基于区域生长的图像分割

合集下载

医学影像中的图像分割技术研究

医学影像中的图像分割技术研究

医学影像中的图像分割技术研究一、背景介绍随着医学成像技术不断的发展,医学影像在临床医疗领域已经成为了不可或缺的一部分。

然而,海量的医学影像数据对临床医生和医学研究工作者的影像学分析提出了新的挑战。

一项重要的任务是医学影像中的图像分割,即将一张医学影像图像分为若干不同的区域以帮助临床医生和研究人员更好地理解该区域的构造和特性。

基于这一任务,许多图像分割技术得到了广泛的研究和应用。

二、医学影像中的图像分割技术1. 基于阈值的图像分割技术基于阈值的图像分割技术是一种快速、简单的图像分割方法,广泛应用于医学影像中。

基本原理是将像素值高于或低于预先定义的阈值的像素分为两个部分,从而实现图像的分割。

但此方法在面对医学影像中复杂结构的图像时,分割效果很可能出现错误。

2. 基于边缘检测的图像分割技术基于边缘检测的图像分割技术是利用边缘信息对图像进行分割的方法,主要分两步进行。

首先,对图像进行边缘检测,提取边缘信息。

然后,利用这些边缘信息将图像分割为不同的部分。

但这种方法对图像中噪声的敏感度很高,同时对于一些形状较为复杂的结构分割效果也较差。

3. 基于区域生长的图像分割技术基于区域生长的图像分割技术是一种运用种子点的方法将图像分为不同的区域。

基本原理是从种子点开始,对相邻像素点的灰度值进行比较,将符合条件的像素点归为同一区域,直到所有符合条件的像素点都被归为同一区域。

该方法能够有效处理复杂的图像结构,并且对噪声的抗干扰能力较强。

4. 基于图论的图像分割技术基于图论的图像分割技术将像素看作图中的节点,在节点之间建立连接关系。

在分割过程中,将节点之间的连线权值看作像素之间的相似性,将图像分为不同的区域。

该方法可以很好的解决医学影像中复杂结构分割问题,但其计算复杂度较大,分割速度比较慢。

三、总结医学影像中的图像分割技术在临床医学中具有重要的应用价值。

但由于医学影像的复杂性,不同的图像分割方法都存在自己的优缺点。

因此,在实际应用过程中,需要结合具体的医学影像特点选择合适的图像分割方法,并进行不断地优化和改进,以达到更好的分割效果。

图像处理中的图像分割算法改进方法

图像处理中的图像分割算法改进方法

图像处理中的图像分割算法改进方法图像分割是图像处理领域中的重要任务,它旨在将一幅图像划分为一组具有相似特征的区域。

对图像进行有效的分割可以提取出感兴趣的目标,并为后续的图像分析和理解提供基础。

然而,由于图像中存在复杂的噪声、背景干扰以及目标形状和大小的差异,图像分割任务一直面临着挑战。

为了进一步提高图像分割的性能,研究人员提出了许多改进方法。

本文将介绍几种常见的图像分割算法改进方法,并讨论它们的原理和优缺点。

一、区域生长算法区域生长算法是一种基于类似区域像素特征的图像分割方法。

该算法从一组种子点出发,逐步生长和合并具有相似特征的像素。

该方法的主要优点是对不同大小、形状和纹理的目标具有较好的适应性。

然而,传统的区域生长算法容易受到噪声和纹理差异的影响,导致分割结果不准确。

为了改进该方法,研究人员提出了以下几种改进方法:1.多特征融合:将像素的多个特征(如颜色、纹理、梯度等)融合起来进行区域生长。

通过融合不同特征,可以减轻单一特征带来的误差,提高分割的准确性。

2.自适应阈值选择:传统的区域生长算法中,阈值通常是手动设置的,无法适应不同图像的特点。

采用自适应的阈值选择方法,可以根据图像的特征动态地选择合适的阈值,从而提高分割的鲁棒性。

3.分层分割策略:将图像分割任务分为多个层次,通过逐层分割和合并来获取更精确的结果。

这种策略可以提高分割的效率和准确性,并适用于大规模图像的处理。

二、基于深度学习的图像分割算法随着深度学习的快速发展,基于深度学习的图像分割算法在近年来取得了巨大的成功。

深度学习模型能够学习到图像的高级特征表示,从而提高分割的准确性和鲁棒性。

以下是几种常见的基于深度学习的图像分割算法:1.卷积神经网络(CNN):CNN是一种常用于图像分割的深度学习模型。

通过多层卷积和池化操作,CNN可以学习到图像的局部和全局特征,从而实现像素级别的分割。

然而,传统的CNN在处理细节和形状复杂的目标时存在一定的困难,因此研究人员提出了一些改进的网络结构。

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析图像分割是图像处理中的一项重要任务,它旨在将图像划分为具有一定语义的区域。

图像分割在图像分析、计算机视觉和模式识别等领域有着广泛的应用。

随着技术的发展,越来越多的图像分割算法被提出,为了选择合适的算法进行应用,本文将对目前常用的图像分割算法进行比较分析,包括基于阈值、基于区域生长、基于边缘检测和基于深度学习的算法。

