matlab图像资料复习过程
MATLAB图像处理基础教程

MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。
图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。
本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。
第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。
此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。
第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。
通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。
在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。
第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。
MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。
可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。
第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。
在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。
第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。
MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。
通过组合这些函数,可以实现复杂的图像变换。
第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。
在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。
实验1-Matlab基本与图像处理基本操作

图像处理工具箱简介
01
MATLAB图像处理工具箱是MATLAB软件中一个专门用于图像处理的工具箱, 它提供了一套完整的图像处理和分析工具,包括图像读取、显示、变换、滤波 、增强、分割、特征提取等功能。
02
该工具箱支持多种图像格式,如BMP、JPG、PNG、TIFF等,并提供了丰富的 图像处理函数和算法,方便用户进行图像处理和分析。
对未来学习的展望
• 深入学习图像处理算法:在未来的学习中,我们将进一步深入学习图像处理的 各种算法和原理,包括图像分割、特征提取、目标检测等,以便更好地应用在 实际问题中。
• 掌握更多图像处理软件:除了Matlab软件外,我们还将学习掌握其他常用的 图像处理软件,如OpenCV、Python图像处理库等,以便更灵活地处理各种 图像问题。
02
学习图像处理基本 操作
了解图像处理基本概念,学习图 像读取、显示、保存等基本操作。
03
掌握图像处理常用 函数
熟悉MATLAB中图像处理工具箱 的常用函数,如图像调整、滤波、 边缘检测等。
实验环境准备
MATLAB软件
确保计算机已安装MATLAB软件,并熟悉软件基 本操作。
图像处理工具箱
安装并配置MATLAB图像处理工具箱,以便进行 图像处理实验。
• 加强实验数据分析处理能力:在未来的实验中,我们将更加注重实验数据的分 析和处理,学习掌握更多的数据处理方法和技巧,以便更准确地评估实验结果 和性能。
• 拓展应用领域:图像处理技术在实际应用中具有广泛的应用领域,如医学影像 处理、智能交通、安全监控等。在未来的学习中,我们将积极探索这些应用领 域,并尝试将所学的图像处理技术应用到实际问题中。
使用图像处理工具箱中的特 征提取函数和分类器函数, 对图像进行特征提取和分类 识别。例如,可以使用灰度 共生矩阵提取图像纹理特征, 然后使用支持向量机(SVM) 进行分类识别。
Matlab图像处理实验指导书

郑州大学《Matlab应用图像处理》课程实验指导书电气工程学院·生物医学工程系2006年11月实验一 Matlab图像显示方法一、实验目的1.了解Matlab的基本功能及操作方法2.练习图像读写和显示函数的使用方法3.掌握Matlab支持的五类图像的显示方法二、实验内容1.图像的读写A)图像读RGB = imread('ngc6543a.jpg');B)图像写先从一个.mat 文件中载入一幅图像,然后利用图像写函数imwrite,创建一个.bmp 文件,并将图像存入其中。
load clownwhosimwrite(X,map,'clown.bmp')C)图像文件格式转换bitmap = imread('clown.bmp','bmp');imwrite(bitmap,'clown.png','png');2.图像显示A)二进制图像的显示BW1=zeros(20,20); %创建仅包含0/1的双精度图像BW1(2:2:18,2:2:18)=1;imshow(BW1,'notruesize');whosBW2=uint8(BW1);figure,imshow(BW2,'notruesize')BW3=BW2~=0; %逻辑标志置为onfigure,imshow(BW3,'notruesize')whosBW=imread('circles.tif');imshow(BW);figure,imshow(~BW);figure,imshow(BW,[1 0 0;0 0 1]);B)灰度图像的显示I=imread('testpat1.tif');J=filter2([1 2;-1 -2],I);imshow(I)figure,imshow(J,[])C)索引图像的显示load clown %装载一幅图像imwrite(X,map,'clown.bmp'); %保存为bmp文件imshow(X)imshow(X,map)D)RGB图像的显示I=imread('flowers.tif');imshow(I)RGB=imread('ngc6543a.jpg');figure,imshow(RGB)imshow(I(:,:,3) % 显示第3个颜色分量E)多帧图像的显示mri=uint8(zeros(128,128,1,27)); % 27帧文件mri.tif初始化for frame=1:27[mri(:,:,:,frame),map]=imread('mri.tif',frame); % 读入每一帧endimshow(mri(:,:,:,3),map); % 显示第3帧figure,imshow(mri(:,:,:,6),map); % 显示第6帧figure,imshow(mri(:,:,:,10),map); % 显示第10帧figure,imshow(mri(:,:,:,20),map); % 显示第20帧F)显示多幅图像[X1,map1]=imread('forest.tif');[X2,map2]=imread('trees.tif');subplot(1,2,1),imshow(X1,map1)subplot(1,2,2),imshow(X2,map2)subplot(1,2,1),subimage(X1,map1)subplot(1,2,2),subimage(X2,map2)三、思考题:1.图像显示时,若不带参数’notruesize’,显示效果如何?2.如何显示RGB图像的某一个颜色分量?3.如何显示多帧图像的所有帧?如何根据多帧图像创建电影片段?实验二图像运算一、实验目的1.熟悉图像点运算和代数运算的实现方法2.了解图像几何运算的简单应用3.了解图像的邻域操作二、实验内容1.图像点运算读入图像‘rice.tif’,通过图像点运算改变对比度。
matlab---复习资料

