关于开关电源常见问题的思考
有关开关电源设计中遇到的问题经验所谈(共五则范文)
有关开关电源设计中遇到的问题经验所谈(共五则范文)第一篇:有关开关电源设计中遇到的问题经验所谈借鉴下NXP的这个TEA1832图纸做个说明。
分析里面的电路参数设计与优化并做到认证至量产。
在所有的元器件中尽量选择公司仓库里面的元件,和量大的元件,方便后续降成本拿价格。
贴片电阻采用0603的5%,0805的5%,1%,贴片电容容值越大价格越高,设计时需考虑。
1、输入端,FUSE选择需要考虑到I2T参数。
保险丝的分类,快断,慢断,电流,电压值,保险丝的认证是否齐全。
保险丝前的安规距离2.5mm以上。
设计时尽量放到3mm以上。
需考虑打雷击时,保险丝I2T是否有余量,会不会打挂掉。
2、这个图中可以增加个压敏电阻,一般采用14D471,也有采用561的,直径越大抗浪涌电流越大,也有增强版的10S471,14S471等,一般14D471打1KV,2KV雷击够用了,增加雷击电压就要换成MOV+GDT了。
有必要时,压敏电阻外面包个热缩套管。
3、NTC,这个图中可以增加个NTC,有的客户有限制冷启动浪涌电流不超过60A,30A,NTC的另一个目的还可以在雷击时扛部分电压,减下MOSFET的压力。
选型时注意NTC的电压,电流,温度等参数。
4、共模电感,传导与辐射很重要的一个滤波元件,共模电感有环形的高导材料5K,7K,0K,12K,15K,常用绕法有分槽绕,并绕,蝶形绕法等,还有UU型,分4个槽的ET型。
这个如果能共用老机种的最好,成本考虑,传导辐射测试完成后才能定型。
5、X电容的选择,这个需要与共模电感配合测试传导与辐射才能定容值,一般情况为功率越大X电容越大。
6、如果做认证时有输入L,N的放电时间要求,需要在X电容下放2并2串的电阻给电容放电。
7、桥堆的选择一般需要考虑桥堆能过得浪涌电流,耐压和散热,防止雷击时挂掉。
8、VCC的启动电阻,注意启动电阻的功耗,主要是耐压值,1206的一般耐压200V,0805一般耐压150V,能多留余量比较好。
开关电源的常见故障分析及维修
如果测量值比正常值高出IV以上,说明输出电压过高。我们应着重检查取样电阻是否变值或损坏,精密稳压放大器(TL431)或光耦合器(PC817)性能不良,变质或损坏;
2.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。
3.开关功率管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。
4.开关功率管的源极(S极),通常接一个阻值很小,但功率很大的电阻,作为过流保护检测电阻,此电阻的阻值一般在0.2到0.8之间。此电阻如变值或开焊,接触不良也会造成输出电压过低的故障。
因在日常生活使用中,不可避免的重摔或重幢,使高频变压器的铁芯损坏。使高频变压器的磁通量,磁感应强度,以及磁路等都会受到很大的影响,造成传输的效率,能量将会大打折扣。
由于高频变压器为了减小涡流,增大高频交流电的传输效率,它的铁芯是用软磁铁氧体制作而成的。这种磁性材料具有高的导磁率,但质脆,易碎。
因此它的损坏率也是很高的。因此在维修时千万不要忘了检查此处,以免走弯路。除此之外还有可能就是输出滤波电容容量降低,甚至失容或开焊,虚接;
其中精密稳压放大器(TL431)极易损坏,我们可用下述方法对精密稳压放大器(TL431)作出好坏的判别:
将TL431的参考端(Ref)与它的阴极(Cathode)相连,串10k的电阻,接入5V电压,若阳极(Anode)与阴极之间为2.5V,并且等待片刻还仍然为2.5V,则为好管,否则为坏管。
六.有直流电压输出,但输出直流电压过低
一. 保险丝熔断
一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
继电保护用开关电源的故障分析及改进
继电保护用开关电源的故障分析及改进继电保护是电力系统中必不可少的基础设备,主要用于检测电力系统的故障和异常,保护电力系统的稳定性和安全性。
而为了保证继电保护的正常工作,其所使用的电源系统必须具有高可靠性和稳定性。
本文针对继电保护用开关电源的故障分析和改进进行了详细探讨。
一、开关电源故障的原因1.电源电压不稳定:开关电源的工作电压范围通常较宽,但当输入电压波动较大时,可能导致开关电源输出电压偏差较大,影响继电保护的正常工作。
2.过载过热:开关电源中的电子元件易受热影响,当长时间工作或工作负载过大时,电子元件容易发热导致故障。
3.电源短路:开关电源中的各种接口可能存在短路现象,导致电源输出电压异常。
4.环境温度过高:开关电源工作环境温度过高会影响电源工作效果,容易导致故障。
1.改进开关电源电路:可以选择具有多路电源输入的开关电源,对输入电路进行优化可有效解决电源电压不稳定的问题。
同时,使用高效的散热器可以降低开关电源的工作温度,减少过载过热的可能性。
2.加装过载保护:在开关电源的输出端加装过载保护电路,当负载过大时,自动切断电源输出,防止电源因过载过热而损坏。
3.提高环境温度适应能力:可以在开关电源周围设置散热设备,增加自然通风,降低环境温度,提高开关电源的适应能力。
4.加强维护管理:经常性对开关电源进行维护和检查,发现问题及时处理,加强管理,可以减少开关电源故障的发生。
