周期为( ) A.π3B .3π C.2π3 D.3π2解析:该函数的最小正周期T =2πω=2π3.答案:C2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:因为f (x )的定义域是R ,且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ), 所以函数f (x )为奇函数. 答案:A3.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x , f (x )定义域为R ,且f (-x )=-cos(-2 010x )=-cos 2010x =f (x ), 所以函数f (x )为偶函数. 答案:B4.函数f (x )=x sin ⎝⎛⎭⎪⎫π2-x ( )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数解析:由题,得函数f (x )的定义域为R ,关于原点对称,又f (x )=x sin ⎝⎛⎭⎪⎫π2-x =x cosx ,所以f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以函数f (x )为奇函数.答案:A 二、填空题5.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数.答案:奇6.函数y =cos (1-x )π2的最小正周期是________.解析:∵y =cos ⎝ ⎛⎭⎪⎫-π2x +π2,∴T =2ππ2=2π×2π=4.答案:47.函数f (x )是以2为周期的函数,且f (2)=3,则f (8)=________. 解析:∵f (x )的周期为2, ∴f (x +2)=f (x ),∴f (8)=f (2+3×2)=f (2)=3.答案:3 三、解答题8.求下列函数的最小正周期: (1)y =cos ⎝ ⎛⎭⎪⎫-2x +π6;(2)y =|sin x 2|. 解析:(1)利用公式T =2π|ω|,可得函数y =cos ⎝⎛⎭⎪⎫-2x +π6的最小正周期为T =2π|-2|=π. (2)易知函数y =sin x 2的最小正周期为T =2π12=4π,而函数y =⎪⎪⎪⎪⎪⎪sin x 2的图象是由函数y =sin x 2的图象将在x 轴下方部分翻折到上方后得到的,此时函数周期减半,即y =⎪⎪⎪⎪⎪⎪sin x 2的最小正周期为2π.9.判断下列函数的奇偶性. (1)f (x )=3cos 2x ;(2)f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2;(3)f (x )=x ·cos x . 解析:(1)因为x ∈R ,f (-x )=3cos(-2x )=3cos 2x =f (x ),所以f (x )=3cos 2x 是偶函数. (2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,所以f (-x )=-cos 3(-x )4=-cos 3x 4=f (x ),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ), 所以f (x )=x cos x 是奇函数. [尖子生题库]10.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解析:(1)y =12cos x +12|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎝⎛⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),0,x ∈⎝ ⎛⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.。

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .5-B .19-C .5 D .193.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1524.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-5.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425- B .725 C .2425D .725-6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .3B .12-C .32D .127.2cos 232cos()4θθθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.设31cos 29sin 2922a =-,1cos662b -=、22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .459C .19-D .459-10.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号).17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.若函数223sin cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=- ⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin2cos()cos cos sin sin444θθθπππθθθ-=-+()cos sin cos sin2cos sinθθθθθθ+-==-,()2cos sin2θθθ∴-=,两边平方得()241sin23sin2θθ-=,解得sin22θ=-(舍去)或2sin23θ=.故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin2θθθ-=,再平方求解.8.B解析:B【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,ab c,然后由正弦函数的单调性得出结论.【详解】129si sin(6029)si3n29122na =︒-︒=︒=-,b=sin33==︒,2222sin162tan16cos162sin16sin161tan161ccos16sin32os16c===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b<<.故选:B.【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.9.C解析:C【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1215.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】 由题意3sin 2θ=-,1cos 2θ=,所以,31sin sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可. (2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,22f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =. 【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可. 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为 【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin15cos15+=( ) A .12B .22C .3 D .6 8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫=⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 15.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 16.方程2sin 2cos 20x x ++=的解集为________.17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()sin 31f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 23.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 24.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒2321622-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒2321622+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 603h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±16.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-18.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭ 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 23.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭,当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.24.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫-⎪⎝⎭的值;【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由已知得23f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角. 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