matlab---复习资料一、简述下列命令在MATLAB中的作用。
1.clf 清除图对象2.clear 清除工作空间内的所有变量3.clc 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据4.ceil 沿+∞方向取整。
5.factor 符号计算的因式分解。
6.pow2 2的幂次。
7.logspace 创建对数刻度分度等间隔行向量8.linspace 创建等间隔行向量9.sym2poly 符号多项式转变为双精度多项式系数向量10.poly2sym 双精度多项式系数转变为向量符号多项式11.plot3 三维线图12.poly2str 以习惯方式显示多项式13.bar 二维直方图14.pie 二维饼图15.edit M文件编辑16.figure 生成图形窗口17.diff 数值差分、符号微分18.dsolve 符号计算解微分方程19.fix 向零取整20.factor 符号计算的因式分解二、填空题1.MATLAB系统由MATLAB开发环境、MATLAB数学函数、MATLAB语言、MATLAB图形处理系统和MATLAB应用程序接口(API)五大部分构成。
2.在命令窗口中输入quit 和exit 命令,就可以关闭MATLAB。
3.在MATLAB环境中,如果不特别指明存放数据和文件的目录,MATLAB总是默认地将它们存放在当前文件夹中。
4.MATLAB的主界面窗口包括命令窗口、当前文件夹浏览器、工作空间浏览器和历史命令窗口等部分。
5.编辑程序是,标点符号一定要在英文状态下输入,分号‘;’的作用为:1.用做矩阵的行间分隔符,2.用做不显示计算结果的命令。
6.标点符号; 可以使命令行不显示运算结果,% 用来表示该行为注释行。
7.x为0~4pi,步长为0.1pi的向量,使用命令x=0:0.1*pi:4*pi 创建。
8.输入矩阵A=,使用全下标方式用A(2,2) 取出元素“-5”,使用单下标方式用A(5) 取出元素“-5”。
在Matlab中进行图像处理的基本步骤和方法

在Matlab中进行图像处理的基本步骤和方法图像处理是一门涉及数字图像的处理技术和方法的学科,它可以帮助我们从图像中获取有用的信息,并改进图像的质量。
Matlab是一种广泛应用于科学和工程领域的高级计算机语言和环境,也是图像处理的重要工具之一。
本文将介绍在Matlab中进行图像处理的基本步骤和方法。
一、图像的读取和显示在开始进行图像处理之前,我们首先需要读取和显示图像。
在Matlab中,可以使用imread函数读取图像文件,该函数会返回一个包含图像像素值的矩阵。
通过imshow函数可以将图像显示在Matlab的图像窗口中。
同时,也可以使用imwrite函数将处理后的图像数据保存为图像文件。
二、图像的预处理在进行一系列的图像处理操作之前,通常需要对图像进行预处理,以提高后续处理步骤的效果。
常见的图像预处理方法包括灰度化、降噪、增强对比度等操作。
1. 灰度化灰度化是将彩色图像转化为灰度图像的过程。
在Matlab中,可以使用rgb2gray 函数将彩色图像转化为灰度图像。
灰度图像只有一个通道,每个像素的值表示了该像素的亮度。
2. 降噪图像中常常存在各种噪声,如高斯噪声、椒盐噪声等。
为了提高图像质量和后续处理的准确性,可以使用图像降噪方法来减少这些噪声的影响。
Matlab中提供了一些常用的降噪函数,如medfilt2、wiener2等,可以根据实际需求选择合适的方法来降噪。
3. 增强对比度对比度是指图像中不同亮度之间的差异程度。
当图像的对比度较低时,图像细节会变得不明显。
为了提高图像的可视化效果,可以使用一些增强对比度的方法。
例如,可以使用imadjust函数对图像的像素值进行调整,以拉伸图像的灰度级范围。
三、图像的滤波滤波在图像处理中起到了非常重要的作用,可以用来平滑图像、提取图像的边缘等。
在Matlab中,提供了多种滤波函数,可以根据需求选择合适的滤波方法。
1. 均值滤波均值滤波是一种常见的平滑滤波方法,可以用来消除图像中的高频噪声。
使用Matlab处理图像(一)

使用Matlab处理图像(一)通过程序能够看到图像是进行视觉学习的第一步,今天小白就给大家如何读取图片并进行简单的操作。
01—Matlab的使用小白在大一的时候接触过Matlab,怀着激动的心打开软件,然而。
我并不会使用,面对着命令界面一顿乱敲,结果可想而知,满屏幕红红的文字,全是各种报错。
后来在做导师助教的时候,发现很多本科生在使用Matlab时和我当初采用的方法是一样的,在命令窗口里面直接敲入代码。
当输错代码的时候,就会重新复制上面所有的代码,造成开发效率极低。
这里首先小白简单介绍一下Matlab的使用。
当我们打开软件的时候会看到如下的界面,图片中我们对每个区域的功能进行了简单的介绍。
这里面占据面积最大的区域,往往是在开发过程中使用率最低的区域。
在创建一个新的工程的时候,我们需要点击界面左上角的黄色加号“New”,在下拉菜单中可以选择想要创建的文件。
在写程序的时候,我们最常用的是.m文件,可以选择下拉菜单的第一个、第二个选项来创建空白的文本。
在文本里就可以像编写C语言一样来编写程序啦。
02—显示一张图片在创建好.m文件之后,我们需要将我们想读取的图片放在工作路径下面。
虽然也可以不用放进来,但是小白建议,良好的编程习惯要从一点一滴做起,将属于一个工程的所有文件放在一个大的文件夹下是一个很好的习惯。
毕竟我们不知道什么时候可能会删除某些图片或者用不到的文件的时候,就会删除掉其他程序需要的文件,造成下次运行程序报错。
在文件中写下读取图像的代码。
image = imread('xiaobai.jpg');imshow(image)通过imread()函数来读取图像,也可以使用图片所在的路径来加载图片,这样可以实现在不同路径下图片的加载。
之后使用imshow()函数来显示图片。
这两个函数小白觉得非常好记,通过字面就能知道意思。
下面通过点击上方的绿色的三角运行程序,我们就能看到小白可爱的相片啦~通过右面的数据空间我们可以发现,image变量是一个1024*1024*3的矩阵数据。
《数字图像处理(matlab版)》教程课件