三、总结开关电源作为继电保护的电源系统之一,在保证继电保护正常工作的同时,也需要具有其自身的高可靠性和稳定性。
而针对开关电源的故障,可以通过改进开关电源电路,加装过载保护,提高环境温度适应能力和加强维护管理等方式来解决。
最终,保证继电保护用开关电源的稳定可靠是电力系统正常运行的重要保证。
开关电源心得体会
开关电源心得体会开关电源心得体会开关电源是现代电子设备中常见的一种电源类型,它能够将交流电转换为直流电,并且具有高效能、小体积、轻质、稳定性好等特点,因此广泛应用于电子产品、通信设备、计算机等领域。
在我的学习和实践中,我对开关电源有了更深入的了解,并从中获取了一些心得体会。
首先,在学习开关电源的过程中,我深刻认识到了学习的重要性。
开关电源作为一种复杂的电子器件,需要我们具备扎实的电子基础知识和相关的工程技术。
通过参与学校的课程学习以及与专业教师的交流讨论,我逐渐掌握了开关电源的基本原理和设计方法。
同时,我积极参与实际线路的搭建与调试,通过实践不断提高自己的动手能力和解决问题的能力。
通过不断学习和实践,我深刻认识到只有通过扎实的学习和实践,才能真正掌握开关电源的设计与应用。
其次,在实践过程中,我体会到了坚持不懈的重要性。
开关电源设计与调试是一个反复试错的过程,往往需要不断调整参数和检查电路,才能达到理想的效果。
在实践中,我遇到了许多困难和挫折,但我没有放弃,坚持不懈地尝试和改进。
我通过不断总结和分析,找到了问题所在,并采取相应的措施解决。
这种坚持不懈的态度不仅帮助我克服了困难,还培养了我的毅力和耐心,提高了自己的工作效率。
另外,我在开关电源的实践中也深刻意识到了安全意识的重要性。
开关电源工作时会产生高电压、大电流等危险因素,一旦操作不当就可能造成电击、短路等安全事故。
因此,我在操作过程中时刻保持警惕,按照操作规程进行,并且保持仪器设备的良好状态,以确保自己和他人的安全。
同时,我也将这种安全意识扩展到工作中的其他方面,遵守相关的安全操作规程,保证自己和同事的安全。
最后,通过学习和实践,我还认识到了团队合作的重要性。
在实践中,我与同学们一起合作完成了一些开关电源相关的实验和项目。
通过与他们的合作,我学会了与人沟通、协调和分工合作。
每个人都有自己的长处和不足,通过相互交流和合作,我们互相学习,共同进步。
开关电源设计开发存在的问题
开关电源设计开发存在的问题开关电源设计开发存在的问题一、电磁干扰问题:在之前的几篇文章有相关介绍了,在此不重复。
二、效率与功率因数问题:开关电源的特点是轻、小、高效率、高功率密度。
开关电源的外形可以短、薄。
最近有人在研究变压器折叠式绕组,其目的是提高功率密度,实现特定要求,满足各种需要。
开关电源效率较高时,损耗就很低,只有这样的开关电源才具有高功率密度。
高效率是由多种因素决定的,最主要的因素是安全。
只有彻底掌握开关电源的理论知识,具有丰富的工作经验,对开关电源进行精心设计、认真实验,并借助于优化设计和仿真设计,才能制造出优质的、高品位的开关电源。
一般开关电源的滤波电路是由单电容和电感组成的,由此引发出开关电源功率因数低的问题,原因是只有在正弦交流电压的瞬时值高于直流电压时,电网电压才对滤波电容充电,充电时间短,充电电流是尖峰状,偏离了正弦波。
有源功率因数校正器以反激式为基本电路,采用双环控制调节占空比使电路输出电压稳定,使输入电流紧随输入电压变化,功率因数达到或接近1的水平,效果非常明显。
随着开关电源的新技术不断取得进步,现在开关电源已经取得晶闸管整流电源,作为基础电源的48V、24V直流电源给电信通信系统带来了极大的经济效益和社会效益。
电信通信系统容量大,一般为几千安甚至上万安培的电流,而且机房无人值守。
这种大容量电源一般由几十个千瓦级别的开关电源模块并联才能满足要求,而且每个电源模块必须向控制系统提供电压、电流、温度、工作状态(运行、故障、均流)等方面的信息。
不但如此,每个电源模块还必须能够接收控制系统的遥控指令,这就是所说的智能化高可靠性开关电源模块,这些电源模块还必须具有高功率因数。
三、器件原材料问题:目前,市场上常用的电源控制IC集成电路有很多,品种也不上,但IC的集成度不算高,器件的技术参数分散性比较大,同一个工厂生产的IC它的技术参数相差5%至10%。
能否将有源功率调整、脉宽调制、各种保护、监测、控制集于一体,将振荡变压器、二次整流滤波集于一体;能否将铁氧体磁心变压器实现纳米化平面变压器等等。
开关电源个人总结
开关电源个人总结
开关电源是一种采用开关器件进行控制的电源,具有高效率、小体积、轻重量等优点,广泛应用于电子设备中。
个人总结如下:
1. 高效率:开关电源的工作原理是通过开关器件的开启和关闭来调节电压和电流,能
够实现高效能的转换,电能的损失相对较小。
2. 小体积:相比于传统的线性电源,开关电源采用了高频开关技术,在同样功率输出
的情况下,开关电源的体积要小很多,适合应用于小型设备中。
3. 轻重量:由于开关电源采用了高频开关技术和高效能的转换方式,导致电源的重量
相对较轻,便于携带和安装。
4. 稳定性好:开关电源采用反馈控制的方式来调节电压和电流,能够实现稳定的输出,对输入电压的波动有一定的抗干扰能力。
