(完整版)电流互感器二次容量的计算及选择

合集下载

电流互感器饱和时二次电流的计算公式

电流互感器饱和时二次电流的计算公式

电流互感器饱和时二次电流的计算公式
电流互感器(CurrentTransformer,CT)是用于测量大电流的电器装置,主要用于电力系统中的保护和测量。

当电流互感器面临高电流情况时,会发生饱和现象,即电流互感器的输出电流不能完全反映输入电流的大小。

为了准确计算饱和时的二次电流,可以使用下述公式:
$$
I_{s}=\dfrac{I_{p2}}{K_{s}}
$$
其中,$I_{s}$为饱和时的二次电流,$I_{p2}$为电流互感器的一次侧电流,$K_{s}$为饱和系数。

电流互感器的饱和系数是一个实验得到的标定值,它表示了在一定的饱和电流条件下,电流互感器的输出电流与输入电流之比。

饱和系数一般在电流互感器的技术资料中提供,也可以通过测试实验得到。

需要注意的是,计算饱和时的二次电流时,要保持单位的一致性。

即一次电流和二次电流要处于同样的单位,以便计算的结果正确和准确。

除此之外,还有一些因素也会影响电流互感器的二次电流,比如频率、负载、绕组匝数等。

在实际应用中,要综合考虑这些因素,以得到更准确的计算结果和实际测量值。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择电流互感器(Current Transformer,简称CT)是一种用来测量电流的装置,其主要作用是将高电流传感器转换为低电流信号。

在实际应用中,为了确保CT的准确测量和安全运行,我们需要对CT的二次容量进行计算和选择。

CT的二次容量是指CT二次侧输出的电流的额定值,通常用于接入仪表、继电器等设备。

计算CT的二次容量需要考虑以下几个因素:1.主电路电流:我们首先需要确定CT所测量的主电路电流的额定值。

根据不同的应用场景,需要选择不同的CT类型,如精度等级和额定电流可以在0.1~4000A范围内选取。

2.系统短路电流:这个因素通常用于保护装置的选择。

根据实际系统的短路电流水平,我们需要选择CT的二次额定电流,确保CT可以满足保护装置的额定动作电流要求。

3.过载能力:过载能力是指CT能够承受瞬时过载电流的能力。

在选择CT的二次容量时,一般会有一个过载倍数,通过乘以CT的额定电流得到能够承受的过载电流值。

4.精度等级:CT的精度等级是指CT的输出电流与主电路电流的比值的误差范围。

通常采用精度等级为0.2、0.5、1.0的CT。

根据以上几个因素,我们可以计算CT的二次容量。

具体计算方法如下:CT二次容量(VA)=CT二次侧额定电流(A)*测量倍率其中,测量倍率为根据上述因素计算得出的综合倍率,取决于系统运行状态和需求。

选择CT时1.CT的额定一次电流应与主电路的额定电流匹配。

一般来说,CT的额定一次电流应是主电路额定电流的1.2倍至1.5倍左右。

2.CT的额定二次电流应根据接入设备的额定电流进行选择。

确保CT 的二次容量能满足接入设备的需求,并有一定的过载能力。

3.在选择CT时,还需要考虑CT的准确度要求。

根据实际需求选择相应精度等级的CT,以满足测量和保护的要求。

4.最后,还需要考虑CT的耐受短时热过载能力,确保CT在额定条件下能够正常工作。

综上所述,计算和选择CT的二次容量是一个综合考虑多个因素的过程。

常规电流互感器和电压互感器参数选择及计算

常规电流互感器和电压互感器参数选择及计算

1.概述 电流互感器类型及性能:
• 分为两大类:1)测量用;2)保护用 • 测量用电流互感器 -重点考核正常运行时的准确性能 • 保护用电流互感器 -重点考核系统短路时的准确性能 a) 对称短路电流下的稳态性能 b) 短路电流偏移(有直流分量)和/或 有剩磁时的暂态性能
1.概述
• 电流误差(比值差),相位差 ຫໍສະໝຸດ 定输出(容量) ( CT额定负载)
额定电阻性负荷
对TP级电流互感器,当额定二次电流为1A时,以表示的额定电 阻性负荷标准值在下列数值中选取: 2.5、5、7.5、10、15。对额定二 次电流不是1A的电流互感器,上列值按电流平方的反比进行换算。
简述
保护用电流互感器的准确限值系数(P)(二次专业复核)
3 电流互感器的选择和配置要求
电流互感器的配置应符合以下要求: DL/T 5136