直
原
接
图
阈
像
值
分
割
0.25
算 法
算 法 算 法
割
分
法
算
OTSU
Niblack
KittlerMet
Kapur
割
分
值
阈
动
自
/2、图像的点运算
五、直方图均衡化
DB f
添 加 高 斯 白 噪 声
添 加 椒 盐 噪 声
/4、空间域图像增强 二、空间域滤波
滤波过程就是在图像f(x,y)中逐点移动模板,使模板中心和点(x,y)重合,滤波器 在每一点(x,y)的响应是根据模板的具体内容并通过预先定义的关系来计算的。
W(-1,-1) W(-1,0) W(-1,1)
W(0,-1) W(0,0) W(0,1)
原 图 像 及 直 方 图
图像变暗后灰度均衡化 图像变亮后灰度均衡化
/3、图像的几何变换
一、图像平移
正变换
1 0 0
[ x1 y1 1] [ x0 y0 1] 0 1 0
Tx
Ty
1
逆变换
1
0 0
[x0 y0 1] [x1 y1 1] 0
1 0
Tx
Ty
1
strel %用来创建形态学结构元素 translate(SE,[y x])%原结构元素SE上y和x方向平移 imdilate%形态学膨胀
thresh法:最大类间方差法自动单阈值分割。
Kapur算法:一维直方图熵阈值算法
niblack算法:局部阈值分割 阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平 均灰度值,v是该区域的标准差,k是一个系数。
matlab图像处理教程1

基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。
对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。
我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。
****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。
量化的方法包括:分层量化、均匀量化和非均匀量化。
分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。
当图像的采样点数一定时,采用不同量化级数的图像质量不一样。
量化级数越多,图像质量越好;量化级数越少,图像质量越差。
量化级数小的极端情况就是二值图像。
****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。
图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。
如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。
****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。
在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。
数字图像处理(Matlab复习代码)