5. 脉冲干扰:由于开关电源的开关频率较高,其输出信号中会含有一定的脉冲干扰,
需要通过滤波电路来进行抑制。
总的来说,开关电源是一种高效率、小体积、轻重量的电源,适用于各种电子设备和
工业应用,但在设计和应用过程中需要注意脉冲干扰的问题。
开关电源常见故障解读——这篇小文档的技巧分享细节满满(民熔)
开关电源常见故障及维修技巧总结一、无直流电压输出或电压输出不稳定如果保险丝是完好的,在有负载情况下,各级直流电压无输出。
这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。
在用万用表测量次级元件,排除了高频整流二极管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。
若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。
高频滤波电路主要由整流二极管及低压滤波电容组成直流电压输出,其中整流二极管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。
用万用表静态测量对应元件即可检查出其损坏的元件。
二、电源负载能力差电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。
应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏等。
三、维修技巧开关电源的维修可分为两步进行:1、断电情况下,“看、闻、问、量”看:打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应重点检查此处元件及相关电路元件。
资产管理闻:闻一下电源内部是否有糊味,检查是否有烧焦的元器件。
问:问一下电源损坏的经过,是否对电源进行违规操作。
量:没通电前,用万用表量一下高压电容两端的电压先。
如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心。
用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源内部可能存在短路。
电容器应能充放电。
脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。
浅析开关电源的原理及常见故障
浅析开关电源的原理及常见故障摘要:本文主要介绍了开关电源的工作原理及常见故障。
开关电源是一种高效、可靠的电源,广泛应用于电子设备中。
本文从电源的内部结构和工作原理入手,详细阐述了开关电源的工作过程。
同时也介绍了开关电源的常见故障,例如过温、过电流等,并提供相应的解决方法。
通过本文的阐述,读者能够更加深入地理解开关电源的原理及故障处理方法。
关键词:开关电源、工作原理、故障、过温、过电流。
正文:一、开关电源的原理开关电源是一种将直流电转换为交流电的装置。
与传统的线性电源相比,开关电源具有以下优点:1. 效率高:由于开关电源采用了高频开关技术,因此效率比线性电源高很多。
2. 体积小:开关电源的尺寸可以制造成非常小巧的体积,非常适合嵌入式系统的应用。
3. 功能强:开关电源有更多的保护功能,例如过温、过载、短路等功能。
开关电源包括以下几个部分:1. 输入电路:负责将市电转化成直流电。
2. 滤波电路:将输入信号中的噪声去掉。
3. 开关电路:将直流电转化成高频电流。
4. 变压器:将高频电流变换成低压电流。
5. 输出电路:将低压电流转化成直流电并输出供给负载使用。
二、常见故障处理1. 过温故障过温故障是开关电源常见的故障之一。
当开关电源在长时间大负载时,容易引起电源温度过高。
如果超温保护电路没有及时切断供电,则会导致设备的损坏。
解决方法:一旦发现开关电源过温,应立即停止使用,等到电源温度降至正常温度再重新使用。
2. 过电流故障过电流故障是开关电源另一个常见的故障。
当开关电源输出电流超过负载能力时,会引起电流的过大,导致电源及所连接的负载损坏。
解决方法:采用合适的负载,防止负载过大,导致开关电源故障。
3. 故障电压故障电压是开关电源中的一种常见故障。
当负载电流过大或输出电路长时间空载时,会导致输出电压过高或过低,导致设备无法正常工作。
解决方法:检查连接设备或更换合适的电源。
4. 硬件故障开关电源中的硬件故障较少见,但可能会影响电源的稳定性和可靠性。
开关电源常见的四种故障情况及解决方法
开关电源常见的四种故障情况及解决方法
开关电源常见的四种故障情况及解决方法
开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。
由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。
电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。
故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。
1. 无输出,保险管正常
这种现象说明开关电源未工作或进入了保护状态。
首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。
