数字图像处理第六章图像分割第五讲区域分割法
图像数字处理图像分割
图像数字处理图像分割图像分割是图像数字处理中的一项重要技术,它将图像中的像素点划分成多个区域,以便更好地理解和分析图像。
在本文中,我将介绍图像分割的原理、常用方法及其应用领域。
一、图像分割的原理图像分割的目标是将图像划分成一系列具有相似特征的区域,使得每个区域内的像素点具有相同或相似的属性。
它的基本原理是通过寻找像素点之间的差异来确定区域边界。
常用的图像分割方法包括阈值分割、边缘检测和区域生长等。
阈值分割是最简单的分割方法,它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
边缘检测通过检测图像中的边缘信息来进行分割,常用的方法有Sobel算子和Canny算子。
区域生长是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
二、常用的图像分割方法1. 基于阈值的分割方法:阈值分割是最简单且常用的分割方法之一。
它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
常用的阈值分割方法有全局阈值分割和自适应阈值分割。
2. 基于边缘检测的分割方法:边缘检测是一种常用的图像分割方法,它通过检测图像中的边缘信息来进行分割。
常用的边缘检测方法有Sobel算子、Canny算子等。
3. 基于区域生长的分割方法:区域生长方法是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
它常用于分割具有明显纹理特征的图像。
三、图像分割的应用领域图像分割在计算机视觉、医学影像处理、遥感图像分析等领域具有广泛的应用。
以下列举几个典型的应用领域:1. 目标检测与识别:图像分割可以帮助检测和识别图像中的目标物体,如人脸识别、车辆检测等。
2. 医学影像处理:在医学影像中,图像分割可以帮助医生准确地定位和分析病变区域,如肿瘤检测、血管分割等。
3. 遥感图像分析:遥感图像通常包含大量的地物信息,通过图像分割可以将不同类型的地物区分开来,如土地利用分类、城市区域划分等。
4. 视频分析:图像分割在视频分析中扮演重要角色,可以提取视频中的运动目标,如行人检测、行为分析等。
数字图像处理中的图像分割算法
数字图像处理中的图像分割算法数字图像处理是指将数字化后的图像进行处理和分析的一门学科。
图像分割是数字图像处理中的一个重要分支,它的目的是将图像中的像素点按照一定的规则划分为若干个不同的区域,以便进行后续的处理和分析。
图像分割广泛应用于计算机视觉、医学影像处理、自动化检测等领域。
本文将对数字图像处理中的图像分割算法进行分类介绍。
一、全局阈值分割法全局阈值分割法是一种常用的图像分割方法。
它的原理是将图像的灰度级别分为两部分,一部分位于阈值以下,一部分位于阈值以上。
这里所说的阈值是指一个固定的值,它可以由人工设置或者通过计算得出。
全局阈值分割法的优点在于方法简单,计算速度快,适用于灰度变化明显的图像。
但是,它的缺点是对于灰度变化不明显或者需要区分多个物体的图像分割效果不佳。
二、基于区域的图像分割法基于区域的图像分割法是一种将图像分割为不同区域的方法。
它的原理是将图像中相邻像素点的相似性作为分割的依据。
常用的算法包括区域生长法、区域分裂法和区域合并法。
这些方法可以通过定义不同的相似度度量标准来实现对图像分割的控制。
基于区域的图像分割法在处理复杂纹理、颜色相近的图像时的效果比全局阈值分割法好,但是它们对分割顺序和初始区域选择的依赖性较强。
三、边缘检测法边缘是图像中最基本的结构之一,它体现了图像中物体的边界信息。
边缘检测法是通过检测图像中的边缘来实现图像分割的一种方法。
边缘检测法的基本思想是在图像中寻找像素值发生突变的点。
常用的边缘检测算法包括Canny算法、Sobel算法和Prewitt 算法等。
边缘检测法可以在提取边缘信息的同时实现图像分割,但是它对噪声和图像分辨率的依赖性较强。
四、基于能量的图像分割法基于能量的图像分割法是将图像分割看做一种优化问题,通过寻找最优分割来实现图像分割的一种方法。
它的基本思想是将图像中的每一个像素点看做一个节点,并将节点之间的连通性看做一种能量关系。
优化分割问题就可以转化为一个能量最小化的问题。
数字图像处理图像分割课件
基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。
数字图像处理中的分割算法
数字图像处理中的分割算法数字图像处理是一门涉及到许多领域的学科,如计算机视觉、图像识别等。
其中,图像分割算法是数字图像处理中的重要算法之一,其作用是根据图像的颜色、灰度、纹理或其他特征将图像划分成若干个区域,从而达到图像的细化、特征提取和目标定位等目的。