双线性插值法I_=imread('test.jpg');I=rgb2gray(I_);A=0.7;B=0.7;%失真像素坐标[i,j]=size(I);m=round(i*A);n=round(j*B);temp=zeros(m,n);%产生m*n矩阵G=[A 0;0 B];for x=1:mfor y=1:nab=[x,y]/G;%取得x/A,y/Ba=ab(1)-floor(ab(1));%权值b=ab(2)-floor(ab(2));%防溢出处理if ab(1)<1ab(1)=1;endif ab(1)>iab(1)=i;endif ab(2)<1ab(2)=1;endif ab(2)>jab(2)=j;end%定义内插值坐标ab11=[floor(ab(1)) floor(ab(2))];ab12=[floor(ab(1)) ceil(ab(2))];ab21=[ceil(ab(1)) floor(ab(2))];ab22=[ceil(ab(1)) ceil(ab(2))]; temp(x,y)=(1-a)*(1-b)*I(ab11(1),ab11(2))+... a*(1-b)*I(ab12(1),ab12(2))+...(1-a)*b*I(ab21(1),ab21(2))+...a*b*I(ab22(1),ab22(2));endendimshow(uint8(temp)),title('0.7倍双线性'); 最近邻法I_=imread('test.jpg');%读入原始图像I1=rgb2gray(I_);[i,j]=size(I1);m=round(i*1.5);n=round(j*1.5);m_=round(i*0.7);n_=round(j*0.7);% 1.5倍最邻近TEMP=zeros(m,n);%产生m*n矩阵for i = 1:mfor j = 1:nTEMP(i,j)=I1(round(i/1.5),round(j/1.5));endendsubplot(1,3,1) ,imshow(I1),title('原图')TEMP1_5=uint8(TEMP);subplot(1,3,2),imshow(TEMP1_5),title('1.5倍最邻近')全局预测下的图像分割I_=imread('test.jpg');I=rgb2gray(I_);[m,n]=size(I);% 统计直方图zhifangtu=zeros(1,255);%for i=1:1:mfor j=1:1:nzhifangtu(I(i,j)+1)=zhifangtu(I(i,j)+1)+1;endendplot(zhifangtu);%阈值处理final=zeros(m,n);for x=1:1:mfor y=1:1:nAA=I(x,y);if AA > 120final(x,y)=255;elsefinal(x,y)=0;endendendimshow(uint8(final));高通滤波(锐化)Sobel算子O=imread('test.jpg');I=rgb2gray(O);imshow(I);title('锐化前的原始图像');[m,n]=size(I);TEMP=zeros(m+2,n+2);%避免边界为空,用0像素值填充for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=I(i,j);endend%定义所需的空间vertical=zeros(m,n);horize=zeros(m,n);for x=2:1:m+1for y=2:1:n+1%上下水平模板vertical(x-1,y-1)=[-TEMP(x-1,y-1)+TEMP(x-1,y+1)-TEMP(x,y-1)+ TEMP(x,y+1)-TEMP(x+1,y-1)+TEMP(x+1,y+1)]; %左右垂直模板horize(x-1,y-1)=[-TEMP(x-1,y-1)-TEMP(x-1,y)-TEMP(x-1,y+1)+ TEMP(x+1,y-1)+TEMP(x+1,y)+TEMP(x+1,y+1)];endendfigure;imshow(vertical);title('垂直模板锐化'); figure;imshow(vertical_);title('阈值处理后的垂直模板锐化');figure;imshow(horize);title('水平模板锐化'); figure;imshow(horize_);title('阈值处理后的水平模板锐化');低通滤波:线性滤波(邻域平均法)I=imread('eight.tif');%读入原始图像[m n]=size(I);a_ = imnoise(I,'salt & pepper',0.04);%对图像加椒盐噪声,噪声强度为0.04a=double(a_);%先将uint8转换为double类型,以免数据溢出TEMP=zeros(m+2,n+2);%数值填充,产生一个临时的空间for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=a(i,j);endendfinal=zeros(m,n);for x=2:1:m+1for y=2:1:n+1final(x-1,y-1)=[TEMP(x-1,y-1)+TEMP(x-1,y)+TEMP(x-1,y+1)+ TEMP(x,y-1)+TEMP(x,y)+TEMP(x,y+1)+TEMP(x+ 1,y-1)+TEMP(x+1,y)+TEMP(x+1,y+1)]/9;endendfinal2=uint8(final)非线性滤波(中值滤波)I=imread('eight.tif');%读入原始图像[m n]=size(I);a_ = imnoise(I,'salt & pepper',0.04);%对图像加椒盐噪声,噪声强度为0.04TEMP=zeros(m+2,n+2);%数值填充,产生一个临时的空间for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=a_(i,j);endend%中值滤波final=zeros(m,n);% zeros(m,n)产生m×n的零矩阵for x=2:1:m+1for y=2:1:n+1final(x-1,y-1)=median([TEMP(x-1,y-1),TEMP(x-1,y),TEMP(x-1,y +1),TEMP(x,y-1),TEMP(x,y),TEMP(x,y+1),TEMP( x+1,y-1),TEMP(x+1,y),TEMP(x+1,y+1)]);endend图像直方图I=imread('test.jpg'); J=rgb2gray(I);figure,subplot(2,2,1) H=zeros(1,256);% zeros(m,n)产生m ×n 的零矩阵 [m n]=size(J); for i=1:m for j=1:nH(J(i,j)+1)=H(J(i,j)+1)+1; %从第一个开始,并统计灰度值 end endplot(H);stem(H);%绘制二维离散数据的火柴杆图 %归一化直方图N=numbel(J );%统计图像像素的总数 for i=1:m for j=1:nH2(J(i,j)+1)=[H2(J(i,j)+1)+1]/N; end end %图像均衡化%一,图像的预处理,读入彩色图像将其灰度化 cd d:I=imread('test.jpg'); H=rgb2gray(I); imshow(H);%二,绘制直方图[m,n]=size(H); %测量图像尺寸参数GL=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255GL(k+1)=length(find(H==k))/(m*n); %计算每级灰度出现的概率,将其存入GP 中相应位置 endfigure,bar(0:255,GL,'g') %绘制直方图 title('原图像直方图') xlabel('灰度值') ylabel('出现概率')%三,直方图均衡化S1=zeros(1,256); % zeros(m,n)产生m ×n 的零矩阵 for i=1:256 for j=1:iS1(i)=GL(j)+S1(i); %计算变换函数Sk end endS2=round((S1*256)+0.5); %将Sk 归到相近级的灰度 for i=1:256GLPeq(i)=sum(GL(find(S2==i))); %计算现有每个灰度级出现的概率 endfigure,bar(0:255,GLPeq,'b') %显示均衡化后的直方图 title('均衡化后的直方图') xlabel('灰度值') ylabel('出现概率') %显示均衡化后的图像title('均衡化后图像')imwrite(PA,'JUNHENGHUA.bmp');。
MATLABImageProcessing图像处理入门教程