(新教材)新人教A版必修第一册培优练习:(10)函数的基本性质Word版含答案

(新教材)新人教A版必修第一册培优练习:(10)函数的基本性质Word版含答案

精英同步卷(10 )函数的基本性质1奇函数f(x)的定义域为R ,若f(x 2)为偶函数,且f ⑴=1,则f(8) f(9)=()3、设函数f(x),g(x)的定义域都为 R ,且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的C. f (x) g (x)|是奇函数 DJ f (x) g (x)是奇函数4、设偶函数 f(x)满足 f(x) =x 3 _8(x _0),则 fx|f(x_2) .0^-() A. & | x v -2或x >4} B. {x|x v0或x >4} C.f x|x ::0或x 6 /D.「X|X < -2 或x :-2?5、 已知f(x)是定义域为(-:,;)的奇函数,满足f(1—x)=f(1 - x) .若 f(1)=2,则 f(1) f(2) - f (3) 曲(50)=()A.-50B.0C.2D.506、 已知函数f(X )是定义在区间1-2, 2止的偶函数,当 1.0,2 ]时,f(x)是减函数,若不等式 f (1 -m) ::: f (m)成立,则实数m 的取值范围为() A. -1,1B.(1,2)C.(」:,0)D. (-::,1)7、 已知偶函数f(x)在区间_::,o ]上单调递减,则满足f(2x ,1):::f (3)的x 的取值范围是() A. (-1,2)B.(-2,1)C.(-1,1)D.(-2,2)8、 定义在R 上的函数f(x)是偶函数,且 f (x)二f(2 -x)若f(x)在区间1,2 ]上是减函数,则 ()A.在区间1-2, -1 ]上是增函数,在区间3,4 ]上是增函数A.-2B.-1C.OD.12、已知函数f(x)为奇函数,且当x 0时,2 1 j f x ]=x 2— . 0,则 f -1 =( xA. -2B. 0C. 1D. 2A. f(x)g(x)是偶函数B. | f (x) g (x)是奇函数B.在区间[-2, -1 ]上是增函数,在区间3,4 ]上是减函数C.在区间[_2, _1 ]上是减函数,在区间3,4 ]上是增函数D.在区间1-2, _1 ]上是减函数,在区间3,4 ]上是减函数9、若定义在R上的函数f (x)满足对任意的X i,X2 .二R,都有f (x i亠X2) = f (x i)亠f(X2),且当x 0 时,f(x) <0,则()A. f(x)是奇函数,且在R上是增函数B. f(x)是奇函数,且在R上是减函数C. f(x)是奇函数,但在R上不是单调函数D. 无法确定f (x)的单调性和奇偶性10、定义在R上的偶函数f(x)在(0,匸:)上是增函数,则()A. f(3) f(4) :::f(Y)B.f(Y):::f(—4) :::f(3)C. f (3) ::: f(Y)::: f(4)D. f O ::: f (-二):::f (3)11、设奇函数f(x)在(0, •::)上是增函数,且f(1)=0,则不等式x [f (x) _ f (_x) .1 :::0的解集为12、已知偶函数f(x)在b,畑)单调递减,f(2) =0,若f(x—1)A0,则x的取值范围是__________________13、奇函数f(x)的定义域为1^,5 ],若当x・[0,5 ]时,f(x)的图象如图所示,则不等式f(x):::0,则不等式x f(x) <0的解集为x a为偶函数,则实数a16、已知偶函数f(x)在区间[0, •::上单调递增,则满足f(2x-1):::f I -的x的取值范围是答案以及解析1答案及解析:答案:D解析:••• f(x 2)为偶函数,f(x)是奇函数,二设g(x)二f (x 2),则g(_x)二g(x),即卩f ( _x 2) = f (x 2) .v f(x)是奇函数,••• f (_x 2) = f (x 2) = -f (x -2),即f(x 4) = —f (x), f (x 8) = f (x 4 4) = —f (x 4) = f (x),则f (8) = f(0) =0, f(9) = f(1)=1,•f(8) f(9) =0 1 =1,故选 D.2答案及解析:答案:A解析:3答案及解析:答案:C解析:v f(x)是奇函数,g(x)是偶函数,• f (_x) --f(x),g(_x)二g(x),•f ( -x) g(—x)二-f (x) g(x) ,• f (x)g(x)是奇函数,故A 错误;f (_x)g (_x) = f(x) g(x)为偶函数,故B 错误;f ( _x) • g ( _x) = _f (x) • g(x)是奇函数故C 正确;f ( _x)・g (—x) = f (x) g (x) 为偶函数,故D错误•故选C.4答案及解析:答案:B解析:v f (x) =x3 _8(x _0),•••令f(x) 0 ,得x 2.又f(x)为偶函数且 f (x - 2) 0 ,• f ( x -2) 0 ,• x -2 . 2 ,解得x 4或X ::0.5答案及解析:答案:C解析:v f(x)是奇函数,f ( -x) - -f (x) , • f (1 - x) - - f (x -1).f(1 _x) = f(1 x),二_f(x _1) = f (x 1),二 f (x • 2) = _f (x),二 f (x • 4) = _f (x • 2) - _ 丨_f (x) I - f (x),•••函数f(x)是周期为4的周期函数.由f(x)为奇函数得f(0) =0.又••• f(1 _x)二f(1 x),•- f(x)的图象关于直线x =1对称,• f (2) =f (0) =0, • f(-2) =0.又f(l)=2,「. f (_1)二―2,•f(1) f(2) f(3) f(4)=f(1) f(2) f(-1) f (0)-2 0 -2 0=0,•f(1) f (2) f(3) f(4)—幕f(49) f(50)=0 12 f(49) f (50) = f(1) f(2) =2 0=2.6答案及解析:答案:A 解析:T f(x)是定义在区间丨_2,2止的偶函数f(1 — m) ::: f(m) ,• f(1 -m^:: f ( m).又T当X • 0,2 ]时,f(x)是减函数,T-2-^-m<2二"-2 _m _21-旳|m7答案及解析:答案:B解析:T f (x)为偶函数,• f (2x ■ 1^ f (2x 1).由f(2x 1) ::: f (3), 得 f (2x - 1) ::: f (3).T偶函数f(x)在一::,0 ]上单调递减,•••偶函数f(X)在0,;上单调递增,则2x 1 :::3,解得-2 : X :::1,故选B.8答案及解析:答案:B解析:因为f(x)是偶函数,所以图象关于y轴对称•又因为f(x)在区间1,2 ]上是减函数所以在区间|_2, _1 ]上是增函数•在f (x) = f(2 — x)中,以X • 1代替x,得f (1 • x) = f (1—x),所以f (x)的图象关于直线X=1对称,选一个满足以上所有性质的函数的代表并作出其图象如图所示•4 _3 J 士】0■12 3 4 ^因为函数f(x)在区间[_2, _1 ]与3,4 上的图象关于直线X=1对称,所以函数在区间|3,4 ]上是减函数,故选B.9答案及解析:答案:B解析:T f区• X2) = f (xj • f化)对任意X1,X2 :=R都成立,•••令X1 =X2 =0 ,可得 f (0)=0,令X2 =-为,则 f (xj • f ( —xj = f (0) =0 ,即f(_x) - -f (x) ,• f(x)为奇函数•令X2 X! • 0 ,则X2「X1 . 0 .f (x)2 -f(X1) = f(X2 -X1 • X1) -f(X1 ) = f(X2 -X1) • f(X1 ) - f(X1) = f(X2 -X1) ::: 0• f(X2)::: f (xj ,• f(x)在(0,::)上为减函数.又f(x)为奇函数,• f(x)在R上是减函数• 10答案及解析:答案:C解析:•/ f(x)在R 上是偶函数,••• f(-蔥)=f(J f (V) =f (4).而4,且f(x)在(0,v)上是增函数,• f ⑶:::f(J ::: f(4),即 f ⑶:::f(Y):::—11答案及解析:答案::x | -1... x:::0或0 :::x ::1解析:由题知f (丄)=_f(x),•••不等式x |f (x) —f (_x) | :::0 可化简为xf (x) ::: 0 .又f ⑴=0 ,••• f( _1) =0.•••奇函数f(x)在(0, •::)上是增函数,从而函数f(x)的大致图象如图所示,则不等式x f (x) _ f ( _x) | :::0 的解集为‘ X1-仁:X :0或0::X :::1.12答案及解析:答案:(-1,3)解析:•••偶函数f(x)在0,;上单调递减,f(2)=0,「.不等式f(x-1) .0等价于f(x -1) f (2) , ••f(x -1) ■ f (2) ,• x -1 ::: 2,解得-1 ::X :313答案及解析:答案:(-2,0) 一2,5 ]解析:由于奇函数的图象关于原点对称故函数f(x)在定义域匚5,5 ]上的图象如图所示.由图象知不等式f(X)£0的解集是(-2,0) u(2,5 ].14答案及解析:答案:(-2,-1) 一(1,2)解析:••• x f(x) <0,•①当x 0时,f(x) :::0,结合函数的图象可得1:x::2;②当x:::0时,f (x) .0 ,根据奇函数的图象关于原点对称,可得-2 :::x ::: -1,二不等式x f(x) <0的解集为(-2,-1) 一(1,2).1?15答案及解析:答案:0 解析:•••函数 f(x) =X -x a 为偶函数,••• f (_X )=f (X ),即(_x)2「_X • a =x 2 _ X - a J_x a = x a ,• a =0.16答案及解析:解析:偶函数f(x)在区间[0,; 上单调递增,所以函数f(x)在区间 :,0 ]上单调递减•由于f(x)是偶函数,所以f(-x)=f(x),则f _丄二f 1 .由13丿2丿I 2x~11 2 1 1 12 { 1②,解①得丄兰XC 2,解②得1 vx<—综上,得」<xc 22x -1 •-1 2 3 3 2 333答案: 1,22x -1 _ 0 ! 1 ,①或 2x -仁:- I 3,故x 的取值范围是。

