电流互感器二次负荷计算
电流互感器的参数选择计算方法
附件3:电流互感器的核算方法参数选择计算本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。
项目名称代号参数备注额定电流比Kn600/5额定二次电流Isn5A额定二次负载视在功率Sbn30VA(变比:600/5)50VA(变比:1200/5)不同二次绕组抽头对应的视在功率不同。
额定二次负载电阻Rbn1.2Ω二次负载电阻Rb0.38Ω二次绕组电阻Rct0.45Ω准确级10准确限值系数Kalf15实测拐点电动势Ek130V(变比:600/5)260V(变比:1200/5)不同二次绕组抽头对应的拐点电动势不同。
最大短路电流Iscmax10000A一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值)1、计算二次极限电动势:Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V参数说明:(1)Es1:CT额定二次极限电动势(稳态);(2)Kalf:准确限制值系数;(3)Isn:额定二次电流;(4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω1500~4000A/5 A产品 1.0Ω1A产品:1~1500A/1A产品6Ω1500~4000A/1 A产品15Ω当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。
(5)Rbn :CT额定二次负载,计算公式如下:Rbn=Sbn/ Isn 2=30/25=1.2Ω;——Rbn :CT额定二次负载;——Sbn :额定二次负荷视在功率;——Isn :额定二次电流。
当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载2、校核额定二次极限电动势有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。
Es1=127.5V<Ek(实测拐点电动势)=130V结论:CT满足其铭牌保证值要求。
电流互感器二次回路导线截面
电流互感器二次回路导线截面“A ”应按式(1)进行选择,但不得小于4mm 2。
A =ρL106 /R L ( mm 2 ) (1)式 中 :ρ—铜导线的电阻率,此处ρ=1.8 x 10-8Ωm;L —二次回路导线单根长度,m ;R L — 二次回路导线电阻,Ω。
R L 值按式(2)进行计算:222222()N N jX m K L jx N S I K Z R R K I -+≤ (2)式 中 :jx K— 二次回路导线接线系数,分相接法为2, 星形接法为1; 2jX K —串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(例:接人90。
跨相无功电能表) 则 为 行 , 其余均为1;S 2N — 电流互感器二次额定负荷,VA;I 2N — 电 流互感器二次额定电流,A ,一般为5A;mZ — 计 算相二次接人电能表电流线圈总阻抗,Ω; K R — 二次回路接头接触电阻,Ω,一般取0.05Ω-0.1Ω, 此处取0.1Ω。
根据以上设定值,对分相接法的二次回路导线截面可按式(3)计算:A ≥0.9L/( S 2N -25Z m ,-2.5)(mm 2)附表C:电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),V A 2nI S ——设计选择的电流互感器二次额定负荷,V AK ——系数,一般选择1.5~3。
A ——二次回路导线截面, 2mm ρ——铜导电率,257m /m m )ρ=Ω,(•L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。
电流互感器传输距离
国标GBl208-1997《电流互感器》第4.2.2项中规定,额定二次电流标准值为1A、2A 和5A,经实际应用,1A电流互感器和5A相比有许多优点,当测量和保护的传输距离较大时,如电流表安装在现场,就优先选用1A电流互感器,其原因如下:1.线路功耗降低,线路功耗与通过电流平方成正比,二次电流为lA的互感器和5A相比降低功耗25倍,即1A的功耗仅5A的4%。
在设计1A系统时,一般只需计算测景和保护仪表的阻抗(忽略接触电阻)。
测量线路的功耗(VA)2.传输距离加大:电流互感器二次负载计算公式s=I。
Z,在相同负载f,二次电流为1A互感器的传输距离是5A的25倍,有利于远距离测量和保护,这样可避免增选5,lA中问互感器或选用大容量互感器。
不同额定容量时的传输距离(m)3.电线截面碱小:太中型工厂,当仪表和互感器安装距离较远(例如单程长度40m),从表2可以看出,当选项用5A、10V A互感器,电线截面需4ram。
,如选用1A、5vA 互感器,电线截面只需lmm’。
截面减少,投资降低电流互感器二次容量的计算及选择摘要:电流互感器的二次电流有 1A及5A两种,选用不同的二次电流,则二次的负荷及容量不同,所用的控制电缆截面也不同。