本文介绍几种常见的图像分割算法,包括全局阈值算法、分水岭算法和基于聚类的算法。
一、全局阈值算法全局阈值算法是一种最简单的图像分割算法,基于图像像素灰度直方图分析,通过选取合适的像素灰度阈值将图像分成背景和目标两部分。
这种算法适用于明显分割的图像,如黑白对比强烈的二值图像。
通常采用一些经典算法如大津算法、最大熵算法等选取阈值。
二、分水岭算法分水岭算法是一种基于图像形态学分析的分割算法。
图像的灰度值可以理解为地形高低不同,而图像中的某些区域可以看成是一些分水岭。
分水岭算法通过将图像看做一个三维地图,将图像的灰度值对应到地图的高度,通过对图像进行基于领域的腐蚀操作然后标定洼地,一些较高的区域就可以被视为分水岭,最后将图像分割成几个不同的块。
分水岭算法不仅可以对二值图像进行分割,而且也可以对彩色图像进行分割。
另外,分水岭算法可以通过加入先验知识等来改进分割效果。
三、基于聚类的算法基于聚类的算法是一种常用的图像分割算法。
这种算法根据图像像素之间的相似度将像素分为若干个类别,相似度可以通过像素在不同颜色或空间位置上的距离来定义。
聚类算法可以分为基于原型的聚类算法和基于密度的聚类算法。
基于原型的聚类算法包括K-Means算法、高斯混合模型等,基于密度的聚类算法包括DBSCAN算法、OPTICS算法等。
随着深度学习技术的发展,基于聚类的算法在CPU、GPU上的高效实现成为可能,卷积神经网络可以同时基于像素位置和像素值来约束图像分割效果,成为图像分割领域的热点算法。
总之,图像分割是数字图像处理中很重要的一步,影响着最终处理效果,应该根据不同的应用场景,选取合适的图像分割算法。
数字图像处理-第六章图像分割与分析
设平面上有若干点,过每点的直线族分别对应于极坐标上的 一条正弦曲线。若这些正弦曲线有共同的交点(ρ′,θ′),如图 (e),则这些点共线,且对应的直线方程为 ρ′=xcosθ′+ysinθ′
这就是Hough变换检测直线的原理。
y
A 60
B
F E
C
G 60
D 120
x
x-y空间的边缘点
D
120
C
w1 w 2 w3
可以指定模板为:
w
4
w5
w
6
w 7 w 8 w 9
9
模板响应记为: R | w i z i | i1
输出响应R>T时对应孤立点。
888 8 128 8 888
图像
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
R = (-1 * 8 * 8 + 128 * 8) / 9 = (120 * 8) / 9 = 960 / 9 = 106
3、阈值分割法(相似性分割)
根据图像像素灰度值的相似性
通过选择阈值,找到灰度值相似的区域 区域的外轮廓就是对象的边
阈值分割法(thresholding)的基本思想: 确定一个合适的阈值T(阈值选定的好坏是此方法成败 的关键)。 将大于等于阈值的像素作为物体或背景,生成一个二值 图像。
f(x0,y0) T
2h
r2 2 4
exp
r2 2 2
是一个轴对称函数:
2h
-σ
σ
0
由图可见,这个函数 在r=±σ处有过零点,在 r │r│<σ时为正,在│r│>σ 时为负。
由于图像的形状,马尔算子有时被称为墨西哥草帽函数。 用▽2h对图像做卷积,等价于先对图像做高斯平滑,然后再用▽2对 图像做卷积。 因为▽2h的平滑性质能减少噪声的影响,所以当边缘模糊或噪声较 大时,利用▽2h检测过零点能提供较可靠的边缘位置。
数字图像处理图像分割
如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值
图像分割方法概述
图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
图像处理区域分割
K-均值聚类
执行步骤:
• 1、选择某种方法将N割样本分成c个聚类的初始划分,计算每个聚类的均值u1、u2、 u3...uc和Je
• 2、选择一个备选样本x,设其在Xj中。
• 3、若Ni=1,则转步骤2,否则继续。
TP 、准确度=TP FP
FP FN
、错误率=
TP FPTBiblioteka FN等其他分割方式
基于参数活动轮廓模型的分割
• 传统的Snake模型 • GVF Snake模型
基于几何形变模型的分割
• 几何活动轮廓模型 • 测地活动轮廓模型 • Chan-Vese模型
Thank you
• 各个区域Zebkde的加权平均值即为图像分割一致性的评价标准。
1 M
Zeb
N
Nk zebk
k 1
• 以区域内方差为原则:
• 区域内一致性判定
归一因子E,wk为权值 以分割图像一致性判断
2
1 Nk
(
iRk
fi
fk )2
(max fi min fi )2
E ( wk) iRk Rk I
• 优缺点:
• 方法简单,易于计算。 • 当图像是彩色的时候,仅用单色的准则效果会受到影响。 • 在不考虑像素间的连通性和邻近性时,可能出现无意义的结果。
区域生长法
• 2、基于区域内灰度分布统计性质
• 步骤1:把像素分成互不重叠的小区域。
• 步骤2:比较邻接区域的累计灰度直方图,根据分布的相似性进行区 域合并。
图像处理技术中的图像分块与局部处理方法
图像处理技术中的图像分块与局部处理方法图像分块与局部处理是数字图像处理中常用的一种方法,它通过将图像划分为多个小块,对每个小块进行处理,然后再将处理结果合并成最终的图像,以达到对图像进行优化、增强或者改变的目的。
这种方法在许多图像处理任务中都具有广泛的应用,如图像增强、图像去噪、边缘检测等。
图像分块是一种将大图像切分为若干个小块的技术。
通过将图像划分为均匀大小的小块,可以对每个小块进行独立的处理,从而提高图像处理的效率和准确性。
一般来说,图像分块可以根据不同的目标和需求进行灵活调整,可以选取不同的块尺寸和块数量来适应不同的场景和任务。
在图像分块的基础上,局部处理方法被应用于每个小块中。
局部处理方法是指对每个小块进行独立处理的方法,通过对每个小块中的像素进行分析和处理,可以改变小块的亮度、对比度、饱和度等,以达到对图像的局部优化。
常用的局部处理方法包括直方图均衡化、滤波、锐化等。
直方图均衡化是一种通过调整图像像素的灰度分布来增强图像对比度的方法。
它基于图像的灰度直方图,并通过重新分配像素的灰度级别来增加图像的动态范围,使图像的亮度更加均衡。
直方图均衡化可以应用于每个小块中的像素,使得每个小块的对比度得到增强,从而提高整个图像的质量和观感。
滤波是一种通过卷积运算改变图像亮度或者增强图像特定频率成分的方法。
通过选择合适的滤波器,可以对每个小块中的像素进行平滑、增强边缘或者去除噪声等处理。
常用的滤波方法包括均值滤波、中值滤波、高斯滤波等,它们可以被应用于每个小块中的像素,从而改变小块的亮度或者增强小块的特定特征。
锐化是一种用于增强图像边缘和细节的方法。
通过对每个小块中的像素进行锐化处理,可以突出小块内部的边缘和细节,从而增强整个图像的清晰度和细腻度。
常用的锐化方法包括拉普拉斯算子、Sobel算子等,它们可以被应用于每个小块中的像素,从而改变小块的边缘特征和细节信息。
总之,图像分块与局部处理方法在图像处理中具有重要的作用。
数字图像处理---图像分割
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
遥感数字图像处理教程_图像分割
遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。
在
遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。
图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。
基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。
这种方法适用于目
标与背景之间的灰度差异明显的情况。
基于边缘的图像分割是通过检测图像中的边缘来进行分割的。
常见的
边缘检测算法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像
中不同区域的边界分开。
基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。
该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。
基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。
通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。
图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。
数字图像处理与应用(MATLAB版)第6章 图像的分割
是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰
,
度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。
基
本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像
重
分割技术。
点
难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
数字图像处理~图像分割
2 -1 -1 -1 2 -1 -1 -1 2
水平模板
45度模板
垂直模板 135度模板
线检测
用4种模板分别计算