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。

期末复习:题型热搜卷2 函数奇偶性的应用-【新教材】人教A版(2019)高中数学必修第一册

期末复习:题型热搜卷2 函数奇偶性的应用-【新教材】人教A版(2019)高中数学必修第一册

专题二 函数的奇偶性的应用【题型1】 利用奇偶性求参数的值1、若函数()()213f x kx k x =+-+是偶函数,则k 等于____.2、已知2()f x ax bx =+是定义在[1a -,2]a 上的偶函数,那么a b +的值是()A .13-B .13C .12-D .123、已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值可以是( )A.2B.23C.4D.64、已知函数2()21xx b f x -=+为定义是区间[-2a ,3a -1]上的奇函数,则a +b=_____.【题型2】 利用奇偶性求函数的值5、如图,给出奇函数()y f x =的局部图象,则()()21f f -+-的值为( )A .2-B .2C .1D .06、已知函数2()221x f x x -=++,若()2f m =,则()(f m -= ) A .2 B .0 C .2- D .4-7、已知函数331()5f x ax bx x=+--,且(2)2f -=,那么f (2)等于( )A .12-B .2C .18-D .108、设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.9、已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A.-3B.-1C.1D.3【题型3】 利用奇偶性求函数解析式10、已知定义在R 上的奇函数分()f x ,当0x >时,2()2f x x x =-+(1)求函数()f x 在R 上的解析式;(2)写出()f x 单调区间(不必证明)11、设定义在[-2,2]上的奇函数f (x )=x 5+x 3+b . (1)求b 值;(2)若f (x )在[0,2]上单调递增,且f (m )+f (m -1)>0,求实数m 的取值范围.【题型4】 利用奇偶性求函数的最值或值域12、已知函数f (x )=mx 2+nx +3m +n 是偶函数,且其定义域为[m -1,2m ].(1)求m ,n 的值;(2)求函数f (x )在其定义域上的最大值.13、已知二次函数()()21f x x ax a R =-++∈(1)若函数()f x 为偶函数,求a 的值(2)若函数()f x 在区间[]1,1-上的最大值为()g a ,求()g a 的最小值14、已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =--. (1)求当0x >时,函数()f x 的解析式;(2)作出函数()f x 的图象,并写出函数()f x 的增区间(不需要证明); (3)若函数()(),([2,4])1f xg x x x x =+∈-,求函数()g x 的最小值.答案解析1、【答案】1【解析】由于函数()()213f x kx k x =+-+是偶函数,所以()()f x f x =-即()()221313kx k x kx k x +-+=--+,所以()210k x -=恒成立,所以1k =.2、【解析】解:依题意得:()()f x f x -=,0b ∴=,又12a a -=-,13a ∴=, 13a b ∴+=.故选:B . 3、【答案】A【解析】因为函数f (x )的定义域为(3-2a ,a +1),所以在函数f (x +1)中,3-2a <x +1<a +1,则函数f (x +1)的定义域为(2-2a ,a ),又因为f (x +1)为偶函数,所以2-2a =-a ,a =2,故选A. 4、【答案】2.【解析】因为函数()221xx b f x -=+为定义是区间[-2a ,3a -1]上的奇函数,所以-2a +3a -1=0,所以a =1.又()002100212b b f --===+,所以b =1.故a +b =2. 5、【答案】A【解析】由图知()()131,322f f ==, 又()f x 为奇函数,所以()()()()21212f f f f -+-=--=-.故选A.6、【解析】解:根据题意,222()222112xx xf x x x ----=-=-++,则222222()()222211212x xx x xf x f x x x ----+-=++-==-+++,则有()()2f m f m +-=-,又由()2f m =,则()4f m -=-; 故选:D .7、【解答】解:令331()g x ax bx x=+-, 则()()g x g x -=-是奇函数,(2)(2)52f g -=--=,故(2)7g -=,g (2)7=-,故f (2)g =(2)512-=-, 故选:A . 8、【答案】【解析】∵f (x )是定义在R 上的奇函数, ∴f (0)=0.又f (x )关于直线x =对称,∴f =f .①在①式中,当x =时,f (0)=f (1)=0.在①式中,以+x 代替x ,得f (-x )=f (1+x ).∴f (2)=f (1+1)=f (-1)=-f (1)=0,f (3)=f (1+2)=f (-2)=-f (2)=0,同理, f (4)=f (5)=0.∴f (1)+f (2)+f (3)+f (4)+f (5)=0.9、【答案】C【解析】分别令x =1和x =-1可得f (1)-g (1)=3和f (-1)-g (-1)=1,因为函数f (x ),g (x )分别是定义在R 上的偶函数和奇函数,所以f (-1)=f (1),g (-1)=-g (1),即f (-1)-g (-1)=1⇒f (1)+g (1)=1,则⇒⇒f (1)+g (1)=1,故选C.10、【解答】解(Ⅰ)根据题意,设0x <,则0x ->,22()()2()2f x x x x x -=--+-=--, 又()f x 为奇函数,所以()()f x f x -=-. 于是0x <时,2()2f x x x =+,又由()f x 为R 上的奇函数,则(0)0f =,则222,(0)()0,(0)2,(0)x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩;(Ⅱ)由(Ⅰ)可得:222,(0)()0,(0)2,(0)x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩;可知()f x 在[1-,1]上单调递增,在(,1)-∞-、(1,)+∞上单调递减.11、[解] (1)因为函数f (x )是定义在[-2,2]上的奇函数,所以f (0)=0,解得b =0.(2)因为函数f (x )在[0,2]上是增函数,又因为f (x )是奇函数,所以f (x )在[-2,2]上是单调递增的,因为f (m )+f (m -1)>0, 所以f (m -1)>-f (m )=f (-m ), 所以m -1>-m ,①又需要不等式f (m )+f (m -1)>0在函数f (x )定义域范围内有意义.所以⎩⎪⎨⎪⎧-2≤m ≤2,-2≤m -1≤2② 解①②得12<m ≤2,所以m 的取值范围为⎝⎛⎦⎤12,2. 12、【答案】(1)∵函数f (x )=mx 2+nx +3m +n 是偶函数, ∴函数的定义域关于原点对称, 又∵函数f (x )的定义域为[m -1,2m ].∴m -1+2m =0,解得m =,又由f (-x )=mx 2-nx +3m +n =f (x )=mx 2+nx +3m +n , 可得n =0.(2)由(1)得函数的解析式为f (x )=x 2+1,定义域为[-,].其图象是开口向上,且以y 轴为对称轴的抛物线,当x =±时,f (x )取最大值.13、【详解】(1)因为()f x 是偶函数,所以()()f x f x -=,即2211x ax x ax --+=-++,0ax =恒成立,所以0a =;(2)222()1()124a a f x x ax x =-++=--++, 当12a≤-,即2a ≤-时,()(1)g a f a =-=-, 当112a -<<,即22a -<<时,2()()124a a g a f ==+, 当12a≥,即2a ≥时,()(1)g a f a ==, 综上,2,2()1,224,2a a a g a a a a -≤-⎧⎪⎪=+-<<⎨⎪≥⎪⎩. 从而2a ≤-时,()2g a ≥,2a ≥时,()2g a ≥,22a -<<时,min ()(0)1g a g ==.所以()g a 的最小值为1.14、【详解】(Ⅰ)设0x >,则0x -<,由当0x ≤时,2()2f x x x =--,则()22f x x x -=-+,又因为()f x 是定义在R 上的奇函数,,则()()22f x f x x x -=-=-+,所以()22f x x x =-,综上所述,()222,02,0x x x f x x x x ⎧->=⎨--≤⎩. (Ⅱ)函数()f x 的图象如下:由图像可知:增区间为(],1-∞-和[)1,+∞.(Ⅲ)由(Ⅰ)可得当[2,4]x ∈,22()223()111f x x x x xg x x x x x x --=+=+=--- ()12111x x =--+-,所以函数在[]2,4单调递增,所以()2min 22322221g ⨯-⨯==-。