1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。
它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。
电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。
2 电流互感器二次负荷的计算电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。
计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。
电流回路二次负载标准
电流回路二次负载标准
电流回路二次负载标准是指电流互感器或电流变压器的二次回路所连接的负载的要求,主要包括负载阻抗、负载容量、负载功率因数等。
1. 负载阻抗:负载阻抗是指电流互感器二次回路所连接负载的等效阻抗。
电流互感器的二次侧负载应接近标称值,通常在
0.1欧姆至1欧姆之间。
较低的负载阻抗可以提供更小的相位
误差和更好的线性特性。
2. 负载容量:负载容量是指电流互感器所连接负载的额定容量。
负载容量应根据互感器的额定容量和使用要求进行选择,以确保负载不过载。
一般情况下,互感器的负载容量应大于等于互感器的额定容量。
3. 负载功率因数:负载功率因数指负载的有功功率与视在功率的比值。
一般要求负载功率因数应接近1,以减小电流互感器
的相位误差和提高测量的准确性。
负载功率因数偏低会导致互感器的相位和线性误差增大。
总之,电流回路二次负载标准的目的是确保电流互感器在实际应用中能够提供准确可靠的测量结果,而不受负载的影响。
根据不同的应用要求和互感器的性能指标,可以选择合适的负载阻抗、负载容量和负载功率因数。
(完整版)电流互感器二次容量的计算及选择
电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。
一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。
电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。
电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。
考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。
建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。
电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。
它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。
继电保护--电流互感器二次容量
继电保护--电流互感器二次容量1、电流互感器允许负荷,在不同二次负荷时,准确度也不同,厂家给出的电流互感器二次负荷数据通常以伏安表示,也有用欧表示,两者关系为:22n I Zery =S其中S :电流互感器二次负荷,单位VA ;n I 2:电流互感器二次额定电流,通常为5A 或1A ;Zery :电流互感器二次回路允许负荷,单位欧姆;2、电流互感器二次实际负荷:Zers =jc dx jx k jx R R K Z K ++12其中ers Z :电流互感器实际二次负荷,单位欧姆;1jx K 、2jx K :导线接线系数、继电器或仪表接线系数;k Z :继电器电阻或测量表计线圈阻抗; dx R :连接导线电阻,dx R =SLρ,L 是导线长度,m ;S 是导线界面积,mm 2,ρ电阻系数,铜0.018×10-6欧姆.米;jc R :接触电阻,通常取0.05-0.1;正常运行时1jx K 、2jx K 接线系数与电流互感器接线形式有关,为三相星型接线时,接线系数为1,1;三角性接线时为3,3;两相星型接线时为3,3(中性线回路负荷阻抗等于继电器线圈阻抗)或3,1(中性线回路负荷阻抗为零);当系统出现故障时,实际二次负荷不仅与电流互感器接线形式有关,还有故障类型有关,具体如下表:序号接线方式短路类型实际二次负荷计算公式1三相、两相jcdxkRRZ++Y,d接线变压器低压侧两相单相jcdxknkRRZZ+++22三相jcdxkRRZ++33AC两相jcdxkRRZ++AB\BC两相及单相jcdxkRRZ++22Y,d接线变压器低压侧AB两相jcdxkRRZ++33Y,yn接线变压器低压侧B相单相3三相jcdxkRRZ++3AC两相jcdxkRRZ++AB\BC两相及单相jcdxkRRZ++2Y,d接线变压器低压侧AB两相jcdxkRRZ++33、电流互感器二次容量选择按照电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负荷,比较实际二次负荷与允许二次负荷,如果实际二次负荷Z<Zery,说明电流互感器的误差不超过10%,反之,误差将超过ers10%。