MATLABImageProcessing图像处理入门教程MATLAB图像处理入门教程第一章:图像处理基础知识图像处理是指对于数字图像进行各种操作和处理的过程。
在本章中,我们将介绍一些基础的图像处理知识。
1.1 数字图像表示数字图像是由像素组成的二维数组,每个像素表示图像中的一个点。
每个像素的值表示该点的亮度或颜色。
1.2 MATLAB中的图像表示在MATLAB中,图像可以用二维矩阵表示,其中每个元素对应一个像素的亮度或颜色值。
常见的图像格式包括灰度图像和彩色图像。
1.3 图像读取和显示使用MATLAB的imread函数可以读取图像文件,imshow函数可以显示图像。
第二章:图像预处理在进行实际的图像处理之前,通常需要对图像进行预处理,以提取感兴趣的信息或减少噪声。
2.1 图像平滑平滑操作可以减少图像中的噪声。
常见的平滑方法包括均值滤波和高斯滤波。
2.2 边缘检测边缘检测可以找到图像中的边缘区域。
常用的边缘检测算法包括Sobel算子和Canny算子。
2.3 图像分割图像分割可以将图像划分为不同的区域,以便后续的处理。
常见的图像分割算法包括阈值分割和区域生长算法。
第三章:图像增强图像增强可以提高图像的质量和清晰度,使图像更易于理解和分析。
3.1 直方图均衡化直方图均衡化可以增强图像的对比度,使图像的灰度值分布更均匀。
3.2 锐化锐化操作可以增强图像的边缘和细节。
常见的锐化算法包括拉普拉斯算子和Sobel算子。
3.3 噪声去除噪声去除可以降低图像中的噪声,使图像更清晰。
常见的噪声去除方法包括中值滤波和小波去噪。
第四章:图像分析图像分析可以从图像中提取出感兴趣的特征或对象。
4.1 特征提取特征提取可以从图像中提取出具有代表性的特征,可以用于图像分类和识别。
4.2 图像匹配图像匹配可以找到图像中相似的区域或对象。
常见的图像匹配方法包括模板匹配和特征点匹配。
4.3 图像识别图像识别可以根据图像的特征和模式来判断图像中的对象或场景。
matlab实验 图像的基本运算

实验四、图像的基本运算1(1)选择一幅图像lena8.jpg,设置输入/输出变换的灰度级范围,a=0.3,b=0.6,c=0.1,d=0.9 (2)设置非线性扩展函数的参数c=2(3)采用灰度倒置变换函数s=255-r进行图像变换(4)设置二值化图像的阈值,分别为level=0.4,level=0.7程序如下I=imread('C:\lena8.jpg');figure;subplot(2,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); %设置灰度变换的范围subplot(2,3,2);imshow(J);title('线性扩展');I1=double(I); %将图像转换为double类型I2=I1/255; %归一化此图像C=2;K=C*log(1+I2); %求图像的对数变换subplot(2,3,3);imshow(K);title('非线性扩展');M=im2bw(I,0.5);M=~M;%M=255-I; %将此图像取反%Figuresubplot(2,3,4);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); %将此图像二值化,阈值为0.4N2=im2bw(I,0.7); %将此图像二值化,阈值为0.7subplot(2,3,5);imshow(N1);title('二值化阈值0.4');subplot(2,3,6);imshow(N2);title('二值化阈值0.7');2 选取两幅大小一样的灰度图像hough.bmp和rice.bmp,将两幅图像进行加法运算。
程序如下I=imread('C:\hough.bmp');%I=rgb2gray(I);J=imread('C:\rice.bmp');I=im2double(I); %将图像转换成double型J=im2double(J);K=I+0.3*J; %两幅图像相加subplot(1,3,1);imshow(I);title('物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'C:\lena1.jpg');3 选取一幅混合图像,如相加得到的图像lenal.jpg,将混合图像与背景图像做减法运算。
使用Matlab进行图像配准的基本步骤与技巧

使用Matlab进行图像配准的基本步骤与技巧图像配准是计算机视觉领域的重要任务,它是指将不同视角、不同时间、不同传感器等条件下获取的图像进行对齐,使它们之间的特征点相互对应,从而实现图像的整合和比较。
Matlab作为一种功能强大的编程语言和图像处理工具,在图像配准方面具有广泛的应用。
本文将介绍使用Matlab进行图像配准的基本步骤与技巧。
一、图像配准的基本步骤图像配准的基本步骤包括以下几个方面:1. 准备待配准的图像:首先,需要准备待配准的图像,可以是两张具有一定重叠区域的图像,也可以是多张图像。
这里我们以两张图像为例进行讨论。
2. 提取图像特征:在进行图像配准之前,需要对图像进行特征提取。
常用的特征有角点、边缘、纹理等。
在Matlab中,可以使用角点检测算法如Harris角点检测、SIFT、SURF等,提取图像的特征点。
3. 特征匹配:特征匹配是图像配准的核心步骤,它是通过计算两幅图像的特征点之间的距离或相似度,将它们进行匹配。
在Matlab中,可以使用KNN算法、RANSAC算法等进行特征匹配。
4. 计算变换矩阵:在进行特征匹配之后,可以根据匹配点对计算出图像的变换矩阵。
常用的变换矩阵有相似变换、仿射变换、投影变换等。
5. 图像配准:根据计算得到的变换矩阵,对待配准的图像进行变换,使其与目标图像对应点重合。
在Matlab中,可以使用imwarp函数进行图像配准。
6. 评估配准结果:完成图像配准之后,需要对配准结果进行评估。
常用的评估指标有均方差、互信息等。
在Matlab中,可以使用imregister和imregconfig函数进行配准结果的评估。
二、图像配准的技巧在进行图像配准时,需要注意以下几个技巧:1. 特征提取算法选择:不同的图像特征对应不同的图像内容,选择合适的特征提取算法对于获取准确的特征点是非常重要的。
需要根据图像的内容和应用场景选择合适的特征提取算法。
2. 特征匹配策略选择:特征匹配过程中存在匹配错误、误匹配等问题,选择合适的特征匹配策略可以提高配准的准确性。
Matlab图像几何操作