若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。
最新开关电源的常见故障分析及维修
最新开关电源的常见故障分析及维修
二. 无直流电压输出或电压输 出不稳定
最新开关电源的常见故障分析及维修
如果保险丝是完好的,在有负载 的情况下,各级直流电压无输出。 这种情况主要是以下原因造成的: 电源中出现开路,短路现象,过 压,过流保护电路出现故障,振 荡电路没有工作,电源负载过重, 高频整流滤波电路中整流二极管
被击穿,滤波电容漏电等。
最新开关电源的常见故障分析及维修
维修方法:
最新开关电源的常见故障分析及维修
首先,用万用表测量一下高频变 压器次级的各个元器件是否有损 坏。在排除了高频整流二极管击 穿、负载短路的情况后,然后在 测量各输出端的直流电压,如果 这时输出仍为零,则可以肯定是
电源的控制电路出了故障。
开关电源的常见故障分析及维修
最新开关电源的常见故障分析及维修
由于开关电源的输入部分工作在 高压,大电流的状态下,故障率 最高,如高压大电流整流二极管, 滤波电容,开关功率管等较易损 坏。其次就是输出整流部分的整 流二极管,保护二极管,滤波电 容,限流电阻等较易损坏;再就 是脉宽调制控制器的反馈部分和
保护部分。
最新开关电源的常见故障分析及维修
下面就对开关电源常见故障产生 的原因作一分析及如何排除这些
故障的维修方法。
最新开关电源的常见故障分析及维修
一. 保险丝熔断
最新开关电源的常见故障分析及维修
一般情况下,保险丝熔断说明开 关电源的内部电路存在短路或过 流的故障。由于开关电源工作在 高电压,大电流的状态下,直流 滤波和变换振荡电路在高压状态 工作时间太长,电压变化相对大。 电网电压的波动,浪涌都会引起 电源内电流瞬间增大而使保险丝
点是:
最新开关电源的常见故障分析及维修
开关电源常见故障的分析及维修
开关电源常见故障的分析及维修(论文)开关电源常见故障的分析及维修(论文)摘要:本文主要是针对脉冲宽度调制(PWM)式开关电源常见故障进行分析和维修的。
这类开关电源因其节能,环保,性价比高等优点,很快占领了市场,被广泛的应用于我们的生活中和各行各业中。
但这种开关电源的线路复杂,维修不便,给我们的日常生活和生产带来诸多不便。
因此本文就从这些角度出发,通过分析故障产生的原因以及如何排除故障,进行详细的阐述,希望对我们的日常生活和生产有所帮助。
关键词:开关电源高频变压器 UC3842 PWM前言目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的“线性电源”,很快被人们所接受。
这类开关电源主要是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
本文就针对此类开关电源进行详细的阐述其原理,常见故障分析以及维修方法。
开关电源的概述及工作原理1.1开关电源的概述开关电源是一种电源转换电路,一般是将交流电(AC)转换成不同电压的直流电(DC),且电压非常平稳。
因开关电源中的开关管(IGBT)总是工作在“开”和“关”的工作状态,所以叫开关电源。
它与传统的线性电源相比无论是在工作程式上还是在各方面的性能上都有了质的飞跃。
传统的线性电源工作程式一般可归纳为:变压器降压,二极管桥式整流,大容量电解电容滤波,稳压电路或专用稳压IC稳压。
而开关电源则不同,它的工作程式一般可归纳为:高压大电流二极管桥式整流,大容量电解电容滤波,中间控制高频变换环节,整流,滤波,稳压及反馈环节,保护环节等。
开关电源的常见故障及维修
开关电源的常见故障及维修1 开关电源故障原因分析开关电源是一种将交流电转换成直流电的设备,广泛应用于各种电子设备中。
然而,随着长时间的使用,开关电源也会出现故障。
常见的故障包括:1.1 电容损坏因为开关电源中的电容是长时间高温、高电压环境下工作的,因此容易受到损坏。
损坏的电容会导致电源输出的电压不稳定或输出变小。
1.2 晶体管损坏晶体管是开关电源中的核心部件之一,长时间工作容易受到损坏,导致输出电压和电流不稳定。
1.3 变压器损坏开关电源中的变压器担负着稳压和隔离的作用,长时间工作会加速变压器老化,导致输出电压不稳定或无输出。
1.4 其他故障包括电阻老化、电感短路等。
2 开关电源维修方法2.1 检测电容当开关电源输出电压不稳定或输出变小时,需要检查电容是否正常。
可以通过电容测试仪进行检测,若电容值与理论值相差较大,则需更换电容。
2.2 检测晶体管当开关电源输出电压和电流不稳定时,需要检查晶体管是否正常。
可以使用万用表进行检测,若晶体管损坏,则需更换晶体管。
2.3 检测变压器当开关电源输出电压不稳定或无输出时,需要检查变压器是否正常。
可以用万用表检测变压器是否断路或短路,并检查变压器的绝缘性能。
若变压器损坏,则需更换变压器。
2.4 其他维修方法当出现电阻老化或电感短路等问题时,需要更换受损元件。
3 开关电源预防措施为避免开关电源出现故障,可以采取以下预防措施:3.1 控制环境温度开关电源不宜长时间工作在高温环境下,应保持适宜的工作温度。
3.2 避免过载开关电源应使用在其额定负载范围内,避免长时间的过载。
3.3 定期保养定期对开关电源进行保养和维护,包括清洁、松动零件的固定和更换老化部件等。