电流互感器二次负载的计算及选择
电流互感器二次负载的计算及选择1.电流互感器简介互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。
而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A 的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。
目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型 2 种。
电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“ 8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。
油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。
为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。
2.电流互感器的特点1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。
2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。
3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。
因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。
相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。
浅谈电流互感器的误差和二次负载的计算
浅谈电流互感器的误差和二次负载的计算摘要:电流互感器是电力系统中非常重要的一次设备,掌握其误差特性及二次负载的计算,对设计人员来说至关重要,本文分析了电流互感器误差产生的原因以及分别对测量电流互感器、保护电流互感器二次负载进行了计算。
关键词:电流互感器、误差、二次负载、计算1、电流互感器的误差电流互感器是用来将一次系统的大电流按比例变换为二次系统的小电流,以满足测量、监控、保护及自动装置等的需要,并将一、二次设备安全隔离,使高、低压回路不存在电的联系的一种常见的电气设备。
测量误差是指电流互感器的二次输出量I2与其归算二次侧的一次输入量I1’的大小不相等,幅角不相同所造成的差值,因此测量误差分为数值(变比)误差和相位(角度)误差两种。
产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。
电流互感器本身造成的测量误差是由于电流互感器有励磁电流Ie存在,而Ie是输入电流的一部分,它不传到二次侧,故形成变比误差,Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失,Ie所流经的励磁支流是一个呈电感性的支路,Ie和I2不同相位,这是造成角度误差的主要原因。
运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大所致。
故为保证电流互感器工作在误差范围内,在不改变其本身固有特性的情况下,作为设计人员来说,根据实际情况,选择适当的电流互感器二次容量尤为重要,以下介绍二次负载容量的计算。
2、测量电流互感器二次负载容量的计算为了保证测量仪表的准确度,互感器的准确度级不得低于所供测量仪表的准确度级。
电流互感器的一定准确等级是与一定的负荷容量S2相对应的。
当接入负荷(仪表继电器等)的容量超过互感器准确级规定的容量Se2时,电流互感器的准确级将要下降,即测量误差增大。
因此,为了保证测量的准确度,互感器二次侧所接负荷容量S2应小于互感器准确度级所规定的额定容量Se2。
,即应满足:Se2≥S2即Se2≥I22Z2 (1)由上式可知,二次负荷容量与二次阻抗有着直接关系。
电流互感器参数选择
本工程66kV电路互感器保护卷选用:300-600/5A 5P30(30VA);测量、计量卷选用:300-600/5A(30VA)。
本工程10kV电路互感器保护卷选用:300-600/5A 5P30(20VA);测量、计量卷选用:300-600/5A(15VA)。
1)电流互感器二次容量计算条件:
Id3=66kV4.82KA Id3=10kV 11.46KA
S2l=I2n2(Kjs*Rl+Kjs2*Zfh+Rjc)
S2n=Kr*S2l
S2l二次负荷计算容量
S2n互感器二次容量
I2n:二次额定电流5A
Kjs:取1
Kjs2:负荷系数取1
Kr:裕度系数取2.5
Rl:电缆、导线阻抗
30
300-600/5A 5P30
66kV测量、计量CT容量
0.1
0.05
0.263157895
10.32895
2.5
25.82236842
30300-600/5源自 0.2S10kV保护CT容量
0.1
0.05
0.043859649
4.846491
2.5
12.11622807
20