subplot(1,2,1),imshow(I)
subplot(1,2,2),imshow(nI)
2.2 图像的几何变换
投影变换的矩阵表达
a11 a12 a13 [xc,yc,wc][x,y,1]a21 a22 a23
a a a
在进行乘法计算之后,通常齐次元素 齐次除法,即每个元素都除以 wc :
2.3.1 邻域操作
【例】对小狮子图像进行邻域操作,使小狮子图像的轮廓变得清晰。 I = imread('shizi.bmp'); I = double(rgb2gray(I)); figure(1),subplot(1,2,1),imshow(I,[]) [m,n] = size(I); nI = zeros(m,n) C = [ -1 -1 -1; -1 8 -1; -1 -1 -1]; for i=2:m-1 for j=2:n-1 L = I(i-1:i+1, j-1:j+1) .* C; nI(i,j) = sum(sum(L)); end end figure(1),subplot(1,2,2),imshow(nI,[])
2.2 图像的几何变换
在函数maketform(P,……)中,参数P可以是以下形式:
‘affine’
仿射变换形式
‘projective’ 投影变换形式
‘custom’
自定义函数进行变换
‘box’
依靠函数中的另外参数产生仿射变换结构
‘composite’ 该参数实现多次调用tformfwd功能
2.2 图像的几何变换
本节主要介绍图像的二维空间变换。
2.2 图像的几何变换
图像二维空间变换 – Matlab使用imtransform函数完成图像二维空间变换。 – imtransform函数的调用形式为: imtransform(I,T) – 参数I:要变换的图像 – 参数T:由maketform函数产生的变换结构。根据变换结构的不同,可以实现不同的空间变 换。例如: 二维仿射变换 投影变换
实验报告二 Matlab图像代数运算和几何变换

实验二Matlab图像代数运算和几何变换一、实验目的1、掌握不同图像类型的转换2、掌握图像代数运算和几何变换的方法;3、掌握灰度级插值法的实验方法。
二、实验内容1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither)(p69-73);2、练习课本6.3.2(p139-p143)图像代数运算的内容;3、练习图像平移 (p148),图像比例变换(p153),图像旋转(p156),图像镜像变换(p158),图像切割(p160)Matlab实现例题;4、练习灰度级插值法(p171)。
三、实验步骤和结果1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither)(1)mat2gray()函数I=imread('rice.png');>> J=filter2(fspecial('sobel'),I);>> K=mat2gray(J);>> imshow(I);>> figure,imshow(K)(2)、grayslice()函数>> I=imread('snowflakes.png');>> X=grayslice(I,16);>> imview(I)imview(X,jet(16))(3)、rgb2ind()函数> RGB=imread('peppers.png');>> imshow(RGB);>> figure,imshow(RGB)>> [X,map]=rgb2ind(RGB,128);>> figure,imshow(X,map) (4)、im2bw()函数>> load trees>> BW=im2bw(X,map,0.4);>> figure,imshow(X,map)>> figure,imshow(BW)(5)、ind2gray()函数load trees>> I=ind2gray(X,map);>> figure,imshow(X,map)>> figure,imshow(I)(6)、dither()函数>> RGB=imread('peppers.png'); >> [X,map]=rgb2ind(RGB,256); >> I=dither(RGB,map);>> BW=dither(I);>> imshow(RGB,map);>> figure,imshow(RGB,map); >> figure,imshow(BW)Result:(1)转换后图像(2)索引色图像(3)索引色图像(4)索引色图像(4)二值化后的图像(5)转换后的灰度图像(6)索引色图像(6)抖动转换图像2、练习课本6.3.2(p139-p143)图像代数运算的内容(1)加法运算I=imread('rice.png');>> figure(1),imshow(I,[])>> I2=imread('cameraman.tif')>> figure(2),imshow(I2,[])>> K=imadd(I,I2,'uint16');>> figure(3),imshow(K,[])>> I=imread('lena.bmp');>> I2=imadd(I,50);>> figure(1),imshow(I)>> figure(2),imshow(I2)(2)、减法运算>> I=imread('rice.png'); >> I2=imread('cameraman.tif'); >> I3=imsubtract(I,I2);>> figure,imview(I3)(3)乘法&除法运算>> I=imread('lena.bmp');>> I2=immultiply(I,0.5);>> figure,imshow(I)>> figure,imshow(I2)>> I3=immultiply(I,1.5);>> figure,imshow(I3)>> I4=imdivide(I,0.5);>> figure,imshow(I4)>> I5=imdivide(I,1);>> figure,imshow(I5)Result:(1)加法运算后的图像(1)加入常数后的图像(2)减法运算(3)乘以0.5后的图像乘以1后的图像除以0.5后的图像除以1后的图像3、练习图像平移 (p148),图像比例变换(p153),图像旋转(p156),图像镜像变换(p158),图像切割(p160)Matlab实现例题;(a)图像平移>> I=imread('trees.tif');>> figure,imshow(I)>> I=double(I);>> I_movesult=zeros(size(I));>> H=size(I);>> Move_x=50;>> Move_y=50;>>I_movesult(Move_x+1:H(1),Move_y+1:H(2))=I(1:H(1)-Move_x,1:H(2)-Move_y);>> figure,imshow(uint8(I_movesult))(b)图像比例变换J=imread('trees.tif');>> figure,imshow(J);>> X1=imresize(J,2);>> X2=imresize(J,0.5);>> figure,imshow(X1)>> figure,imshow(X2)(C)图像旋转变换>> I=imread('peppers.png');>> figure,imshow(I)>> X1=imrotate(I,30,'nearest');>> figure,imshow(uint8(X1))>> X2=imrotate(I,45,'nearest');>> figure,imshow(uint8(X2))>> X3=imrotate(I,60,'nearest');>> figure,imshow(uint8(X3))>> X4=imrotate(I,90,'nearest');>> figure,imshow(uint8(X4))(d)图像镜像变换>> I=imread('forest.tif');>> I=double(I);>> figure,imshow(uint8(I));>> H=size(I);>> figure(2),>> I2(1:H(1),1:H(2))=I(H(1):-1:1,1:H(2));>> imshow(uint8(I2));>> figure,imshow(uint8(I2));>> I3(1:H(1),1:H(2))=I(1:H(1),H(2):-1:1);>> figure,imshow(uint8(I3));>> I4(1:H(1),1:H(2))=I(H(1):-1:1,H(2):-1:1);>> figure,imshow(uint8(I4));(e)图像切割>> I1=imread('peppers.png');>> I2=imcrop(I1,[75 68 220 100]);>> imview(I2)I3=imcrop(I1,[30 40 120 100]);>> imview(I3)(a)平移后的图像(b)放大后图像(b)缩小后的图像(c)旋转30°后的图像旋转45°后的图像旋转60°后的图像旋转90°后的图像(d)原始图像垂直镜像水平镜像对角镜像(e)原始图像一次切割后图像二次切割后图像4、练习灰度级插值法(p171)>> I=imread('lena.bmp');>> X1=imresize(I,1);>> X2=imresize(I,1,'bilinear');>> X3=imresize(I,1,'bicubic');>> figure,imshow(X1)>> figure,imshow(X2)>> figure,imshow(X3)最近邻差值法双线性插值法三次插值法四、实验体会在本次实验中掌握不同图像类型的转换,掌握了转换函数及其语法格式,如ind2rgb()函数将索引图像转换成真彩色。
《篇Matlab图像处理》课件