1. 电流互感器的类型、二次绕组的数量与准确等级应满足继电保 护自动装臵和测量表计的要求。 2. 保护用电流互感器的配臵应避免出现主保护的死区。保护接入 电流互感器二次绕组的分配,应注意避免当一套保护停用时,出 现电流互感器内部故障时的保护死区;双重化保护的电流互感器 应采用不同的二次绕组。 3. 保护用电流互感器的配臵应避免出现电流互感器内部故障时扩 大故障范围。 4. 对中性点直接接地系统,可按三相配臵;对中性点非直接接地 系统,依具体要求可按两相或三相配臵。
2 相关的国际标准、国标及行标 暂不细及二次各专业相关标准 太多
GB 1208-2006 电流互感器(eqv IEC 60044-1:2003 ) GB 16847-1997 保护用电流互感器暂态特性技术要求 (idt IEC 60044-6: 1992) IEC 60044-1 :2003 电流互感器 第一号修改单 GB 1207-2006 电磁式电压互感器(eqv IEC 60044-2:2003) GB 4703-2007电容式电压互感器(已作废) DL/T 725-2000 电力用电流互感器订货技术条件 DL/T 726-2000 电力用电压互感器订货技术条件 英国标准 BS 3938:1973 电流互感器规范 IEEE Std C57.13-2008: 仪表用互感器要求 IEEE Std C37.110-2007: 保护用电流互感器应用导则 及IEEE C37.110 Corri 1-2010保护用电流互感器应用导则 勘误表1:等式18和等式19的 更正 DL/T 5136 火力发电厂、变电站二次接线设计技术规程 DL/T 866 电流互感器和电压互感器选择及计算导则

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法电流互感器的选用原则及方法1、额定电压电流互感器额定电压应大于装设点线路额定电压。

2、变比应根据一次负荷计算电流IC选择电流互感器变比。

电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150、2×a/C)等多种规格,二次侧额定电流通常为1A或5A。

其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。

一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。

如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。

保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。

3、准确级应根据测量准确度要求选择电流互感器的准确级并进行校验。

下表为不同准确级电流互感器的误差限值:准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。

为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。

准确度校验公式:S2≤S2n。

二次回路的负荷l:取决于二次回路的阻抗Z2的值,则:S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+RWl+RXC)或S2V1≈∑Si+I2n2(RWl+RXC)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻,计算公式化为:RWL=LC/(r×S)。

式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。

设互感器到仪表单向长度为L1,。

DL/T 866-2004 电流互感器和电压互感器选择及计算导则

DL/T 866-2004  电流互感器和电压互感器选择及计算导则

目次前言1范围2规范性引用文件3术语、定义和符号3.1电流互感器术语和定义3.2电压互感器术语和定义3.3符号4电流互感器应用的一般问题4.1基本特性及应用4.2电流互感器的配置4.3一次参数选择4.4二次参数选择5测量用电流互感器5.1类型及额定参数选择5.2准确级选择5.3二次负荷选择及计算6保护用电流互感器6.1性能要求6.2类型选择6.3额定参数选择6.4准确级及误差限值6.5稳态性能验算6.6二次负荷计算7TP类保护用电流互感器7.1电流互感器暂态特性基本计算式7.2TP类电流互感器参数7.3TP类电流互感器的误差限值和规范7.4TP类电流互感器的应用7.5TP类电流互感器的性能计算8电压互感器8.1分类及应用8.2配置和接线8.3一次电压选择8.4二次绕组和电压选择8.5准确等级和误差限值8.6二次绕组容量选择及计算8.7电压互感器的特殊问题附录A(资料性附录)TP类电流互感器的暂态特性附录B(资料性附录)测量仪表和保护装置电流回路功耗附录C(资料性附录)P类或PR类电流互感器应用示例附录D(资料性附录)TP类电流互感器应用示例附录E(资料性附录)电子式互感器简介前言随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。