3.4 质量控制选择合适的开关电源供应商,不购买低价劣质的开关电源。
总之,开关电源的故障和维修需要一定的经验和技巧,但通过增强维护和质量控制意识,可以最大限度地避免出现故障。
开关电源心得
开关电源心得开关电源心得篇1开关电源心得分享如下:1.搞清楚电源总体结构之后,需要理解开关电源的工作原理以及各部分功能的实现,可以通过理论学习和实操模拟来实现。
2.开关电源是一个比较复杂的系统,各部分功能实现也比较复杂,因此,在设计阶段,一定要多花时间做好充分的分析和计算,确保系统的稳定性。
3.开关电源的调试要与理论设计相互印证,通过调试达到预期的目的。
4.对于出现的故障,要仔细分析,找出原因,并予以排除。
以上是开关电源心得,希望对您有所帮助。
开关电源心得篇2在电力电子领域,开关电源因其高效、便携、易控等优势而备受青睐。
开关电源的原理、设计、制作及调试等方面需要深入了解,才能在实际应用中得心应手。
*将分享开关电源的心得体会,希望能对大家有所帮助。
开关电源的基本原理是通过电子开关器件(如IGBT、MOSFET等)在输入电压较高的情况下,通过控制开关器件的通断,将电压转换为输出电压。
其中,控制电路是开关电源的核心部分,它负责调节输出电压和频率,并确保电源的稳定性。
在设计开关电源时,需要注意以下几点:首先,合理选择拓扑结构,如Buck、Boost、Buck-Boost等;其次,确定输入和输出滤波器,以保证电源的稳定性;最后,针对具体应用场景,选择合适的功率管和控制器,以实现高效、稳定的输出。
实际制作开关电源时,需要注意电磁干扰、散热、焊接等问题。
电磁干扰可能影响设备的稳定性,需要通过屏蔽、滤波等措施加以控制;散热问题关系到电源的寿命,需要选择合适的散热器及散热方式;焊接问题则会影响电源的可靠性和稳定性。
调试开关电源时,需要检查控制电路、功率管及输出电路等部分,确保各部分工作正常。
同时,通过调整控制参数,如占空比、频率等,来优化电源的性能,如提高输出电压、降低噪声等。
开关电源在各个领域都有广泛应用,如电子、通信、汽车、家电等。
在实际应用中,我们需要根据具体场景,如输入电压、输出功率、可靠性等,选择合适的开关电源。
开关电源调试时常见的十种问题及解决办法
开关电源调试时常见的十种问题及解决办法1、变压器饱和变压器饱和现象:在(高压)或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的(电流)呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏。
变压器饱和时的电流波形容易产生饱和的原因:1)变压器感量太大;2)圈数太少;3)变压器的饱和电流点比IC的最大限流点小;4)没有软启动。
解决办法:1)降低IC的限流点;2)加强软启动,使通过变压器的电流包络更缓慢上升。
2、Vds过高Vds的应力要求:最恶劣条件(最高输入电压,负载最大,环境温度最高,(电源)启动或短路测试)下,Vds的最大值不应超过额定规格的90% Vds降低的办法:1)减小平台电压:减小变压器原副边圈数比;2)减小尖峰电压:a. 减小漏感:变压器漏感在开关管开通时存储能量是产生这个尖峰电压的主要原因,减小漏感可以减小尖峰电压。
b. 调整吸收电路:①使用TVS管;②使用较慢速的(二极管),其本身可以吸收一定的能量(尖峰);③插入阻尼电阻可以使得波形更加平滑,利于减小EMI。
3、IC 温度过高原因及解决办法:1)内部的(MOSFET)损耗太大:开关损耗太大,变压器的寄生(电容)太大,造成MOSFET的开通、关断电流与Vds的交叉面积大。
解决办法:增加变压器绕组的距离,以减小层间电容,如同绕组分多层绕制时,层间加入一层绝缘胶带(层间绝缘) 。
2)散热不良:IC的很大一部分热量依靠引脚导到(PCB)及其上的铜箔,应尽量增加铜箔的面积并上更多的焊锡3)IC周围空气温度太高:IC应处于空气流动畅顺的地方,应远离零件温度太高的零件。
4、空载、轻载不能启动现象:空载、轻载不能启动,Vcc反复从启动电压和关断电压来回跳动。
原因:空载、轻载时,Vcc绕组的感应电压太低,而进入反复重启动状态。
解决办法:增加Vcc绕组圈数,减小Vcc限流电阻,适当加上假负载。
开关电源电压不稳什么原因
开关电源电压不稳什么原因在电子设备中,开关电源模块是一个非常重要的部件,它可以将输入的交流电转换为稳定的直流电,为其他电路提供稳定的电源。
然而,在一些情况下,我们可能会遇到开关电源电压不稳定的情况,这可能会导致设备无法正常工作,甚至损坏其他部件。
那么,导致开关电源电压不稳定的原因有哪些呢?首先,开关电源电压不稳定的一个常见原因是输入电压波动较大。
当电网供电不稳定,或者在使用发电机供电时,输入电压可能会出现波动,这会直接影响到开关电源输出的稳定性。
如果开关电源模块设计不良或参数设置不当,就很容易受到输入电压波动的影响,导致输出电压不稳定。
其次,开关电源的负载变化也会导致输出电压不稳定。
当电路的负载发生变化时,如果开关电源的反馈控制调节不及时或者控制回路设计不合理,就会导致输出电压波动。
特别是在一些瞬态负载变化较大的场合,如启动电机等,开关电源电压的不稳定性会凸显出来。
另外,开关电源模块本身的质量和设计也是影响电压稳定性的重要因素。