R水平 = -6 + 30 = 24 R45度 = -14 + 14 = 0 R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
从这些值中寻找绝对值最大值,确定当前点更加接 近于该模板所对应的直线
阶跃型
凸缘型
房顶型
边缘检测
边缘上的这种变化可以通过微分算子进行检测:
一阶导数:通过梯度来计算 二阶导数:通过拉普拉斯算子来计算
边界图像 截面图
边缘检测
一阶导数:用梯度算子来计算
特点:对于亮的边,边的变化起点是正的,结束是负 的。对于暗边,结论相反。常数部分为零。 用途:用于检测图像中边的存在
边缘检测
(2)该滤波器采用拉普拉斯算子可以减少计算量。
在具体实现 f x, y 与 2G 之间的卷积运算时:
(a)取一个N×N的窗口,通常,N 3 时,检测效果较好。 (b) 窗口模板内各系数之和为0。
原始图像
平滑后的边缘检测举例
水平梯度部分
垂直梯度部分
组合得到边缘图像
Laplacian 边缘检测
对于图像信号,Marr提出先
用高斯函数进行平滑:
G x, y,
1
e
1 2
2
x2 y2
2 2
对图像进行线性平滑,在数 学上是进行卷积。
gx, y Gx, y, f x, y
由于边缘点是图像中灰度值变化剧烈的地方,这种图像强度的突变将在一阶导数中产 生一个峰,或等价于二阶导数中产生一个零交叉点,而沿梯度方向的二阶导数是非线 性的,计算较为复杂。Marr提出用拉普拉斯算子来替代,即用下式的零交叉点作为边 缘点。
图像处理中的图像分割算法介绍
图像处理中的图像分割算法介绍图像分割是图像处理中的一个重要技术,在许多领域中都有广泛的应用。
图像分割算法旨在将图像分割成具有特定特征的区域,使得后续的图像分析和处理更加精确和有效。
本文将介绍几种常见的图像分割算法:阈值分割、边缘检测和区域生长算法。
我们来讨论阈值分割算法。
阈值分割是最简单且常用的图像分割方法之一。
该方法根据像素灰度值与预定义的阈值进行比较,将像素分为两个区域。
如果像素灰度值大于阈值,则该像素被分配到一个区域;反之,如果像素灰度值小于阈值,则被分配到另一个区域。
阈值分割算法简单易实现,但对于复杂的图像,效果可能不佳。
我们介绍边缘检测算法。
边缘检测算法可以识别图像中的边缘信息,将图像分割成由边缘组成的区域。
边缘是图像中灰度值快速变化的地方,常常表示物体边界。
边缘检测算法常用的方法有:Sobel算子、Prewitt算子和Canny算子。
Sobel 算子通过计算像素点周围像素的梯度值来检测边缘;Prewitt算子和Sobel算子类似,但计算方向不同;而Canny算子则基于多阶段的边缘检测过程,能够更准确地检测出边缘。
我们介绍区域生长算法。
区域生长算法通过将相邻像素逐个添加到区域中,以实现图像分割。
算法根据一定的准则,如像素相似性或像素间距离,选择合适的像素进行生长。
区域生长算法可以用于分割具有类似像素值的区域,适用于处理噪声较少的图像。
常见的区域生长算法有:种子点生长算法、连通域算法和分水岭算法。
种子点生长算法从预设的种子点开始,将与种子点相邻且满足相似性准则的像素添加到区域中;连通域算法根据像素的连通性来判断区域;而分水岭算法通过将图像视为地形图,利用水流向低处流动的原理进行分割。
综上所述,图像分割是图像处理中至关重要的技术,利用图像分割算法可以将图像分割成具有特定特征的区域。
本文介绍了几种常见的图像分割算法:阈值分割、边缘检测和区域生长算法。
每种算法都有其适用的场景和局限性,需要根据具体的图像特点和需求选择合适的算法。
数字图像处理教学大纲
数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。
具体包括:1、理解数字图像的获取、表示和存储方式。
2、掌握数字图像增强、复原、压缩、分割等基本处理技术。
3、能够运用编程工具实现简单的数字图像处理算法。
4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。
三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。
2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。
3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。
4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。
数字图像处理-图像分割-讲义PPT
图像分割
图像分割概论