【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一 答题卡及答案解析

【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一     答题卡及答案解析

必修4《三角函数》单元测试卷一(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一项是符合题目要求的.1.若点(,)P x y 是330︒角终边上异于原点的一点,则yx的值为( )A B .C D . 2.已知角α的终边经过点(3,4)-,则cos α的值为( ) A .34-B .35C .45-D .43-3.若|cos |cos θθ=,|tan |tan θθ=-,则2θ的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数()sin(2)(02)f x x πθθπ=+<<的最小正周期是T ,且当1x =时取得最大值,那么( ) A .1T =,2πθ=B .1T =,θπ=C .2T =,θπ=D .2T =,2πθ=5.若sin()2x π-=2x ππ<<,则x 等于( )A .43π B .76π C .53π D .116π6.已知a 是实数,则函数()1sin f x a ax =+的图象不可能是( )A .B .C .D .7.为得到函数sin()6y x π=+的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数,则||m n -的最小值是( )A .3π B .23π C .π D .2π8.若tan 2θ=,则2sin cos sin 2cos θθθθ-+的值为( )A .0B .1C .34D .549.函数tan 1cos xy x=+的奇偶性是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .既不是奇函数,也不是偶函数10.函数()cos f x x =在(0,)+∞内( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()⎪⎭⎫⎝⎛≤6πf x f 对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( ) A .[3k ππ-,]()6k k Z ππ+∈ B .[k π,]()2k k Z ππ+∈C .[6k ππ+,2]()3k k Z ππ+∈ D .[2k ππ-,]()k k Z π∈12.函数()3sin f x = (2)3x π- 的图象为C .①图象C 关于直线1112x π=对称; ②函数()f x 在区间(12π-,5)12π内是增函数; ③由3sin y = 2x 的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0个B .1个C .2个D .3个二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卷相应位置上.13.已知2sin()sin()2παπα-=+,则tan()πα-的值是 .14.函数y =3cos x (0≤x ≤π)的图象与直线3y =-及y 轴围成的图形的面积为 . 15.已知函数f (x )=sin (ωx +φ)(ω>0,﹣π≤φ<π)的图象如图所示,则ϕ=16.给出下列命题:①函数2cos()32y x π=+是奇函数;②存在实数x ,使sin cos 2x x +=;③若α,β是第一象限角且αβ<,则tan tan αβ<;④8x π=是函数5sin(2)4y x π=+的一条对称轴; ⑤函数sin(2)3y x π=+的图象关于点(,0)12π成中心对称.其中正确命题的序号为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知sin α是方程25760x x --=的根,求333sin()sin()tan (2)22cos()cos()22αππαπαππαα-----+的值.18.(12分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,)x R ∈在一个周期内的图象如图所示,求直线y =()f x 图象的所有交点的坐标.19.(12分)已知3()sin(2)62f x x π=++,x R ∈(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调减区间;(3)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样变换得到?20.(12分)已知函数sin()(0y A x A ωϕ=+>,0)ω>的图象过点(12P π,0),图象与P 点最近的一个最高点坐标为(3π,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x 的值; (3)求使y ≤0时,x 的取值范围.21.(12分)已知cos()2sin()22ππαα+=-.(1)求4sin 2cos 3sin 5cos αααα-+的值.(2)求22111sin sin cos cos 432αααα++的值.22.(12分)函数()sin()f x A x ωϕ=+的图象如图所示,且过点(0,1),其中0A >,0ω>,||2πϕ<.(1)求函数的解析式.(2)若函数()f x 的图象向左平移m 个单位所对应的函数()h x 是奇函数,求满足条件的最小正实数m .(3)设函数()()1g x f x a =++,[0x ∈,]2π,若函数()g x 恰有两个零点,求a 的范围.必修4《三角函数》单元测试卷一答题卡成绩:一、选择题(本题满分60分)二、填空题(本题满分20分)13 . 14.15.16.三、解答题(本题满分70分)班级 姓名 座号密 封 装 订 线必修4《三角函数》单元测试卷一答案解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若点P(x,y)是330°角终边上异于原点的一点,则的值为()A.B.C.D.【分析】由三角函数的定义知=tan330°,计算即可.【答案】解:由题意知,=tan330°=﹣tan30°=﹣.故选:D.【点睛】本题考查了三角函数的定义与应用问题,是基础题.2.已知角α的终边经过点(3,﹣4),则cosα的值为()A.﹣B.C.﹣D.﹣【分析】由条件利用本任意角的三角函数的定义,求得cosα的值.【答案】解:∵角α的终边经过点(3,﹣4),∴x=3,y=﹣4,r=5,则cosα==,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.若|cosθ|=cosθ,|tanθ|=﹣tanθ,则的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上【分析】利用已知条件,判断θ所在象限,然后求解即可.【答案】解:|cosθ|=cosθ,∴θ是第一、四象限或x轴正半轴;|tanθ|=﹣tanθ,说明θ是二.四象限或x轴;所以θ是第四象限或x轴正半轴,∴k•360°+270°<θ≤k•360°+360°,k∈Z,则k•180°+135°<≤k•180°+180°,k∈Z,令k=2n,n∈Z有n•360°+135°<≤n•360°+180°,n∈Z;在二象限或x轴负半轴;k=2n+1,n∈z,有n•360°+315°<≤n•360°+360°,n∈Z;在四象限或x轴正半轴;故选:D.【点睛】本题考查三角函数的符号,象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4.如果函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且当x=1时取得最大值,那么()A.T=1,θ=B.T=1,θ=πC.T=2,θ=πD.T=2,θ=【分析】利用函数的周期公式求出T,通过当x=1时取得最大值求出θ判断即可.【答案】解:函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,可得T==1;当x=1时取得最大值,sin(2π+θ)=1,0<θ<2π,可得θ=.故选:A.【点睛】本题考查三角函数的周期以及三角函数的最值的求法,考查计算能力.5.若sin(﹣x)=且π<x<2π,则x等于()A.B.C.D.【分析】利用诱导公式求得cos x的值,结合角x的范围,以及特殊角的三角函数的值,求得x的值.【答案】解:sin(﹣x)==cos x,且π<x<2π,则x=,故选:D.【点睛】本题主要考查诱导公式,特殊角的三角函数的值,属于基础题.6.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()A.B.C.D.【分析】根据当a=0时,y=1,可判断图象哪个符合,当a≠0时,f(x)周期为,振幅a,分类讨论a>1时,T<2π;0<a≤1,T≥2π利用所给图象判断即可得出正确答案.【答案】解:∵函数f(x)=1+a sin ax(1)当a=0时,y=1,函数图象为:C故C正确(2)当a≠0时,f(x)=1+a sin ax周期为T=,振幅为a若a>1时,振幅为a>1,T<2π,当0<a≤1,T≥2π.∵D选项的图象,振幅与周期的范围矛盾故D错误,故选:D.【点睛】本题考察了三角函数的图象和性质,分类讨论的思想,属于中档题,关键是确定分类的标准,和函数图象的对应.7.为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π【分析】根据函数左右平移关系,求出m,n的表达式,然后根据绝对值的意义进行求解即可.【答案】解:y=sin x的图象向左平移+2kπ个单位长度,即可得到函数y=sin(x+)的图象,此时m=+2kπ,k∈Z,y=sin x的图象向右平移+2mπ个单位长度,即可得到函数y=sin(x+)的图象,此时n=+2mπ,m∈Z,即|m﹣n|=|+2kπ﹣﹣2mπ|=|2(k﹣m)π﹣|,∴当k﹣m=1时,|m﹣n|取得最小值为2π﹣=,故选:A.【点睛】本题考查函数y=A sin(ωx+φ)的图象变换,利用函数平移关系是解决本题的关键.8.若tanθ=2,则的值为()A.0 B.1 C.D.【分析】将所求分子分母同除cosθ,利用同角三角函数基本关系式化简,代入tanθ=2,即可得到选项.【答案】解:∵tanθ=2,∴===.故选:C.【点睛】本题是基础题,考查同角三角函数基本关系式的应用,已知函数值求表达式的其它函数值,考查计算能力,常考题型.9.函数的奇偶性是()A.奇函数B.偶函数C.既是奇函数,又是偶函数D.既不是奇函数,也不是偶函数【分析】先考虑函数的定义域关于原点对称,其次判定f(x)与f(﹣x)的关系即可.【答案】解:先考虑函数的定义域关于原点对称,其次,故选:A.【点睛】定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件.判定函数奇偶性常见步骤:1、判定其定义域是否关于原点对称;2、判定f(x)与f(﹣x)的关系.10.函数f(x)=在(0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【分析】作函数y=与y=cos x的图象,从而利用数形结合的思想判断.【答案】解:作函数y=与y=cos x的图象如下,∵函数y=与y=cos x的图象有且只有一个交点,∴函数f(x)=在(0,+∞)内有且仅有一个零点,故选:B.