为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。

有关电流互感器和电压互感器的国家标准和行业标准对互感器的技术规范和订货技术条件作了规定,本标准是对电力工程中如何选定这些规范和需要进行的相应计算方法作出规定,并对新产品开发提出要求。

本标准主要适用于工程广泛使用的常规电流互感器和电压互感器。

对于新开发的尚未普遍应用的新型电子式互感器,仅在附录中给出简要介绍。

本标准的附录均为资料性附录。

本标准由中国电力企业联合会提出。

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择1.电流互感器简介互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。

而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A 的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型 2 种。

电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“ 8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。

油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。

为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。

2.电流互感器的特点1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。

2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。

3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。

因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。

相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算摘要:电流互感器是电力系统中非常重要的一次设备,掌握其误差特性及二次负载的计算,对设计人员来说至关重要,本文分析了电流互感器误差产生的原因以及分别对测量电流互感器、保护电流互感器二次负载进行了计算。

关键词:电流互感器、误差、二次负载、计算1、电流互感器的误差电流互感器是用来将一次系统的大电流按比例变换为二次系统的小电流,以满足测量、监控、保护及自动装置等的需要,并将一、二次设备安全隔离,使高、低压回路不存在电的联系的一种常见的电气设备。

测量误差是指电流互感器的二次输出量I2与其归算二次侧的一次输入量I1’的大小不相等,幅角不相同所造成的差值,因此测量误差分为数值(变比)误差和相位(角度)误差两种。

产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。

电流互感器本身造成的测量误差是由于电流互感器有励磁电流Ie存在,而Ie是输入电流的一部分,它不传到二次侧,故形成变比误差,Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失,Ie所流经的励磁支流是一个呈电感性的支路,Ie和I2不同相位,这是造成角度误差的主要原因。

运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大所致。

故为保证电流互感器工作在误差范围内,在不改变其本身固有特性的情况下,作为设计人员来说,根据实际情况,选择适当的电流互感器二次容量尤为重要,以下介绍二次负载容量的计算。

2、测量电流互感器二次负载容量的计算为了保证测量仪表的准确度,互感器的准确度级不得低于所供测量仪表的准确度级。

电流互感器的一定准确等级是与一定的负荷容量S2相对应的。

当接入负荷(仪表继电器等)的容量超过互感器准确级规定的容量Se2时,电流互感器的准确级将要下降,即测量误差增大。

因此,为了保证测量的准确度,互感器二次侧所接负荷容量S2应小于互感器准确度级所规定的额定容量Se2。

,即应满足:Se2≥S2即Se2≥I22Z2 (1)由上式可知,二次负荷容量与二次阻抗有着直接关系。

电流互感器二次容量的计算

电流互感器二次容量的计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器二次输出容量选择对误差的影响及改进

电流互感器二次输出容量选择对误差的影响及改进
安全经验分享
电流互感器二次输出容量选择对误差的影响及改进
讲述人:
2011年2月21日
第1页
电流互感器二次输出容量选择对误差的影响及改进
2010年5月公司开始对电厂主控制室设备进行安全隐患整治改造,
保护装置进行更新。在对6kV二段厂用电源进线的电流互感器进行一次
加电流验证保护动作情况试验时,发现已经加到了保护动作值,可是保 护不动作。又对其电流互感器测量绕组进行一次加额定电流100A试验, 保护装置侧仅显示90A。由于6kV二段厂用电源进线的保护装置安装在主 控室,并不安装在开关柜本体,因此又对保护装置本身进行了效验,对
确保设备实现设计功能,是从本质上保证安全