2x400/5A 5P30
10kV测量、计量CT容量
0.1
0.05
0.041666667
4.791667
2.5
11.97916667
15
2x400/5A 0.5S/0.2S
3)保护电流互感器计算系数校验
66kV mJS=1.3*4.82*1000/600=10.44 <30满足要求。
10kV mJS=1.3*11.46*1000/800=18.63 <30满足要求。
PT、CT计算
电流二次回路负荷计算根据《Q/GXD 116.01-2007广西电网电能计量装置配置及验收技术标准》,对于三相四线制接线方式,若3台电流互感器与电能表之间采用四线连接,则不计算N 线电阻(因线路三相负荷平衡时N 线电流为0,N 线电阻不构成CT 二次负荷);若3台电流互感器与电能表之间采用六线连接,则应计算N 线电阻(因三相N 线始终流过电流,N 线电阻构成CT 二次负荷)。
电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nI S ——设计选择的电流互感器二次额定负荷,VAK ——系数,一般选择1.5~4。
A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接线系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。
2n I ——电流互感器二次额定电流,A ,为1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接触电阻,取0.1Ω① 110kV CT 二次容量计算:高岭站110kV CT 二次额定电流为1A ,电缆综合长度为120米,电缆截面使用4mm 2。
根据公式(2),则:Ω=⨯==5.0457120A L R l ρ 其中:二次电流回路使用三相星型接法,所以jx K =1,2jx K =1。
PT、CT计算
电流二次回路负荷计算根据《Q/GXD 116.01-2007广西电网电能计量装置配置及验收技术标准》,对于三相四线制接线方式,若3台电流互感器与电能表之间采用四线连接,则不计算N 线电阻(因线路三相负荷平衡时N 线电流为0,N 线电阻不构成CT 二次负荷);若3台电流互感器与电能表之间采用六线连接,则应计算N 线电阻(因三相N 线始终流过电流,N 线电阻构成CT 二次负荷)。
电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nI S ——设计选择的电流互感器二次额定负荷,VAK ——系数,一般选择1.5~4。
A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接线系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。
2n I ——电流互感器二次额定电流,A ,为1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接触电阻,取0.1Ω① 110kV CT 二次容量计算:高岭站110kV CT 二次额定电流为1A ,电缆综合长度为120米,电缆截面使用4mm 2。
根据公式(2),则:Ω=⨯==5.0457120A L R l ρ 其中:二次电流回路使用三相星型接法,所以jx K =1,2jx K =1。
电流互感器二次容量的计算
电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。
一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。
电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。
电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。
考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。
建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。
电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。
它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。
电流互感器二次额定电流和二次允许负荷对测量结果的影响
$ 在电力系统中#电流互感器分为测量用电
流互感器和保护用电流互感器两种# 本文主要讨 论测量用电流互感器$ 因在实际工程中# 很多设 计人员在选择电流互感器时仅考虑一次额定电 流#但影响测量结果的有电流互感器的二次额定 电流和二次负荷大小#往往被设计人员忽略$ 本文分析电流互感器的二次额定电流和二次 负荷对实际测量结果的影响# 可为电气设计人员 提供参考$
'$引$言