【点睛】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.11.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ](k∈Z)【分析】由题意求得φ的值,利用正弦函数的性质,求得f(x)的单调递增区间.【答案】解:若f(x)≤|f()|对x∈R恒成立,则f()为函数的函数的最大值或最小值,即2×+φ=kπ+,k∈Z,则φ=kπ+,k∈Z,又f()>f(π),sin(π+φ)=﹣sinφ>sin(2π+φ)=sinφ,sinφ<0.令k=﹣1,此时φ=﹣,满足条件sinφ<0,令2x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[kπ+,kπ+](k∈Z).则f(x)的单调递增区间是[kπ+,kπ+](k∈Z).故选:C.【点睛】本题考查的知识点是函数y=A sin(ωx+φ)的图象变换、三角函数的单调性,属于基础题.12.函数f(x)=3sin (2x﹣)的图象为C.①图象C关于直线x=π对称;②函数f(x)在区间(﹣,)内是增函数;③由y=3sin 2x的图象向右平移个单位长度可以得到图象C.以上三个论断中,正确论断的个数是()A.0个B.1个C.2个D.3个【分析】①②由三角函数图象的对称性和单调性判断即可;③根据图象的平移可得.【答案】解:函数f(x)=3sin (2x﹣)的图象为C.①f(π)=﹣3,故x=π是函数的一条称对称轴,故正确;②函数f(x)的增区间为[kπ﹣,kπ+],故在区间(﹣,)内是增函数,故正确;③由y=3sin 2x的图象向右平移个单位长度可以得到图象y=3sin2(x﹣)的图象,故错误.故选:C.【点睛】考查了三角函数图象的对称性,单调性和函数图象的平移.属于基础题型,应熟练掌握.二.填空题(共4小题,满分20分,每小题5分)13.已知,则tan(π﹣α)的值是﹣2 .【分析】由已知利用诱导公式可得﹣2cosα=﹣sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.【答案】解:∵,∴﹣2cosα=﹣sinα,可得tanα=2,∴tan(π﹣α)=﹣tanα=﹣2.故答案为:﹣2.【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形的面积为3π.【分析】由题意画出图形,利用定积分表示曲边梯形的面积,然后计算求值.【答案】解:函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形如图:面积为=(3sin x+3x)=3π;故答案为:3π.【点睛】本题考查了定积分的应用;关键是利用定积分表示出所围成的图形面积.15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣π≤φ<π)的图象如图所示,则φ=﹣【分析】根据三角函数图象和性质,求出函数的周期,即可求出ω和φ的值.【答案】解:由图象得==,则T==,即ω=,即f(x)=sin(x+φ),∵f()=sin(×+φ)=1,∴×+φ=+2kπ,即φ=﹣+2kπ,∵﹣π≤φ<π,∴当k=0时,φ=﹣,故答案为:﹣.【点睛】本题主要考查三角函数的图象和性质,根据条件求出ω和φ的值是解决本题的关键.16.给出下列命题:①函数是奇函数;②存在实数x,使sin x+cos x=2;③若α,β是第一象限角且α<β,则tanα<tanβ;④是函数的一条对称轴;⑤函数的图象关于点成中心对称.其中正确命题的序号为①④.【分析】利用诱导公式、正弦函数和余弦函数性质以及图象特征,逐一判断各个选项是否正确,从而得出结论.【答案】解:①函数=﹣sin x,而y=﹣sin x是奇函数,故函数是奇函数,故①正确;②因为sin x,cos x不能同时取最大值1,所以不存在实数x使sin x+cos x=2成立,故②错误.③令α=,β=,则tanα=,tanβ=tan=tan=,tanα>tanβ,故③不成立.④把x=代入函数y=sin(2x+),得y=﹣1,为函数的最小值,故是函数的一条对称轴,故④正确;⑤因为y=sin(2x+)图象的对称中心在图象上,而点不在图象上,所以⑤不成立.故答案为:①④.【点睛】本题主要考查诱导公式、正弦函数和余弦函数性质以及图象特征,属于基础题.三.解答题(共6小题,满分70分)17.(10分)已知sinα是方程5x2﹣7x﹣6=0的根,求的值.【分析】由已知求得sinα,然后利用三角函数的诱导公式化简求值.【答案】解:由sinα是方程5x2﹣7x﹣6=0的根,可得sinα=或sinα=2(舍),∴===﹣tanα.由sinα=﹣可知α是第三象限或者第四象限角.∴tanα=或﹣.即所求式子的值为.【点睛】本题考查一元二次方程根的求法,考查利用诱导公式化简求值,考查计算能力,是基础题.18.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,x∈R)在一个周期内的图象如图所示,求直线y=与函数f(x)图象的所有交点的坐标.【分析】根据函数的最大值,得到A=2.由函数的周期为4,算出ω=,再根据当x=时,函数f(x)有最大值为2,解出φ=.因此得到f(x)=2sin(x+),然后解方程2sin(x+)=,结合正弦函数的图象可得x=+4kπ或+4kπ(k∈Z),由此即可得到直线y=与函数f(x)图象的所有交点的坐标.【答案】解:根据题意,得A=2,T==4π,可得ω=∵当x=时,函数f(x)有最大值为2∴ω×+φ=×+φ=+2kπ(k∈Z),解之得φ=+2kπ(k∈Z),取k=0得φ=因此,函数表达式为f(x)=2sin(x+)当f(x)=时,即2sin(x+)=,可得sin(x+)=∴x+=+2kπ或x+=+2kπ(k∈Z),可得x=+4kπ或+4kπ(k∈Z)由此可得,直线y=与函数f(x)图象的所有交点的坐标为(+4kπ,)或(+4kπ,)(k∈Z).【点睛】本题给出函数y=A sin(ωx+φ)的部分图象,要我们确定其解析式并求函数图象与y=的交点坐标,着重考查了三角恒等变换和三角函数的图象与性质等知识点,属于基础题.19.(12分)已知f(x)=sin(2x+)+,x∈R(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?【分析】由条件利用正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)对于f(x)=sin(2x+)+,x∈R,它的周期为T==π.(2)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,所以所求的单调减区间为[kπ+,kπ+],k∈Z.(3)把y=sin2x的图象上所有点向左平移个单位,可得y=sin(2x+)的图象;再向上平移个单位,即得函数f(x)=sin(2x+)+的图象.【点睛】本题主要考查正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,属于基础题.20.(12分)已知函数y=A sin(ωx+φ)(A>0,ω>0)的图象过点P(,0),图象与P点最近的一个最高点坐标为(,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x的值;(3)求使y≤0时,x的取值范围.【分析】(1)由函数的最大值求A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数取最大值的条件以及函数的最大值,得出结论.(3)由5sin(2x﹣)≤0,可得2kπ﹣π≤2x﹣≤2kπ(k∈Z),由此求得x的取值范围.【答案】解:(1)由题意知=﹣=,∴T=π.∴ω==2,由ω•+φ=0,得φ=﹣,又A=5,∴y=5sin(2x﹣).(2)函数的最大值为5,此时,2x﹣=2kπ+(k∈Z).∴x=kπ+(k∈Z).(3)∵5sin(2x﹣)≤0,∴2kπ﹣π≤2x﹣≤2kπ(k∈Z).∴x的取值范围是{x|kπ﹣≤x≤kπ+,(k∈Z)}.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,正弦函数的值域,解三角不等式,属于基础题.21.(12分)已知cos(+α)=2sin(α﹣).(1)求的值.(2)求sin2α+sinαcosα+cos2α的值.【分析】(1)直接利用诱导公式化简已知条件,化简所求表达式为正切函数的形式,求解即可.(2)所求表达式的分母通过平方关系式代换,然后化简所求表达式为正切函数的形式,求解即可.【答案】解:cos(+α)=2sin(α﹣).可得﹣sinα=﹣2cosα,∴tanα=2(1)===.(2)sin2α+sinαcosα+cos2α====.【点睛】本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.22.(12分)函数f(x)=A sin(ωx+φ)的图象如图所示,且过点(0,1),其中A>0,ω>0,|φ|<.(1)求函数的解析式.(2)若函数f(x)的图象向左平移m个单位所对应的函数h(x)是奇函数,求满足条件的最小正实数m.(3)设函数g(x)=f(x)+a+1,x∈[0,],若函数g(x)恰有两个零点,求a的范围.【分析】(1)由函数的图象可得T=(+)解得ω,图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ,图象经过(0,1),1=A sin(2×0+),可得A,从而可求函数的解析式.(2)由条件根据函数y=A sin(ωx+φ)的图象变换规律,可得y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,由此求得m的最小值.(3)根据正弦函数的单调性,得到当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,即2t+a+1=0,t∈[,1),由此建立关于a的不等式,解之即可得到实数a的取值范围.【答案】解:(1)由函数的图象可得T=(+)=π,T=,解得ω=2.图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ=,图象经过(0,1),1=A sin(2×0+),可解得A=2,故f(x)的解析式为y=2sin(2x+).(2)把函数f(x)的图象向左平移m个单位所对应的函数的解析式为:y=sin[2(x+m)+]=sin(2x+2m+),再根据y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,故m的最小值为.(3)g(x)=f(x)+a+1=2sin(2x+)+a+1,∵当x∈[0,]时,且x≠时,存在两个自变量x对应同一个sin x(2x+),即当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,∵g(x)=f(x)+a+1在x∈[0,]上有两个零点,即2t+a+1=0,t∈[,1),∴t =∈[,1),解之得a∈(﹣3,﹣2].【点睛】本题主要考查方程根的存在性以及个数判断,正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,体现了数形结合、转化的数学思想,属于中档题.21。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