家!
2、串接一台相同变比的备用电流互感器。将两台同变比的电流互感器串联 使用,可以提高电流互感器的容量,使电流互感器允许的二次负载增大一倍, 从而减小电流互感器的误差。
3、改用伏安特性较高的电流互感器。当使用的电流互感器不满足误差要求 时,可以使用伏安特性较高的电流互感器,电流互感器的饱和电压提高,相应 地减小了电流互感器的误差。非晶合金 4、增大电流互感器的变比。由于变比增大,二次电流成比例地减小,在相同 的负载下,二次线圈感应电势也成比例下降,磁通将按变比的平方下降,使励 磁电流减小,从而减小电流互感器误差。零序
电流互感器二次输出容量与二 次实际负载的匹配关系
计算结果 仅考虑目前常用的微机型保护测控装置及多功 能电子式计量装置,目前各大综自保护厂家生产的 测量、保护装置的功率都不大于1VA/相,接线一般 采用三相星形接线或二相星形接线,电缆采用铜芯 控制电缆,接触电阻取0.1欧,二次电流5A,电缆长 度分别为50米、100米、150米及200米进行计算。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA对于短线路可选5VA 一般稍长的选20VA或30VA特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求不是越大越好只有选择的二次容量大小接近实际的二次负荷时电流互感器的精度才较高容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上就要看测量单元(电度表或综合保护装置)和互感器的距离了如果测量单元是在距离较远的综控室则一般选择20VA或30VA如果测量装置也是装在配电柜上的,则选5VA 或10VA 就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比一般按照60-80 的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(级足矣)测量用的可以更低点;J ‘3、根据配电柜的布局选择穿心式或普通式互感器强烈建议使用普通式穿心式的固定支撑问题一直做的不太可靠如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择引言在电力系统中,电流互感器是一种用于测量高电流的重要设备。

在实际应用中,我们经常需要计算电流互感器的二次容量,并选择合适的电流互感器。

本文将介绍电流互感器二次容量的计算方法,并提供一些选择电流互感器的注意事项。

电流互感器的工作原理电流互感器是一种基于电磁感应原理的装置。

它将高电流通过互感器的一侧线圈,产生相应的磁场,然后通过互感作用,将部分磁场感应到另一侧的线圈上,从而实现电流的测量。

通常情况下,互感器的一侧线圈为一次侧,而另一侧线圈为二次侧。

电流互感器二次容量的计算方法步骤1:确定负载电流和负载类型首先需要确定所测量的负载电流的大小以及负载类型。

负载类型可以分为纯电阻和感性负载两种。

对于纯电阻负载,电流波形和电压波形是相位相同的;对于感性负载,电流波形滞后于电压波形。

步骤2:选择二次负载阻抗根据负载类型,选择合适的二次负载阻抗。

对于纯电阻负载,可以选择二次负载阻抗为电阻负载的阻值;对于感性负载,可以选择二次负载阻抗为电感负载的阻抗值。

步骤3:计算二次负载电流根据所测量的负载电流大小和二次负载阻抗,使用欧姆定律计算出二次负载电流。

二次负载电流即为测量电流。

步骤4:计算二次容量根据测量电流的大小以及设定的系统容许倍数,计算出所需的二次容量。

一般情况下,系统容许倍数可根据具体的应用环境和精度要求进行选择。

电流互感器的选择注意事项1. 额定电流和负载能力在选择电流互感器时,需要考虑电流互感器的额定电流和负载能力是否能满足实际需求。

额定电流应略大于实际测量电流,以确保电流互感器的精度和稳定性。

2. 温升和热稳定性电流互感器在长时间工作过程中会产生一定的热量,因此需要关注其温升和热稳定性。

选择具有较低温升和良好热稳定性的电流互感器,可以提高测量准确度和设备寿命。

3. 频率响应和相位差对于需要测量高频电流的应用,需要注意电流互感器的频率响应范围。

同时,需要关注电流互感器的相位差,确保测量结果的准确度。

电流互感器二次特性分析及校核方法

电流互感器二次特性分析及校核方法

附件3电流互感器二次特性分析及校核方法2012年12月,省调发现安阳地区晋家庄动力变电流互感器设计选型存在隐患,电流互感器设计参数中准确限值系数远小于晋家庄母线短路电流倍数,电流互感器传变特性可能难以保证保护装置的正确动作。