图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相 似的特征,如相同的灰度值、相同的颜色等。 传统的图像分割技术: 基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 图像的描述,包括边界和区域的描述
在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。
纹理分析的自相关函数方法
自相关函数的定义 若有一幅图像f(i, j), i, j=0, 1, …, N-1, 它的自相关函数为:
f (i, j ) f (i x, j y ) i 0 j 0 f 2 (i, j ) i 0 j 0
对图像区域的操作―数学形态学
灰度阈值分割法
灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。 事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们 所感兴趣的对象;反之则属于背景部分。 这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一 个合适的阈值。 如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近 出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰 值之间的低谷处找到一个合适的阈值。 单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。
灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的; 不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。
图像分割技术的使用方法
图像分割技术的使用方法图像分割技术是一种将图像分割成不同区域或对象的算法和方法,它在计算机视觉和图像处理领域中广泛应用。
通过使用图像分割技术,我们可以实现许多有趣的应用,例如目标检测、图像分析、医学图像处理等。
本文将介绍一些常见的图像分割技术及其使用方法。
一、阈值分割法阈值分割法是最简单、最常用的图像分割方法之一。
它基于图像中像素值的灰度级别,将像素分为具有不同特征的两个或多个类别。
阈值分割法的基本原理是选取一个适当的阈值,将图像中的像素值与阈值进行比较,将像素分为两个不同的类别。
常见的阈值分割方法有全局阈值法、局部阈值法和自适应阈值法。
在实际使用中,我们可以根据图像的特点选择适合的阈值分割方法来实现图像分割。
二、边缘检测和分割法边缘检测和分割是一种基于图像亮度变化的分割方法。
边缘是图像中灰度级别有明显变化的地方,通过检测图像中的边缘,可以实现对图像的分割。
常见的边缘检测和分割方法有Sobel算子、Canny算子和Laplacian算子等。
这些算子可以提取出图像中的边缘信息,并实现对图像的分割。
在实际应用中,我们可以根据需要选择适合的边缘检测和分割方法来实现对图像的分割。
三、区域生长法区域生长是一种基于像素间相似性和连接性的图像分割方法。
它通过选择一个种子点,然后通过迭代的方式将与种子点相邻且与之相似的像素合并到一个区域中,从而实现对图像的分割。
区域生长法的优点是能够保持图像中相似区域的连续性,而不会将不相干的区域合并在一起。
在实际使用中,我们可以根据图像的特点选择适合的区域生长方法来实现图像分割。
四、基于机器学习的图像分割方法近年来,随着机器学习的快速发展,基于机器学习的图像分割方法越来越受到关注。
这些方法通过使用大量标记好的图像数据进行模型训练,然后将训练好的模型应用于新的图像分割任务中。
常见的基于机器学习的图像分割方法有支持向量机(SVM)、随机森林(Random Forest)和深度学习方法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、分裂-合并的做法
2)合并的做法:把特性相同的相邻区域合并为一个区域。
分裂结果用四叉树表示
ቤተ መጻሕፍቲ ባይዱ
图片来自其他资源
区域生长准则:任何像素和种子之间的灰度值绝对差小于65。
图片来自其他参考书
7.4.2 分裂合并
1、问题的提出 区域生长受到种子、相似性准则等的影响很大。
2、分裂合并的思想 从整幅图像开始,不断地逐级分裂,同时也把特性相同 且相邻的区域合并,直到不能再分为止,最后得到各个 子区域。
6.4 区域分割法
6.4.1 区域生长 6.4.2 分裂合并
7.4.1 区域生长
1、问题的引入
有的分割方法没有兼顾到某些条件。
2、基本思想
区域B 种子像素
区域A 种子像素
3、算法步骤
算法流程
举例1
举例2
原始图像及 种子点位置
三个种子点 区域生长结果
原始图像及 种子点位置
四个种子点 区域生长结果