(完整)三角函数习题及答案

(完整)三角函数习题及答案

第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

人教A版 必修1 第5章 三角函数 单元测试卷(解析版)

人教A版 必修1 第5章 三角函数 单元测试卷(解析版)

第5章三角函数单元测试卷一、选择题(共9小题).1.已知sin x cos y=,则cos x sin y的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣1,1]2.已知函数f(x)=sin(2x+φ),若,且,则f(x)取最大值时x的值为()A.B.C.D.3.已知A是函数f(x)=sin(2018x+)+cos(2018x﹣)的最大值,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A•|x1﹣x2|的最小值为()A.B.C.D.4.若函数f(x)=sin x cos x﹣cos2x+(x∈R)的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向左平行移动个单位长度得函数y=g(x)的图象,则函数y=g (x)﹣在区间[﹣2π,4π]内的所有零点之和为()A.B.C.3πD.4π5.已知函数f(x)=2sin(ωx﹣)(ω>0)和g(x)=3cos(2x+φ)+1(|φ|<)的图象的对称轴完全相同,则下列关于g(x)的说法正确的是()A.最大值为3B.在()单调递减C.()是它的一个对称中心D.x=﹣是它的一条对称轴6.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]7.定义运算=ad﹣bc、若cosα=,=,0<β<α<,则β等于()A.B.C.D.8.函数y=x cos x+sin x的图象大致为()A.B.C.D.9.函数y=sin x2的图象是()A.B.C.D.二、填空题10.已知2sinθ﹣cosθ=1,则=.11.将函数f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移个单位长度,得到一个偶函数图象,则=.12.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a﹣b|的最小值是1,则f()=.13.若0,﹣<β<0,cos()=,sin(+)=,则cos (2α+β)=.14.定义在[0,π]上的函数y=sin(ωx﹣)(ω>0)有零点,且值域M⊆,则ω的取值范围是.三、解答题15.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).(1)求证:tan(α+β)=2tanα;(2)求f(x)的解析式;(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.16.已知函数f(x)=cos x(sin x﹣cos x)+.(1)求的值;(2)将函数y=f(x)的图象向左平移后得到函数y=g(x),若时,不等式c<g(x)<c+2恒成立,求实数c的取值范围.17.已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<0)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(1)求函数f(x)的最小正周期和对称中心;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.参考答案一、选择题(共9小题,每小题0分,满分0分)1.已知sin x cos y=,则cos x sin y的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣1,1]【分析】由题意可得﹣1≤sin(x+y)≤1,sin(x+y)=+cos x sin y,由此求得cos x sin y 的取值范围.再根据﹣cos x sin y=sin(x﹣y),且﹣1≤sin (x﹣y)≤1,求得cos x sin y 的范围,再把这两个范围取交集,即得所求.解:由于﹣1≤sin(x+y)≤1,sin x cos y=,sin(x+y)=sin x cos y+cos x sin y=+cos x sin y,再根据sin x cos y﹣cos x sin y=sin(x﹣y),且﹣1≤sin (x﹣y)≤1,结合①②可得﹣≤cos x sin y≤故选:A.2.已知函数f(x)=sin(2x+φ),若,且,则f(x)取最大值时x的值为()A.B.C.D.【分析】由,可知函数关于x=对称,结合正弦函数的性质可求φ=n,然后结合,可求f(x)的表达式,进而可求解:∵f(x)=sin(2x+φ),满足,函数关于x=对称,∴φ=,n∈z,∵,∴f(x)取最大值时,2x=,k∈z,故选:C.3.已知A是函数f(x)=sin(2018x+)+cos(2018x﹣)的最大值,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A•|x1﹣x2|的最小值为()A.B.C.D.【分析】利用三角恒等变换化f(x)为正弦型函数,由此求出A、T以及|x1﹣x2|的最小值,从而可得答案.解:f(x)=sin(2018x+)+cos(2018x﹣),=sin2018x+cos2018x+cos2018x+sin2018x,=2sin(2018x+),又存在实数x1,x2,对任意实数x总有f(x1)≤f(x)≤f(x2)成立,|x1﹣x3|的最小值为T=,又A=2,故选:B.4.若函数f(x)=sin x cos x﹣cos2x+(x∈R)的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向左平行移动个单位长度得函数y=g(x)的图象,则函数y=g (x)﹣在区间[﹣2π,4π]内的所有零点之和为()A.B.C.3πD.4π【分析】运用正弦函数的图象变换可得g(x)=sin x,再由正弦函数的图象和性质,解方程可得所求和.解:函数f(x)=sin x cos x﹣cos2x+=sin2x﹣cos2x=sin(2x﹣),f(x)的图象上所有点纵坐标不变,横坐标伸长到原来的3倍,可得y=sin(x﹣),函数y=g(x)﹣在区间[﹣2π,4π]内的所有零点,可得x=﹣3π+arcsin,﹣π﹣arcsin,arcsin,π﹣arcsin,2π+arcsin,4π﹣arcsin,故选:C.5.已知函数f(x)=2sin(ωx﹣)(ω>0)和g(x)=3cos(2x+φ)+1(|φ|<)的图象的对称轴完全相同,则下列关于g(x)的说法正确的是()A.最大值为3B.在()单调递减C.()是它的一个对称中心D.x=﹣是它的一条对称轴【分析】根据两个函数的对称轴相同求出ω和φ的值,结合三角函数的最值性,单调性,对称性分别进行判断即可.解:∵两个函数的图象的对称轴完全相同,∴两个函数的周期相同,即ω=2,由2x﹣=kπ+得x=+,即f(x)的对称轴为x=+,k∈Z,得kπ++φ=mπ,∵|φ|<,∴当m﹣k=1时,φ=π﹣=,当<x<时,<2x+<,此时f(x)不单调,故B错误,g(x)的对称轴为x=+,k∈Z,则当k=﹣1时,对称轴为x=﹣+=﹣,故D正确,故选:D.6.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]【分析】根据正弦函数的单调性,结合在区间[﹣,]上单调递增,建立不等式关系,即可求解.解:函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,∴,k∈Z∵ω>0,故选:B.7.定义运算=ad﹣bc、若cosα=,=,0<β<α<,则β等于()A.B.C.D.【分析】根据新定义化简原式,然后根据两角差的正弦函数公式变形得到sin(α﹣β)的值,根据0<β<α<,利用同角三角函数间的基本关系求出cos(α﹣β),再根据cosα求出sinα,利用β=[α﹣(α﹣β)]两边取正切即可得到tanβ的值,根据特殊角的三角函数值即可求出β.解:依题设得:sinα•cosβ﹣cosα•sinβ=sin(α﹣β)=.又∵cosα=,∴sinα=.=×﹣×=,故选:D.8.函数y=x cos x+sin x的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.解:因为函数y=x cos x+sin x为奇函数,所以排除选项B,由当x=时,,由此可排除选项A和选项C.故选:D.9.函数y=sin x2的图象是()A.B.C.D.【分析】判断函数的奇偶性排除选项,利用特殊值判断选项即可.解:函数y=sin x2是偶函数,排除A、C,当x2=,即x=时,函数取得最大值6,因为,x=时,y=sin≈sin2.5≈0.04,故选:D.二、填空题10.已知2sinθ﹣cosθ=1,则=0或2.【分析】由已知结合同角平方关系可求sinθ,cosθ,代入即可求解.解:由题意可得2sinθ﹣1=cosθ,两边同时平方可得,4sin8θ﹣4sinθ+1=cos2θ=1﹣sin2θ,∴sinθ=0,cosθ=﹣1,或sinθ=,cosθ=,或sinθ=,cosθ=,则=2.故答案为:0或2.11.将函数f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移个单位长度,得到一个偶函数图象,则=.【分析】直接利用三角函数关系式的恒等变变换,函数关系式的平移变换和伸缩变换的应用求出结果.解:因为f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移单位长度,得到偶函数图象,所以,所以.故答案为:12.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a﹣b|的最小值是1,则f()=﹣2.【分析】首先根据题意易得函数是为奇函数,根据奇函数性质可以求出φ,再结合与x 轴任意交点之间距离的最小值为1,则半个周期为1,进而求出ω,从而求出f(x)的解析式,进而求出f()=﹣2.解:∵函数f(x)=4cos(ωx+φ)为奇函数,且0<φ<π,则f(0)=4cosφ=8,A(a,0),B(b,0)是其图象上两点,则,∴,则.故答案为:﹣2.13.若0,﹣<β<0,cos()=,sin(+)=,则cos (2α+β)=.【分析】利用两角和的正弦函数公式,余弦函数公式,二倍角公式化简已知等式,可求sin2α,sinβ,进而利用同角三角函数基本关系式可求cosβ的值,利用二倍角的余弦函数公式可求cos2α,利用两角和的余弦函数公式即可计算求值得解.解:∵cos()=(cosα﹣sinα)=,可得:cosα﹣sinα=,①∴两边平方可得,1﹣sin2α=,解得:sin2α=,∴由①②解得:cos2α=(cosα﹣sinα)(cosα+sinα)=,∴cos(6α+β)=cos2αcosβ﹣sin2αsinβ=×﹣×(﹣)=.故答案为:.14.定义在[0,π]上的函数y=sin(ωx﹣)(ω>0)有零点,且值域M⊆,则ω的取值范围是[].【分析】首先利用函数的定义域求出ωx﹣,进一步利用函数的零点和值域建立,最后求出ω的范围.解:由于x∈[0,π]时,所以ωx﹣.所以,所以ω的取值范围是[].故答案为:[].三、解答题15.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).(1)求证:tan(α+β)=2tanα;(2)求f(x)的解析式;(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.【分析】(1)利用两角和差的正弦公式化简条件可得4cos(α+β)sinα=2sin(α+β)cosα,从而证得要证得等式成立.(2)由条件根据tanβ=tan[(α+β)﹣α],利用两角差的正切公式,求得函数f(x)的解析式.(3)利用条件可得0<α<,tanα∈(0,),即x∈(0,),由此求得函数f (x)==,利用基本不等式以及函数的单调性,求得函数f(x)的值域.解:(1)证明:∵sin(2α+β)=3sinβ,∴sin[(α+β)+α]=3sin[(α+β)﹣α],展开可得sin(α+β)cosα+cos(α+β)sinα=4sin(α+β)cosα﹣3cos(α+β)sinα,(2)∵tanα=x,tanβ=y,y=f(x),即函数f(x)的解析式y=f(x)=.则函数f(x)==≤=,当且仅当x=时,取等号.当x趋于零时,f(x))=趋于2,当x趋于时,f(x))=趋于,故函数f(x)的值域为(0,].16.已知函数f(x)=cos x(sin x﹣cos x)+.(1)求的值;(2)将函数y=f(x)的图象向左平移后得到函数y=g(x),若时,不等式c<g(x)<c+2恒成立,求实数c的取值范围.【分析】(1)直接利用三角函数关系式的变换和正弦型函数的性质的应用求出结果.(2)直接利用平移变换的应用求出函数的关系式,进一步利用函数的值域和恒成立问题的应用求出结果.解:(1)==,所以.(2),所以,整理得,所以实数c的取值范围为.17.已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<0)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(1)求函数f(x)的最小正周期和对称中心;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.【分析】(1)利用函数的图象和关系式的变换的应用求出函数的解析式,进一步求出函数的最小正周期和对称中心.(2)利用函数的图象的平移变换和伸缩变换的应用和利用函数的额=的定义域求出函数的值域.解:已知函数f(x)=A sin(ωx+φ),(其中A>0,ω>0,﹣<ϕ<0)的图象与轴的交点中,相邻两个交点之间的距离为,所以:周期T=π,且图象上一个最低点为M,所以:f(x)=2sin(2x﹣),解得:x=(k∈Z),(2)函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)=2sin(4(x+)﹣)=2cos4x的图象,故:,所以:﹣1≤g(x)≤4.。