电流互感器是电力系统运行中必不可少的电 流测量设备#将一次大电流变换成二次小电流#以 达到满足计量) 继电保护) 自动控制等方面的 并不是越大越好 的# 只有选择的二次负荷大小接近实际二次负 荷# 电流互感器的精度才较高# 容量偏大或偏小 都会影响测量精度$ 电流互感器的二次绕组中 所接入的实际二次负荷应保证在额定二次负荷 的 .' C !## 范围内#电流互感器的误差才会在 规定要求范围内$ ! ! " 校验电流互感器的精度时# 电流互感器 的实际二次负荷为 K Q E ,Y 1 W .K 2 1 -Y 1 W !" >W -" 1 2 接线系数+ K . . .测量仪表与计量仪表线圈的阻抗+ 2 1 " . . .接触电阻#一般取 #/ #' C #/ !# )+ 1 2 " . . .连接导线的电阻$ >W ! . " 电流互感器的二次允许负荷计算为
电气安全
电流互感器二次额定电流和二次允许 负荷对测量结果的影响
王$梅 上海绿美工程设计有限公司 上海$&'!#'' 摘$要 为解决当电流互感器装设点与实际控制点相距较远时电流互感器的精
电流互感器的二次回路
为了满足不同测量、继电保护及安全自动装置的要求,电流互感器有多种配置与接 线方式。
电流互感器接用位置的选择
下图是常见 220kV 变电所电流、电压互感器典型配置方式。 图 13-3、220kV 变电所电流、电压互感器典型配置图
在选择各类测量测量、计量及保护装置接入位置时,要考虑以下因素: 1)选用合适的准确度级。如图中,计量对准确度要求最高,接 0.2 级,测量回路要求相对 较低接 0.5 级。保护装置对准确度要求不高,但要求能承受很大的短路电流倍数,所以选用 5P20 的保护级。(电流互感器一次流过的电流在其额定电流的 20 倍以下时,此电流互感器的误 差不大于±5%) 2)保护用电流互感器还要根据保护原理与保护范围合理选择接入位置,确保一次设备的保护 范围没有死区 3)当有旁路开关需要旁代主变等开关时,如有差动等保护则需要进行电流互感器的二次回 路切换,这时既要考虑切换的回路要对应一次运行方式的变换,还要考虑切入的电流互感器 二次极性必须正确,变比必须相等。
ZL--二次设备阻抗,Ω Zl--二次回路连接导线的阻抗,Ω Zjc--二次回路连接点接触电阻,取决于连接点多少与接触是否良好,一般取 O.05~ O.1Ω K1 -- 二次设备的接线系数 K2 --二次回路连接导线的接线系数 电流互感器二次输出容量 Se 必须大于二次负载 SL,并留有适当裕度。 测量、计量用电流互感器各接线方式时的接线系数(ZL0 为零线中负荷阻抗)
二、电流互感器的基本参数
一次参数 电流互感器的一次参数主要有一次额定电压与一次额定电流。 一次额定电压的选择主要是满足相应电网电压的要求,其绝缘水平能够承受电网电 压长期运行,并承受可能出现的雷电过电压、操作过电压及异常运行方式下的电压, 如小接地电流方式下的单相接地(电压上升 倍)。 一次额定额定电流的考虑较为复杂,一般应满足以下要求:
CT二次容量计算V1.1
计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为
S2I= 25.00 S2nI= 37.50 本工程取: 40
单元格保护密码是 1
全星形接法为1.732,星形接法为1;
如存在V相串联线圈(如接入90º跨相无功电能表)则为1.732 ,其余为1
个三相电子式电能表一般选定为0.05,三相机械表选择0.15
个电能表电流线圈总阻抗之和
串联线圈总阻抗接线系数,不完全星形接法时如存在V相串联线圈(如接入90 电流互感器二次额定电流,A,一般为5A或1A 表计数量 计算相的电流互感器其二次回路所串接入的N个电能表电流线圈总阻抗之和 二次回路接头接触电阻,一般取0.05~0.1 电流互感器实际二次负荷(计算负荷),VA 设计选择的电流互感器二次额定负荷,VA
电流互感器实际二次负荷(计算负荷)
S2I I2 Σ Zm R k ) 2 n (K jx R l K jx 2
S2nI K S2I
公式1 公式2
Rl
L A
K= 1.5 A= 4 ρ = 57.7 L= 150 Rl= 0.6499
系数,一般选择1.5~·mm2 m Ω
铜导电率,=57.7 (m/·mm2) 二次回路导线单根长度, 二次回路导线电阻,Ω
Kjx= Kjx2= I2n= Zm= m= Σ Zm= Rk =
1 1 5 0.15 2 0.3 0.05 A Ω Ω Ω VA VA VA
二次回路导线接触系数,分相接法为2,不完全星形接法为1.732,星形接法为
电流互感器的二次回路
三、电流互感器的10%误差(7)
两电流互感器二次回路的串联:二次串联的电 流互感器变比必须相同,一次回路必须工作在 同一电流下。串联后的变比不变,容量为两各 次级容量之和。 两电流互感器二次回路的并联:两相同变比的 电流互感器次级并联后,变比为原来的1/2, 容量不变。
四、保护用电流互感器的暂态特性(1)
三、电流互感器的10%误差(1)
校核保护用电流互感器10%误差的意义:对保 护用电流互感器,必须按实际的二次负载大小 及系统可能出现的最大短路电流进行10%校核。 电流互感器的10%误差是继电保护装置对其的 最大允许值,也是各类保护装置整定的依据。 所以10%误差曲线的计算非常重要,特别是对 母差保护、变压器及发电机的差动保护,由于 这类保护的定值较灵敏,它们的整定依据之一 就是躲过各侧电流互感器按10%误差计算出来 的最大综合误差。