如果开关电源模块的元件质量不达标,或者在设计中没有考虑到一些细节因素,如散热不足、线路布局不合理等,都会导致开关电源电压不稳定。
因此,在选择和设计开关电源时,一定要选择质量可靠的产品,并按照规范要求进行设计与安装。
此外,环境因素也会对开关电源的稳定性产生影响。
例如温度过高或者通风不良都会影响开关电源模块的散热效果,进而影响其工作稳定性。
因此,在使用开关电源时,要确保良好的环境条件,可以通过加装散热器或者提供良好的通风条件来改善稳定性。
总的来说,开关电源电压不稳定的原因可能包括输入电压波动、负载变化、模块质量、设计问题以及环境因素等多方面因素。
为了保证设备的正常工作和延长设备的使用寿命,我们需要在选择、设计和使用开关电源时,注意以上这些问题,确保输出电压的稳定性,从而提高设备的可靠性和性能。
1。
开关电源几种故障分析与维修技巧
开关电源几种故障分析与维修技巧一、几种电视机常见现象原因分析1、开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂。
2、开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路。
3、开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效漏电。
4、开关电源输出电压低的最常见原因:行输出变压器局部短路脉宽调制电路中的三极管和二极管击穿“漏电”光耦合器件中的三极管漏电等。
5、造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降。
6、造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路。
二、开关电源无输出的检修技巧1、开关电源始终无电压输出的原因开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致。
进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V 之后慢慢下降,则说明开关电源未产生振荡。
开关电源未产生振荡的原因有:(1)开关管集电极未得到足够的工作电压(2)开关管基极未得到启动电压和相关电路漏电(3)开关管正反馈元件失效判断故障的方法和步骤检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况:(1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常。
(2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大。
开关电源应用中的问题
在开关电源应用中,可能会遇到以下一些常见的问题:
1.噪音:开关电源工作时会产生高频噪音。
如果噪音干扰其他设备或导致电磁干扰问题,
可以采取隔离措施、使用滤波器或选择低噪音开关电源来解决。
2.温度过高:如果开关电源长时间工作温度过高,可能存在散热不良、负载过大或环境温
度过高等问题。
应确保适当的散热和通风,并检查负载是否超出额定范围。
3.电压波动:当负载变化较大时,开关电源输出的电压可能会有波动。
这可能导致被供电
设备异常工作或损坏。
合适的稳压电路和反馈机制可以帮助稳定输出电压。
4.开启和关闭过程中的尖峰电流:开关电源在启动或关闭时,可能会产生较大的尖峰电流,
对输入电源和其他设备造成压力。
合适的软启动和过流保护措施可以缓解这个问题。
5.效率问题:开关电源的转换效率是其性能的重要指标。
低效率会导致能量损耗和发热增
加。
选择高效率的开关电源设计可以减少能源消耗和热量产生。
6.输入电源质量:开关电源对输入电源的稳定性要求较高,如果输入电源存在波动、干扰
或不稳定情况,可能会影响开关电源的工作和输出质量。
使用稳定的电源供应,并考虑使用滤波器来减少电磁干扰。
7.电源保护:开关电源通常需要具备过流保护、过压保护、过热保护等功能,以保护设备
和电源本身免受异常情况的影响。
如果在开关电源应用中遇到问题,建议检查电源和相关电路是否符合设计要求,确保适当的散热和通风条件,并根据具体问题采取相应的解决措施。
如有必要,咨询专业人士或联系电源供应商以获取更多支持。
如何解决开关电源应用中的常见问题
如何解决开关电源应用中的常见问题
小功率电源被广泛地应用于电子电气行业,在应用的过程中也时常出现一些电源故障,如启机不良、输出电压偏低、模块过热等问题,针对这些电源供电故障现象,如何定位背后的问题?本文将一一为您揭晓。
目前,市场上电源模块种类繁多,不同电源产品的输入电压、输出功率、功能及拓扑结构等都各不相同,其特点都是为微控制器、集成电路、数字信号处理器、模拟电路、及其他数字或模拟等负载供电。
电源模块的可靠性比较高,但也可能会发生故障,下面以致远电子的DC-DC电源为例分析几种常见的电源故障。
一、输出电压偏低
电源输出电压过低,会让后级电路无法正常工作,如在微控制器系统中,负载突然增大,会拉低微控制器的供电电压,而造成微控制器复位,这会对整个系统级的电路带来毁灭性的打击,会造成一子落错全盘毁的连锁式反应。
输出电压过低通常是由那些原因造成的呢?