(新教材)人教A版-数学必修第一册第三章 函数的概念与性质 测试题含答案

(新教材)人教A版-数学必修第一册第三章 函数的概念与性质 测试题含答案

绝密★启用前(新教材)人教A版-数学必修第一册第三章函数的概念与性质测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间150分钟第Ⅰ卷一、选择题(共12小题,每小题5.0分,共60分)1.设f(x)={x−2,x≥10,f(f(x+6)),x<10,则f(5)的值为()A. 10B. 11C. 12D. 132.已知图①中的图象对应的函数为y=f(x),则图②的图象对应的函数为( )A.y=f(|x|)B.y=f(-|x|)C.y=|f(x)|D.y=-f(|x|)3.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如下图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f[g(2)]的值为()A. 3B. 2C. 1D. 04.若y=f(x+3)的图象经过点P(1,4),则函数y=f(x)的图象必经过点()A. (-2,4)B. (1,1)C. (4,4)D. (1,7)5.奇函数y=f(x)在区间[3,7]上是增函数,且最小值为-5,那么f(x)在区间[-7,-3]上() A.是增函数且最小值为5B.是增函数且最大值为5C.是减函数且最小值为5D.是减函数且最大值为56.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是()A.这个函数仅有一个单调增区间B.这个函数仅有一个单调减区间C.这个函数在其定义域内有最大值是7D.这个函数在其定义域内有最小值是-77.函数y=f(x)对于任意x,y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则()A.f(x)在R上是减函数,且f(1)=3B.f(x)在R上是增函数,且f(1)=3C.f(x)在R上是减函数,且f(1)=2D.f(x)在R上是增函数,且f(1)=28.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A. (-∞,0]B. [0,+∞)C. (-∞,+∞)D. [1,+∞)9.下列关于幂函数的命题中正确的是()A.不存在非奇非偶的幂函数B.如果一个幂函数是奇函数,则它的图象一定过原点C.如果幂函数的图象不过点(-1,1),则它一定不是偶函数D.若两个幂函数的图象有三个不同的公共点,则这两个幂函数一定是相同的10.已知幂函数f(x)=xα的图象经过点(2,4),则下列命题中不正确的是()A.函数图象过点(-1,1)B.当x∈[-1,2]时,函数f(x)取值范围是[0,4]C.f(x)+f(-x)=0D.函数f(x)单调减区间为(-∞,0)11.某商品1月份降价10%,此后受市场因素影响,价格连续上涨三次,使目前售价与1月份降价前相同,则连续上涨三次的价格平均回升率为()3-1A.√1093+1B.√1092-1C.√109D.3√3312.建造一个容积为8米3,深为2米的长方体无盖水池,若池底和池壁的造价分别为120元/米2和80元/米2,则总造价与一底边长x的函数关系式为()A.y=320(x+4)x)+480B.y=320(x+4x)C.y=160(x+4x)+240D.y=160(x+4x第Ⅱ卷二、填空题(共4小题,每小题5.0分,共20分)13.已知函数f(x)=若f(f(x))=2,则x的取值范围是________.14.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是________.15.给出下列说法:①y=x2-2|x|-3的递增区间为[1,+∞);②定义在R上的函数f(x)对任意两个不等实数a、b,总有f(a)−f(b)a−b>0成立,则f(x)在R上是增函数;③f(x)=1x的单调减区间是(-∞,0)∪(0,+∞).正确的为________________.16.为了保证信息的安全传输,有一种为秘密密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=xα(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.三、解答题(共6小题, 共70分)17.已知f(x)={x2,−1≤x≤1,1,x>1或x<−1.(1)画出f(x)的图象;(2)若f(x)≥14,求x的取值范围;(3)求f(x)的值域.18.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P={t+20,1≤t≤24,t∈N,−t+100,25≤t≤30,t∈N.商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天.19.已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)>0恒成立,求a的取值范围.20.已知函数f(x)=x+4x,x∈[1,3].(1)判断f(x)在[1,2]和[2,3]上的单调性;(2)根据f(x)的单调性写出f(x)的最值.21.已知函数f(x)=x-1x.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于11a−22a,求a的取值范围.22.已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.答案1.【答案】B【解析】f(5)=f(f(11))=f(9)=f(f(15))=f(13)=11.2.【答案】B【解析】由图知:当x<0时,图②中图象与图①中一致,即y=f(x);当x>0时,图②中图象是图①中y轴左侧图象关于y轴的对称图象,即y=f(-x).故选B.3.【答案】B【解析】由y=g(x)的图象与y=f(x)的对应关系表可知g(2)=1,f(1)=2,所以f[g(2)]=f(1)=2,故选B.4.【答案】C【解析】本题考查图象的左右平移,由于P(1,4)在y=f(x+3)的图象上,y=f(x)的图象是由y=f(x+3)的图象向右平移3个单位长度得到的.因此P(1,4)也向右平移3个单位长度,变成(4,4),故选C. 5.【答案】B【解析】函数y=f(x)是奇函数,在[a,b]上是增函数,则在[-b,-a]上也是增函数;因为奇函数y=f(x)在区间[3,7]上是增函数,且最小值为-5,即f(3)=-5,所以函数y=f(x)在区间[-7,-3]上也是增函数,则x∈[-7,-3]时,f(x)≤f(-3)=-f(3)=5,即函数y=f(x)在区间[-7,-3]上的最大值是5.故选B.6.【答案】C【解析】结合偶函数图象关于y轴对称可知,这个函数在[-7,7]上有两个单调递增区间,两个单调递减区间,且定义域内有最大值7,有最小值-2.7.【答案】D【解析】设x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1.∵x2-x1>0,又当x>0时,f(x)>1,∴f(x2-x1)>1,∴f(x2)-f(x1)>0,即f(x1)<f(x2),∴f(x)在R上是增函数.∵f(3)=f(1+2)=f(1)+f(2)-1=f(1)+[f(1)+f(1)-1]-1=3f(1)-2=4,∴f(1)=2,故选D.8.【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].9.【答案】C【解析】幂函数y =x -12既不是奇函数,也不是偶函数.幂函数y =x -1是奇函数,它的图象不过原点.幂函数y =x 2和幂函数y =x 4有三个公共点(1,1),(0,0),(-1,1),它们是不同的幂函数,于是A ,B ,D 都不正确.若幂函数是偶函数,则f (-1)=f (1)=1,其图象一定过点(-1,1),所以答案为C.10.【答案】C【解析】∵幂函数y =xα的图象经过点(2,4),∴4=2α,即22=2α.解得α=2.故函数的解析式为y =x 2,故函数图象经过点(-1,1),A 正确;当x ∈[-1,2]时,函数f (x )的值域是[0,4],B 正确;由于f (-x )=(-x )2=x 2,函数不满足f (x )+f (-x )=0,C 错;函数f (x )的单调减区间为(-∞,0],D 正确.故选C.11.【答案】A【解析】(1-0.1)(1+x )3=1⇒x =√1093-1. 12.【答案】B【解析】因为建造一个容积为8米3,深为2米的长方体无盖水池,一底边长x ,所以另一底边长为4x ,y =120×x ·4x +2(2x +2×4x)×80=320(x +4x )+480 ,故选B. 13.【答案】{2}∪[-1,1]【解析】设f (x )=t ,∴f (t )=2,当t ∈[-1,1]时,满足f (t )=2,此时-1≤f (x )≤1,无解;当t =2时,满足f (t )=2,此时f (x )=2,即-1≤x ≤1或x =2.14.