感谢您的观看
THANKS
线性变换和非线性变换
线性变换如加法、乘法等,非线性变换如指数变换、对数变换等。
应用场景
在图像对比度较低或亮度不足时,通过灰度变换可以改善图像质 。
滤波
滤波原理
通过滤波器对图像进行平滑或锐化处理,消除 噪声或突出边缘。
滤波器类型
包括均值滤波器、中值滤波器、高斯滤波器等 。
应用场景
在图像存在噪声干扰时,通过滤波可以降低噪声对图像的影响。
MATLAB图像处理的优势与不足
01
不足:
02
价格昂贵:MATLAB是一款商业软件,价格相对较高,可能不适合一 些小型项目或个人使用。
03
资源占用大:MATLAB的运行需要较大的内存和计算资源,可能影响 运行速度。
04
开放性不足:相对于一些开源的图像处理工具,MATLAB的源代码不 公开,使得定制和扩展较为困难。
RGB与灰度转换
将彩色图像从RGB色彩空间转换到HSV色彩 空间,以便进行色彩调整或特定目标检测。
RGB与HSV转换
将彩色图像转换为灰度图像,以便进行灰度 处理。
应用场景
在需要进行特定色彩处理或目标检测时,通 过色彩空间转换可以更好地处理和识别目标 。
03
MATLAB图像处理应用
数字图像处理算法实现
应用场景
在图像质量较差或需要突出某些 特征时,通过图像增强可以改善 图像质量。
01
02
图像增强原理
通过调整图像的色彩、亮度和对 比度等参数,改善图像质量。
03
频域增强
通过傅里叶变换将图像从空间域 转换到频域,再进行频域处理后 反变换回空间域。
04
色彩空间转换
matlab绘图知识点总结