各供电公司、电厂、大用户开展了辖区内电流互感器隐患排查工作,排查出186台220千伏电流互感器设计准确限值系数小于短路电流倍数要求,其中各用户站74台,电厂7台,省公司105台。

短路电流超过电流互感器一次额定电流100倍的有35台,均为电解铝企业所属变电站的动力变与整流变电流互感器。

2012年12月13日和25日省调组织电科院、安阳公司、商丘公司对问题最严重的晋家庄、魏楼的动力变电流互感器进行现场二次伏安特性测试试验,根据测试数据和电流互感器相关规程校核后,确认两站动力变电流互感器不满足规程要求,存在易饱和的问题。

2013年将开展全网电流互感器隐患排查活动,计划年底完成全网设计准确限值系数小于短路电流倍数的电流互感器的测试试验,各设备隶属单位应制定整改措施,消除隐患,保证电网安全运行。

一、电流互感器设计选型需考虑的因素DL/T866-2004《电流互感器和电压互感器选择及计算导则》是为规范电流互感器的选择和计算而制定的,此规程统一对保护用电流互感器设计应用的技术要求及设计中存在问题予以详细说明。

规程4.3、4.4条强调在设计选型时需考虑影响电流互感器误差的参数,即根据规划短路容量和二次负荷阻抗,选择电流互感器的一次电流、二次电流、二次容量、准确级限值等参数。

二、电流互感器传变特性对保护装置的影响对电流互感器性能的设计基本要求是在规定使用条件下的误差应在规定限度内。

应用中的突出问题是系统故障时通过短路电流引起铁芯饱和,导致励磁电流显著增加,电流互感器的传变误差加大,二次波形产生畸变,畸变的程度与二次负荷大小也有关。

1. 电流互感器传变特性的分析负荷阻抗Rb图1 电流互感器等效原理图如图1所示,电流互感器的传变误差决定于一次电流I1与二次电流I2的差值,即励磁阻抗回路的电流I e。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

电流互感器二次回路导线截面

电流互感器二次回路导线截面

电流互感器二次回路导线截面“A ”应按式(1)进行选择,但不得小于4mm 2。

A =ρL106 /R L ( mm 2 ) (1)式 中 :ρ—铜导线的电阻率,此处ρ=1.8 x 10-8Ωm;L —二次回路导线单根长度,m ;R L — 二次回路导线电阻,Ω。

R L 值按式(2)进行计算: 222222()N N jX m K L jx N S I K Z R R K I -+≤ (2)式 中 :jx K — 二次回路导线接线系数,分相接法为23 星形接法为1;2jX K —串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(例:接人90。

跨相无功电能表) 则 为 行 , 其余均为1;S 2N — 电流互感器二次额定负荷,VA;I 2N — 电 流互感器二次额定电流,A ,一般为5A;mZ — 计 算相二次接人电能表电流线圈总阻抗,Ω; K R — 二次回路接头接触电阻,Ω,一般取0.05Ω-0.1Ω, 此处取0.1Ω。

根据以上设定值,对分相接法的二次回路导线截面可按式(3)计算:A ≥0.9L/( S 2N -25Z m ,-2.5)(mm 2)附表C:电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),V A2nI S ——设计选择的电流互感器二次额定负荷,V AK ——系数,一般选择1.5~3。

A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为23,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入9031。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

电流、电压互感器额定二次容量计算方法

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为2,3,星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入903,其余为1。