【答案】(-∞,0]【解析】∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ),∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0].15.【答案】②【解析】①因为y =x 2-2|x |-3={x 2−2x −3,x ≥0x 2+2x −3,x <0,所以y =x 2-2|x |-3的递增区间为[1,+∞)和(-1,0),不正确.②因为f (a )−f(b)a−b >0,所以a >b ,则f (a )>f (b ),或a <b ,则f (a )<f (b ),根据增函数的定义可知此命题正确.③函数f (x )=1x 的单调减区间是(-∞,0),(0,+∞),但(-∞,0)∪(0,+∞)不是其单调减区间.不正确.16.【答案】9【解析】由题目可知加密密钥y =xα(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意得2=4α,解得α=12,则y =x 12.由x 12=3,得x =9.17.【答案】(1)利用描点法,作出f (x )的图象,如图所示.(2)由于f (±12)=14, 结合此函数图象可知,使f (x )≥14的x 的取值范围是(-∞,-12]∪[12,+∞).(3)由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1.所以f (x )的值域为[0,1].18.【答案】设日销售金额为y 元,则y =P ·Q ,所以y ={−t 2+20t +800,1≤t ≤24,t ∈N ,t 2−140t +4000,25≤t ≤30,t ∈N , 即y ={−(t −10)2+900,1≤t ≤24,t ∈N ,(t −70)2−900,25≤t ≤30,t ∈N ,当1≤t ≤24,t ∈N 时,t =10,y max =900;当25≤t ≤30,t ∈N 时,t =25,y max =1 125.所以该商品日销售金额的最大值为1 125元,且在30天中的第25天销售金额最大.19.【答案】设f (x )在x ∈[-2,2]的最小值为f (x )min ,则只需f (x )min >0,又其图象的对称轴为直线x =-a 2,则(1)当-a 2<-2,即a >4时,f (x )min =f (-2)=7-3a >0,得a <73.又a >4,故此时a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,f (x )min =f (-a 2)=3-a -a 24>0, 解得-6<a <2.又-4≤a ≤4,故-4≤a <2.(3)当-a 2>2,即a <-4时,f (x )min =f (2)=7+a >0,得a >-7.又a <-4,故-7<a <-4.综上可得,a 的取值范围为-7<a <2.20.【答案】(1)设x 1,x 2是区间[1,3]上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=x 1-x 2+4x 1-4x 2=(x 1-x 2)(1-4x 1x 2).∵x 1<x 2,∴x 1-x 2<0.当1≤x 1<x 2≤2时,1<x 1x 2<4,∴4x1x 2>1. ∴1-4x 1x 2<0.∴f (x 1)>f (x 2).∴f (x )在[1,2]上是减函数.当2≤x 1<x 2≤3时,4<x 1x 2<9,∴0<4x 1x 2<1. ∴1-4x 1x 2>0, ∴f (x 1)<f (x 2).∴f (x )在[2,3]上是增函数.(2)由(1)知f (x )的最小值为f (2)=2+42=4. 又∵f (1)=5,f (3)=3+43=133<f (1),∴f (x )的最大值为5.21.【答案】(1)函数f (x )=x -1x 是奇函数,∵函数f (x )=x -1x的定义域为(-∞,0)∪(0,+∞),在x 轴上关于原点对称, 且f (-x )=-x -1−x =-(x -1x )=-f (x ),∴函数f (x )=x -1x 是奇函数.(2)证明 设任意实数x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 1-1x 1)-(x 2-1x 2)=(x 1−x 2)(x 1x 2+1)x 1x 2,∵1≤x 1<x 2,∴x 1-x 2<0,x 1x 2>0,x 1x 2+1>0,∴(x 1−x 2)(x 1x 2+1)x 1x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在区间[1,+∞)上为增函数.(3)∵[2,a ]⊆[1,+∞),∴函数f (x )在区间[2,a ]上也为增函数.∴f (x )max =f (a )=a -1a ,f (x )min =f (2)=32,若函数f (x )在区间[2,a ]上的最大值与最小值之和不小于11a−22a , 则a -1a +32≥112-1a ,∴a ≥4,∴a 的取值范围是[4,+∞).22.【答案】(1)对于幂函数f (x )=x (2-k )(1+k )满足f (2)<f (3), 因此(2-k )(1+k )>0,解得-1<k <2.因为k ∈Z ,所以k =0或k =1.当k =0时,f (x )=x 2,当k =1时,f (x )=x 2,综上所述,k 的值为0或1,f (x )=x 2.(2)函数g (x )=1-mf (x )+(2m -1)x=-mx 2+(2m -1)x +1,由于要求m >0,因此抛物线开口向下,对称轴方程为 x =2m−12m ,当m >0时,2m−12m =1-12m <1,因为在区间[0,1]上的最大值为5, 所以{1−12m >0,g (1−12m )=5或{1−12m ≤0,g (0)=5, 解得m =52+√6,满足题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的奇偶性(人教A版)
一、单选题(共15道,每道6分)
1.下列函数中是偶函数的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
2.下列函数中是奇函数的是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
3.下列函数中是偶函数的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
4.函数,( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:C
解题思路:
试题难度:三颗星知识点:余弦函数的奇偶性
5.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:B
解题思路:
试题难度:三颗星知识点:余弦函数的奇偶性
6.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:C
解题思路:
试题难度:三颗星知识点:正切函数的奇偶性
7.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数又不是偶函数
D.既是奇函数又是偶函数
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
8.已知函数,,则( )
A.与都是奇函数
B.和都是偶函数
C.是奇函数,是偶函数
D.是偶函数,是奇函数
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
9.已知函数,,则( )
A.与都是奇函数
B.和都是偶函数
C.是奇函数,是偶函数
D.是偶函数,是奇函数
答案:C
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
10.已知,,则( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:正弦函数的奇偶性
11.已知,满足,则的值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
12.已知函数,,且,若,,则( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
13.已知函数是上的奇函数,且当时,,则当时,的表达式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
14.已知函数是上的偶函数,当时,,则的单调递增区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正弦函数的奇偶性
15.已知函数,则,,的大小顺序是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:余弦函数的单调性。

相关文档
最新文档