输出级并联多个负载,在正常工作后,有负载需要较大的瞬态电流,造成电压被瞬间拉低,从而影响其它并联的负载;
输出线路过长或过细,造成线损过大,从而在线路间产生了不小的压降,最终导致电源模块的输出电压到真正的负载两端时,电压偏低;
防反接二极管的压降过大,一般二极管的正向压降在0.2~0.6V之间,如果电源模块输出的是5V电压,那幺高导通压降的二极管所产生的电压降就会使后级电路的电压偏低,从而不能正常工作;
模块外围电路中的输入滤波电感过大,导致内阻变大,电流扼制作用增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题一:我们小功率用到最多的反激电源,为什么我们常常选择65K或者100K作为开关频率?有哪些原因制约了?或者哪些情况下我们可以增大开关频率?或者减小开关频率?开关电源为什么常常选择65K或者100K作为开关频率,有的人会说IC厂家都是生产这样的IC,当然这也有原因。
每个电源的开关频率会决定什么?应该从这里去思考原因。
还会有人说频率高了EMC不好过,一般来说是这样,但这不是必然,EMC与频率有关系,但不是必然。
想象我们的电源开关频率提高了,直接带来的影响是什么?当然是MOS开关损耗增大,因为单位时间开关次数增多了。
如果频率减小了会带来什么?开关损耗是减小了,但是我们的储能器件单周期提供的能量就要增多,势必需要的变压器磁性要更大,储能电感要更大了。
选取在65K到100K就是一个比较合适的经验折中,电源就是在折中合理化折中进行。
假如在特殊情形下,输入电压比较低,开关损耗已经很小了,不在乎这点开关损耗吗,那我们就可以提高开关频率,起到减小磁性器件体积的目的。
问题二:LLC中为什么我们常在二区设计开关频率?一区和三区为什么不可以?有哪些因素制约呢?或者如果选取一区和三区作为开关频率会有什么后果呢?LLC的原理是利用感性负载随开关频率的增大而感抗增大,来进行调节输出电压的,也就是PFM调制。
并且MOS管开通损耗ZVS比ZCS小,一区是容性负载区,自然不可取。
那么三区,开关频率大于谐振频率,这个仍是感性负载区,按道理MOS实现ZVS没有问题,确实如此。
但是我们不能忽略副边的输出二极管关断。
也就是原边MOS管关断时,谐振电流并没有减小到和励磁电流相等,实现副边整流二极管软关断。
这也是我们通常也不选择三区的原因。
我们不能只按前人的经验去设计,而要知道只所以这样设计是有其必然的道理的!调节K值控制好轻载到满载开关频率变化范围满足达到二区的条件。
K值越小开关频率变化范围越小,当然效率也会低些,这需要折中考虑!一般K值在3到7也是这个原因。
满载时候的开关频率大于小的那个谐振频率点,小于大的谐振频率就可以。
然后空载是开关频率最大的时候,可适当大于大的那个谐振频率点,没有实现零电流关断也关系不大,毕竟是空载。
经验值是满载时开关频率略小于大的那个谐振频率点,例如谐振点频率100K,满载开关频率可取90K,设计肯定是按满载来达要求。
匝比跟增益有关,一般按照增益为1设计(LED恒流电源因输出电压变化很大,增益要小于1,这样Fs变化才小)。
三区的也经常使用这与输出电压的大小有关系。
至少在LCD TV里,输出12V,24V的应用场合里,不少人是将工作频率设计在fo>fr,第三区的;第二区也有人用,输出电压较高时,如在LED固定电压的应用场合。
当然,LED应用中,也有人是做在第三区内,特别是那种恒流限压场合。
三区可以用,但不是跟输出电压高低有关,是和我们增益的范围有关,比如宽电压输出有时跑到三区是正常,这个时候必须舍弃效率,至少额定输出时在二区是最优的,效率高。
问题三:当我们反激的占空比大于50%会带来什么?好的方面有哪些?不好的方面有哪些?反激的占空比大于50%意味着什么,占空比影响哪些因素?第一:占空比设计过大,首先带来的是匝比增大,主MOS管的应力必然提高。
一般反激选取600V或650V以下的MOS管,成本考虑。
占空比过大势必承受不起。
第二点:很重要的是很多人知道,需要斜坡补偿,否则环路震荡。
不过这也是有条件的,右平面零点的产生需要工作在CCM模式下,如果设计在DCM模式下也就不存在这一问题了。
这也是小功率为什么设计在DCM模式下的其中一个原因。
当然我们设计足够好的环路补偿也能克服这一问题。
当然在特殊情形下也需要将占空比设计在大于50%,单位周期内传递的能量增加,可以减小开关频率,达到提升效率的目的,如果反激为了效率做高,可以考虑这一方法。
问题四:反激电源如果要做到一定的效率,需要从哪些方面着手?准谐振?同步整流?反激的一大劣势就是效率问题,改善效率有哪些途径可以思考的呢?减小损耗是必然的,损耗的点有开关管,变压器,输出整流管,这是主要的三个部分。
开关管我们知道反激主要是PWM调制的硬开关居多,开关损耗是我们的一大难点,好在软开关的出现看到了希望。
反激无法向LLC那样做到全谐振,那只能朝准谐振去发展(部分时间段谐振),这样的IC也有很多问世,我司用的较多是NCP1207,通过在MOS管关断后,下一次开通前CS脚提前检测(当然这个电流是IC产生的恒流源,大概200UA),当然提前的时间是可以设置的。
变压器的损耗如何做到最小,完美使用的变压器后面问题会涉及到。
同步整流一般在输出大电流情况下,副边整流流二极管,哪怕用肖特基损耗依然会很大,这时候采用同步整流MOS替代肖特基二极管。
有些人会说这样成本高不如用LLC,或者正激呢,当然没有最好的,只有更合适的。
问题五:电源的传导是怎么形成的?传导的途径有哪些?常用的手段?电源的辐射受哪些东西影响?怎么做大功率的EMC。