2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

mZ ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。

而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器容量选择
电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:
1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;
2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;
3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;
另外提醒注意以下几点:
1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;
2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;
3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;
4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;
5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择
1 引言
电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

电流互感器の额定一次电流根据不同回路の正常电流会有不同,但电流互感器额定二次电流却是标准化の,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同の传输距离
下所需の二次容量。

2 电流互感器二次负荷の计算
电流互感器の负荷通常有两部分组成:一部分是所连接の测量仪表或保护装置;另一部分是连接导线。

计算电流互感器の负荷时应注意不同接线方式下和故障状态下の阻抗换算系数。

电流互感器の二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。

二者之间の关系为
S=I2*I2*Z2
当电流互感器二次电流为5A时,S=25 Z2
当电流互感器二次电流为1A时,S=Z2
电流互感器の二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。

2.1 测量用の电流互感器の负荷计算。

一般在工程计算时可负略阻抗之间の相位差,二次负荷Z2可按下式计算
Z2=K cj.zk Z cj+K lx.zk Z lx+Z c
式中:Z cj-------测量表计线圈の阻抗(Ω)
Z lx-------连接导线の单程阻抗(Ω),一般可忽略电抗,仅计算电阻。

Z c-------接触电阻(Ω),一般取0.05~0.1(Ω)。

K cj.zk----测量表计の阻抗换算系数
K lx.zk----连接导线の阻抗换算系数
测量用の电流互感器各种接线の阻抗换算系数见下表1:
2.2 保护用电流互感器。

一般在工程计算时可负略电抗,二次负荷Z2可按下式计算
Z2=K j.zk Z j+K cx.zk Z lx+Z c
式中:Z j-------继电器电流线圈の阻抗(Ω)
Z lx--------连接导线の单程电阻(Ω)。

Z c -------接触电阻(Ω),一般取0.05~0.1(Ω)。

K j.zk-----继电器の阻抗换算系数
K cx.zk-------连接导线の阻抗换算系数
3 电流互感器二次负荷计算结果
3.1 计算条件
本文仅考虑目前常用の微机型保护测控装置及多功能电子式计
量装置,目前各大综自保护厂家生产の测量、保护装置の功率都不大于1VA/相,接线一般采用三相星形接线或二相星形接线,电缆采用铜芯控制电缆,接触电阻取0.1欧,二次电流分别为1A及5A,电缆长度分别为50米、100米、150米及200米进行计算。

3.2 测量用电流互感器二次负荷计算结果
在3.1计算条件下,测量用电流互感器二次负荷计算结果如表3:表中S l为电缆の截面积。

根据《电测量及电能计量装置设计技术规程》(DL/T
5137-2001)10.1.5の要求,即电流互感器二次绕组所接入の负荷(包括测量仪表、电能计量装置和连接导线等)应保证实际二次负荷在25%~100%额定二次负荷范围内,由表3可知,当电流互感器二次电流采用1A时,可选用10VAの二次容量,用2.5 mm2截面の电缆传输距离至少可达200米,而当电流互感器二次电流采用5A时,如果用2.5 mm2截面の电缆进行传输,则选择30VAの二次容量时,传输距离都无法达到100米,故按照规程要求不宜采用2.5 mm2截面の电缆,至少要用4mm2截面の电缆,则如果要求传输の距离在L≤100米时,可选用二次容量为30VAの电流互感器,传输の距离在100米≤L≤200米时,可选用二次容量为60VAの电流互感器,如果增大传输电缆の截面,如采用6mm2截面の电缆时,只要L≤100米,二次容量只需30VA,而当100米≤L≤200米时,二次容量只需40VA。

3.3 保护用电流互感器二次负荷计算结果
在3.1计算条件下,按阻抗换算系数较大の(除二相差接外)电流互感器二相星形接线、短路类型为经Y,d变压器二相短路の情形计算,其结果是其它各种短路方式中较大の,可以作为电流互感器二次负荷计算结果。

相关文档
最新文档