二、电流互感器的基本参数(4)
5)选取的电流互感器一次额定电流值应与国家标 准 GBl208-1997 推荐的一次电流标准值相一致。
二、电流互感器的基本参数(5)
二次额定电流 在GB1208—1997中,规定标准的电流互感器二 次电流为1A和5A。
变电所电流互感器的二次额定电流采用5A还是1A,主要决定于 经济技术比较。在相同一次额定电流、相同额定输出容量的情况 下,电流互感器二次电流采用5A时,其体积小,价格便宜,但电 缆及接入同样阻抗的二次设备时,二次负载将是1A额定电流时的 25倍。所以一般在220kV及以下电压等级变电所中,220kV回路数 不多,而10~110kV 回路数较多,电缆长度较短时,电流互感器 二次额定电流采用 5A的。在 330kV及以上电压等级变电所, 220kV 及以上回路数较多,电流回路电缆较长时,电流互感器二 次额定电流采用1A的。
电流互感器二次负荷的计算
电流互感器二次负荷的计算
电流互感器的负荷通常有两部分组成:
一部分是所连接的测量仪表或保护装置;另一部分是连接导线。
计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。
电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(V A)表示。
二者之间的关系为: S=I2*I2*Z2
当电流互感器二次电流为5A时,S=25Z2
当电流互感器二次电流为1A时,S=Z2
电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100V A。
1)测量用的电流互感器的负荷计算。
一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算
Z2=Kcj.zkZcj+Klx.zkZlx+Zc
式中:Zcj-------测量表计线圈的阻抗(Ω)
Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。
Zc-------接触电阻(Ω),一般取0.05~0.1(Ω)。
Kcj.zk----测量表计的阻抗换算系数
Klx.zk----连接导线的阻抗换算系数。
电流互感器二次回路
一、概述(2)
电流互感器特点:是一个特殊型式变换器,它 的二次电流正比于一次电流。因其二次回路的 负载阻抗很小,一般仅几个欧姆,故二次工作 电压也很低,当二次回路阻抗大时二次工作电 压U=IZ也变大,当二次回路开路时,U将上升 到危险的幅值,它不但影响电流传变的准确度, 而且可能损坏二次回路的绝缘,烧毁电流互感 器铁芯。所以电压互感器的二次回路不能开路。
•电流互感器二次回路,
二、电流互感器的基本参数(13)
其中0.1~1的四个标准其二次负荷应在额定负 荷的25%~100%间,3~5两个标准其二次负 荷应在额定负荷的50%~100%间,否则准确 度不能满足要求。所以对负荷范围广,准确度 要求高的场合,可以采用经补偿的0.2s和O.5s 电流互感器,该互感器在1%~120%负荷间均 能满足准确度要求。对测量用电流互感器除了 幅值准确度要求外,还有角度误差要求。
•电流互感器二次回路,
二、电流互感器的基本参数(6)
为了既满足测量、计量在正常使用的精度及读 数,又能满足故障大电流下继电保护装置的精 工电流及电流互感器10%误差曲线要求,二个 回路常采用不同次级、不同变比。也可用中间 抽头来选择不同变比。 电流互感器的变比也是一个重要参数。当一次 额定电流与二次额定电流确定后,其变比即确 定。电流互感器的额定变比等于一次额定电流 比二次额定电流。
四、保护用电流互感器的暂态特性(2)
暂态过程的大小与持续时间与系统的时间常数 有关,一般220kV系统的时间常数不大于60ms, 500kV系统的时间常数在80~200ms之间。系统 时间常数增大的结果,使短路电流非周期分量 的衰减时间加长,短路电流的暂态持续时间加 长。系统容量越大,短路电流的幅值也越大, 暂态过程越严重。所以针对不同的系统要采用 具有不同暂态特性的电流互感器。
电流互感器二次回路导线截面
电流互感器二次回路导线截面“A ”应按式(1)进行选择,但不得小于4mm 2。
A =ρL106 /R L ( mm 2 ) (1)式 中 :ρ—铜导线的电阻率,此处ρ=1.8 x 10-8Ωm;L —二次回路导线单根长度,m ;R L — 二次回路导线电阻,Ω。
R L 值按式(2)进行计算: 222222()N N jX m K L jx N S I K Z R R K I -+≤ (2)式 中 :jx K — 二次回路导线接线系数,分相接法为23 星形接法为1;2jX K —串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(例:接人90。