matlab绘图知识点总结一、Matlab基本绘图函数1. plot函数plot函数是Matlab中最基本的绘图函数之一,用于绘制二维图表。
其基本语法为:plot(x, y)。
其中x是横轴坐标数据,y是纵轴坐标数据。
通过plot函数可以绘制折线图、散点图等。
2. bar函数bar函数用于绘制条形图,其基本语法为:bar(x, y)。
其中x是条形的横轴坐标位置,y是条形的高度。
3. pie函数pie函数用于绘制饼图,其基本语法为:pie(x, labels)。
其中x是用来指定各个扇形区域的大小的矩阵,labels则是用来指定每个扇形区域的标签。
4. hist函数hist函数用于绘制直方图,其基本语法为:hist(x, bins)。
其中x是待绘制的数据,bins则是用来指定直方图的条形数目。
5. scatter函数scatter函数用于绘制散点图,其基本语法为:scatter(x, y)。
其中x和y分别是散点的横轴和纵轴坐标数据。
6. contour函数contour函数用于绘制等高线图,其基本语法为:contour(x, y, z)。
其中x和y分别是网格的横轴和纵轴坐标,z则是用来指定等高线的数值。
二、自定义图形1. 设置标题、标签和图例在Matlab中,可以使用title、xlabel、ylabel和legend等函数分别设置图表的标题、横轴和纵轴标签以及图例。
2. 设置图表样式可以使用line属性、marker属性以及color属性等来设置折线图、散点图等的样式。
3. 修改图表坐标轴可以使用xlim、ylim函数来设置图表的横轴和纵轴范围,并使用xticks和yticks函数来设置坐标刻度。
4. 绘制多个数据集可以使用hold on函数来绘制多个数据集,并使用hold off函数来结束绘制多个图表。
5. 设置图表背景可以使用grid、box、axis equal等函数来设置图表的背景。
三、子图表绘制1. subplot函数subplot函数用于在一个图形窗口中绘制多个子图表,其基本语法为:subplot(m,n,p)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Application of Matlab Language
4
3.1 二维曲线绘图的基本操作
plot指令的基本调用格式
(1)plot(x)
x为向量时,以该元素的下标为横坐标、元素值为纵坐标绘出曲线 x为实数二维数组时,则按列绘制每列元素值相对其下标的曲线,曲线
数等于x数组的列数。 x为复数二维数组时,则按列分别以数组的实部和虚部为横、纵坐标绘
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
202-00./86/10
Application of Matlab Language
10
2.符号函数(显函数、隐函数、参数方程)画图
(1)ezplot
ezplot(‘f(x)’,[a,b]) :在a<x<b内绘制显函数f=f(x)的函数图
ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax]) :
相似系数
Rx()
Rx()
Rx()
(a) Ship1 1
0.15
0.8
X: 78.13
0.1X: 39.06
Y: 0.1534
0.6
Y: 0.06192
0.05
0.4
0 100 200 300 400 0.2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000
循 环 频 率 /Hz
在区间xmin<x<xmax、 ymin<y<ymax绘制隐函数f(x,y)=0 的函数图
ezplot(‘x(t)’,’y(t)’,[tmin,tmax]) : 在区间tmin<t<tmax绘制参数方程x=x(t),y=y(t)的函数图
2020/6/10
之前,必须先取得该图形上的一系列的点的坐标(即横
坐标、纵坐标),然后将该点集的坐标传给Matlab函数
画图。命令:
y 黄色 . 点
- 连线
PLOT(X,Y,S)
m 洋红 o 圈
: 短虚线
c 蓝绿色 x x-符号 -. 长短线
线型
r 红色 + 加号 -- 长虚线
X,Y:向量,分别表示点集的横坐标和纵坐标 PLOT(X,Y)--画实线
Application of Matlab Language
7
例3.3 绘制复杂曲线
用图形表示连续调制波形 及其包络线。
t=(0:pi/100:pi)’; y1=sin(t)*[1,-1];
矩阵
y2=sin(t).*sin(9*t);
t3=pi*(0:9)/9;
%长度为101的时间采样列向量 %包络线函数值,是(101x2)的
2020/6/10
Application of Matlab Language
6
例3.2 使用参数方程绘制曲线
绘制曲线 xyttcsoins2(3tt),t
t = -pi:pi/100:pi; x = t.*cos(3*t); y = t.*sin(t).^2; plot(x,y)
2020/6/10
制多条曲线
(2)plot(x, y)
x、y为同维数组时,绘制以x、y元素为横纵坐标的曲线 x为向量,y为二维数组、且其列数或行数等于x的元素数时,绘制多条
不同颜色的曲线 x为二维数组,y为向量时,情况与上相同,只是y仍为纵坐标。
(3)plot(x1, y1, x2, y2, …)
绘制以x1为横坐标、y1为纵坐标的曲线1,以x2为横坐标、y2为纵坐标 的曲线2,等等。
(b) Ship2 1
0.8
0.1
X: 50.78
Y: 0.1101
0.6
0.05
0.4
0
0
200
400
600
0.20-500 Nhomakorabea0
500 1000 1500 2000 2500 3000 3500 4000
循 环 频 率 /Hz
(c) Ship3 1
0.8
0.15
X: 46.88
Y: 0.1639
0.6
0.1
0.4
0.05
0.2
0
100 200 300 400 500
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000
循 环 频 率 /Hz
SIR /dB
SIR /dB
2020/6/10
Application of Matlab Language
3
2020/6/10
其中x为横坐标,y为纵坐标,绘制y=f(x)函数曲线。
2020/6/10
Application of Matlab Language
5
例3.1使用直角坐标系
在[0,2π]区间内,绘制曲线 y2e 0.5xsin(2x)
x = 0:pi/100:2*pi; y = 2*exp(-0.5*x).*sin(2*pi*x); plot(x,y)
PLOT(X1,Y1,S1,X2,Y2,S2,……,Xn,Yn,Sn) --将多条线画在一起
2020/6/10
Application of Matlab Language
9
例 在[0,2*pi]用红线画sin(x),用绿圈画cos(x). x=linspace(0,2*pi,30);
解 y=sin(x); z=cos(x); plot(x,y,'r',x,z,’g0')
2020/6/10
Application of Matlab Language
2
(a) 源信号 s
60
1
40
SD-MBD
WP-MBD
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
(b) 源信号 s
2 60
SD-MBD
40
WP-MBD
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
%长度为101的调制波列向量
y3=sin(t3).*sin(9*t3);
plot(t,y1,'r:',t,y2,'b',t3,y3,'bo')
axis([0,pi,-1,1])
%控制轴的范围
2020/6/10
Application of Matlab Language
8
1.曲线图
Matlab作图通过描点、连线实现,故在画一个曲线图形
matlab图像资料
引言
世界顶级的数值计算工具软件MATLAB具有极其 强大的数据可视化功能,可制作具有出版质量图 形。
详细介绍MATLAB这一部分的内容可以写一本书。
我们只能介绍MATLAB数据可视化的基础,2-D 数据可视化、3-D数据可视化初步。
二维图形是将平面坐标上的数据点连接起来的平 面图形。可以采用直角坐标系、对数坐标、极坐 标等形式。数据点可以用向量或矩阵形式给出, 类型可以是实型或复型。