电源传导测量方式是通过接收输入端口L,N,PE来自电源内部的高频干扰(一般150K到30M)。
解决传导必须弄清楚通过哪些途径减弱端口接收到的干扰。
一般有二种模式:L,N差模成分,以及通过PE地回路的共模成分。
有些频率是差共模均有。
通过滤波的方式:一般采用二级共模搭配Y电容来滤去,选择的方式技巧也很重要,布板影响也很大。
一般靠近端口放置低U 电感,最好是镍锌材质,专门针对高频,绕线方式采用双线并绕,减少差模成分。
后级一般放置感量较大,在4MH到10MH附近,只是经验值,具体需要与Y电容搭配。
X电容滤差模也需要靠近端口,一般放在二级共模中间。
放置Y电容,电容布板时走线需要加粗,不可外挂,否则效果很差。
(这些只是输入滤波网络上做文章)当然也可以从源头上下手,传导是辐射耦合到线路中的结果,减弱了开关辐射也能对传导带来好处。
影响辐射的几处一般有MOS 管开通速度,整流管导通关断,变压器,以及PFC电感等等。
这些电路上的设计需要与其他方面折中不做详述。
一些经验技巧:针对大功率的EMC一般需要增加屏蔽,立竿见影,屏蔽的部位一般有几处选择:第一:输入EMI电路与开关管间屏蔽,这对EMC有很大的作用,很多靠滤波器无效的采用该方法一般很有效果。
第二:变压器初次级屏蔽,一般设计变压器若有空间最好加上屏蔽。
第三:散热器的位置能很好充当屏蔽,合理布板利用,散热器接地选择也很重要。
第四:判断辐射源头位置,一般有几个简单的方法,不一定完全准确,可以参考,输入线套磁环若对EMC有好处,一般是原边MOS管,输出线套磁环若对EMC有效果,一般是副边输出整流管,尤其是大于100M的高频。
可以考虑在输出加电容或者共模电感。
当然还有很多其他的细节技巧,尤其是布板环路方面的,后面对LAYOUT会单独讲解。
问题六:我们选择拓扑时需要考虑哪些方面的因素?各种拓扑使用环境及优缺点?设计电源的第一步不知道大家会想到什么呢?我是这么想,细致研究客户的技术指标要求,转换为电源的规格书,与客户沟通指标,不同的指标意味着设计难度和成本,也是对我提出的问题有很大的影响,选择拓扑时根据我们的电源指标结合成本来考虑的,哪常用的几种拓扑特点在哪呢?这里主要谈隔离式,非隔离式应用有限,当然也是成本最低的。
反激特点:适用在小于150W,理论这么说,实际大于75W就很少用,不谈很特殊的情况。
反激的有点成本低,调试容易(相对于半桥,全桥),主要是磁芯单向励磁,功率由局限性,效率也不高,主要是硬开关,漏感大等等原因。
全电压范围(85V-264V)效率一般在80%以下,单电压达到80%很容易。
正激特点:功率适中,可做中小功率,功率一般在200W以下,当然可以做很大功率,只是不常常这么做,原因是正激和反激一样单向励磁,做大功率磁芯体积要求大,当然采用2个变压器串并联的也有,注意只谈一般情形,不误导新人。
正激有点,成本适中,当然比反激高,优点效率比反激高,尤其采用有源箝位做原边吸收,将漏感能量重新利用。
半桥:目前比较火的是LLC谐振半桥,中小功率,大功率通吃型。
(一般大于100W小于3KW)。
特点成本比反激正激高,因为多用了1个MOS管(双向励磁)和1个整流管,控制IC也贵,环路设计业复杂(一般采用运放,尤其还要做电流环)。
优点:采用软开关,EMC好,效率极高,比正激高,我做过960W LLC,效率可达96%以上(全电压)(当然PFC是采用无桥方式)。
其它半桥我不推荐,至少我不会去用,比较老的不对称桥,很难做到软开关,LLC成熟以前用的多,现在很少用,至少艾默生等大公司都倾向于LLC,跟着主流走一般都不会错。
全桥:一般用在大于2KW以上,首推移相全桥,特点,双向励磁,MOS管应力小,比LLC应力小一半,大功率尤其输入电压较高时,一般用移相全桥,输入电压低用LLC。
成本特别高,比LLC还多用2个MOS。
这还不是首要的,主要是驱动复杂,一般的IC驱动能力都达不到,要将驱动放大,采用隔离变压器驱动,这里才是成本高的另一方面。
问题八:电源的环路设计,电源哪些部分影响电源的环路?好的环路有哪些指标决定?电源的环路设计一直是一个难点,为什么这么说,因为主要影响的因素太多,理论计算很难做到准确,仿真也是基于理想化模型,在这里只谈关于环路设计的一些影响因素,从定性的角度去理解环路以及怎么去做环路补偿。
环路是基于输入输出波动时,需要通过反馈,环路相应告知控制IC去调节,维持输出的稳定。
电源环路一般都是串联负反馈,有的是电压串联负反馈(CC模式下),有的是电流串联负反馈(CV模式下)。
那有哪些地方会影响环路呢?电路中的零点以及极点。
零点一般会导致增益上升,引起90度相移(右半平面零点会引起-90度相移)。
极点一般会导致增益下降,引起-90度相移,左半平面极点会引起系统震荡。
所以我们需要借助零点极点补偿手段去合理调控我们的环路。
对于低频部分,为了满足足够增益一般引入零点补偿,对于高频干扰一般引入极点补偿去抵消,减少高频干扰。
环路稳定的原则是:1.在穿越频率处(即增益为零dB时的频率),系统的相位余量大于45度。
2.在相位达到-180度时增益的余量大于-12dB.3.避免过快的进入穿越频率,在进入穿越频率附近的曲线斜率为-1.针对一般反激电路:1.产生零点的有输出滤波电容:可以使环路增益上升。
(一般在中频4K左右,对增益有好处,无需补偿)2.若工作在CCM模式下还会产生右半平面零点。
在高频段,可采用极点补偿。
这个一般很难补偿,尽量避免,让穿越频率小于右半平面零点频率(15K左右,随负载变化会变化),选取3.负载会产生低频极点。
采用低频零点去补偿。
4.LC滤波器会产生低频极点,需要采用零点补偿。
在心中要清楚哪些零极点是利是弊,针对性补偿。