跨相无功电能表) 则 为 行 , 其余均为1;S 2N — 电流互感器二次额定负荷,VA;I 2N — 电 流互感器二次额定电流,A ,一般为5A;mZ — 计 算相二次接人电能表电流线圈总阻抗,Ω; K R — 二次回路接头接触电阻,Ω,一般取0.05Ω-0.1Ω, 此处取0.1Ω。
根据以上设定值,对分相接法的二次回路导线截面可按式(3)计算:A ≥0.9L/( S 2N -25Z m ,-2.5)(mm 2)附表C:电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),V A2nI S ——设计选择的电流互感器二次额定负荷,V AK ——系数,一般选择1.5~3。
A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为23,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入9031。
电流互感器二次容量的计算及选择
电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。
一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。
电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。
电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。
考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA或10VA就可以满足要求。
建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。
电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。
它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器二次负荷计算
电流互感器二次负荷计算计算电流互感器的负荷时应注意不同接线方式下和
故障状态下的阻抗换算系数。
电流互感器的二次负荷可以用阻抗Z2(Ω)或容量
S(VA)表示。
二者之间的关系为: S=I2*I2*Z2
当电流互感器二次电流为5A时,S=25Z2 当电流互感器二次电流为1A时,
S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。
测量用的电流互感器的负荷计算。
一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算
Z2=Kcj.zkZcj+Klx.zkZlx+Zc 式中:Zcj-------测量表计线圈的阻抗(Ω) Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。
Zc-------接触电阻(Ω),一般取0.05~0.1(Ω)。
Kcj.zk----测量表计的阻抗换算系数 Klx.zk----
连接导线的阻抗换算系数
电流互感器的二次负荷计算 1)电流互感器的二次负荷可以用阻抗Zb(Ω)或容
量Sb(VA)表示。
二者之间的关系为 Sb=Isn*Isn*Zb 电流互感器的二次负荷额定值(Sbn)可根据需要选用2.5、5、7.5、10、15、20、30VA。
在某些特殊情况下,也
可选用更大的额定值。
2)电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;
另一部分是连接导线。
计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。
(a)测量用的电流互感器的负荷计算。
一般在工程计算时可负略阻抗之间的相位差,二次负荷Zb可按下式计算Zb=ΣKmc* Zm+Klc*Z1+Rc 式中:Zm -------仪表电流线圈的阻抗(Ω) Z1--------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。
Rc-------接触电阻(Ω),一般取
0.05~0.1(Ω)。
Kmc-----仪表接线的阻抗换算系数 Klc-------连接导线的阻抗换
算系数在计算测量用电流互感器的二次负荷时,应采用实际所接测量仪表电流回路的负荷值,但资料不全或没有相关资料时。
(b) 保护用电流互感器。
一般在工程计算时可负略电抗,二次负荷Rb可按下式计算Rb=ΣKrc* Rr+Klc*R1+Rc 式中:Rr -------继电器电流线圈的阻抗(Ω) R1--------连接导线的单程电阻(Ω)。
Rc-------接触电阻(Ω),一般取0.05~0.1(Ω)。
Krc-----仪表接线的阻抗换算系数 Klc-------连接导线的阻抗换算系数计算连接导线的负荷时,一般情况下可忽略电抗,而仅计算电阻R1,计算式为 R1=L/Ra 式中:L---------电缆长度(m); A---------导线截面(mm2) r----------电导系数,铜取57〔m/(Ω* mm2)〕。