1. 基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法之一。

该方法根据像素点的灰度值与设定的阈值进行比较,将图像分割成两个或多个区域。

对于灰度较为均匀的图像,基于阈值的方法能够得到较好的分割效果。

然而,对于灰度不均匀或存在噪声的图像,这种方法的效果较差。

2. 基于区域生长的图像分割算法基于区域生长的图像分割算法是一种基于连通性的方法。

该方法从一组种子像素出发,根据一定的生长准则逐步增长区域,直到达到停止条件为止。

区域生长方法能够处理一些复杂的图像,但对于具有相似颜色或纹理特征的区域容易产生错误的连续性。

3. 基于边缘检测的图像分割算法基于边缘检测的图像分割算法把图像中的边缘看作是区域之间的分界线。

常用的边缘检测算法包括Sobel、Canny和Laplacian等。

这些算法通过检测图像中的灰度值变化或梯度变化,找到边缘的位置,并将图像分割成相应的区域。

基于边缘的方法对于边缘清晰的图像分割效果较好,但对于复杂的图像容易产生断裂或错误的边缘。

4. 基于深度学习的图像分割算法近年来,随着深度学习的兴起,基于深度学习的图像分割算法成为研究热点之一。

深度学习方法利用卷积神经网络(CNN)或全卷积网络(FCN)等模型进行端到端的图像分割。

这些方法能够学习图像中的语义信息,并输出像素级别的分割结果。

深度学习方法在许多图像分割任务上取得了显著的效果,但需要大量的标注数据和计算资源。

综上所述,不同的图像分割算法适用于不同的场景和任务需求。

基于阈值的图像分割算法简单易用,适用于灰度较均匀的图像;基于区域生长的算法能够处理复杂的图像,但容易产生错误的连续性;基于边缘检测的算法对于边缘清晰的图像效果较好;基于深度学习的算法具有较强的泛化能力,可应用于多种场景。

医疗图像处理中的图像分割方法教程

医疗图像处理中的图像分割方法教程

医疗图像处理中的图像分割方法教程医疗图像处理是近年来发展迅速的领域,它利用计算机技术对医学图像进行处理和分析,为医生提供准确的诊断和治疗方案。

而图像分割作为医疗图像处理的重要组成部分,旨在将医学图像中的对象从背景中区分出来,以提供更详细、更准确的信息。

在医疗图像处理中,图像分割方法具有不可忽视的重要性。

以下将介绍一些常用的医疗图像分割方法,以帮助读者更好地理解和应用。

1. 基于阈值的分割方法基于阈值的分割方法是图像处理中最简单、最直观的一种方法。

它假设图像中的目标与背景具有明显的灰度差异,并通过设置合适的阈值来分割图像。

在医疗图像处理中,可以利用生理特征或者病灶的灰度分布来确定阈值,帮助准确地分割出病变区域。

2. 基于边缘检测的分割方法基于边缘检测的分割方法通过检测图像中的边缘来实现分割。

边缘是图像中灰度变化明显的位置,可以有效区分目标与背景。

常用的边缘检测算法包括Sobel算子、Canny算子等。

通过这些算法可以提取出图像中的边缘信息,然后将目标与背景分离。

3. 基于区域生长的分割方法基于区域生长的分割方法是一种基于灰度值相似性的分割方法。

它从种子点开始,通过逐渐生长的方式将相似灰度值的像素点合并到一个区域中,直到满足一定的停止标准。

这种方法可以有效地处理医疗图像中的噪音和弱边缘问题,得到更加准确的分割结果。

4. 基于图像统计特征的分割方法基于图像统计特征的分割方法利用图像中不同区域的统计特征来实现分割。

例如,可以利用均值、方差、纹理等特征来描述不同区域的差异,并根据这些差异进行分割。

这种方法可以克服基于灰度值的分割方法在处理复杂医学图像时的缺陷,并得到更准确的分割结果。

5. 基于机器学习的分割方法基于机器学习的分割方法利用先前已知的标记样本训练分类器,然后将分类器应用于待分割图像中。

常用的机器学习算法包括支持向量机、决策树、神经网络等。

通过这些算法可以将图像中的像素点分为不同的类别,从而实现图像的分割。

基于区域生长算法的三维图像分割研究

基于区域生长算法的三维图像分割研究

基于区域生长算法的三维图像分割研究三维图像处理是现代科学技术中的重要领域之一。

而在这个领域中,图像分割是一个很重要的核心问题。

对于三维图像分割而言,区域生长算法是一种比较常见的方法,它可以帮助我们将三维图像中的不同部位进行分割,以达到提取使用信息等目的。

下面我们就来详细了解一下基于区域生长算法的三维图像分割研究。

1. 区域生长算法的基本原理区域生长算法是一种基于像素点的自动图像分割方法。

该方法的基本原理是从待分割的图像中选定一个种子点,然后从该点开始,按照某种设定的生长规则不断向周围连接像素点,直到所有满足条件的像素点都被连通形成一个区域。

当然,该区域的生长规则需要参考不同的应用场景来进行设置。

2. 区域生长算法在三维图像分割中的应用区域生长算法能够很好地应用在三维图像分割上。

通过建立三维图像中各像素点之间的链接关系,区域生长算法可以在较短时间内,对三维图像进行有效的分割。

这种分割方法广泛应用于医学图像、自然图像等领域。

3. 区域生长算法在医学图像处理中的应用在医学图像处理中,区域生长算法被广泛应用于肺部肺结节的分割、磨玻璃影分割等场景。

在肺部肺结节分割中,区域生长算法可以根据肺部肺结节的某些特征指标(如大小、形状等),较准确地进行分割。

而在磨玻璃影分割中,区域生长算法可以通过认定磨玻璃片的灰度值,并以此为基准点来进行区域生长,从而提高分割的精确性。

4. 区域生长算法在自然图像分割中的应用除了医学图像处理外,区域生长算法也广泛应用于自然图像分割。

在对自然图像进行分割时,区域生长算法可以结合不同的特征(如颜色、纹理等)来进行区域生长,从而有效地提高分割的准确性和精度。

5. 区域生长算法的优缺点尽管区域生长算法有着在三维图像分割中应用广泛的优点,但是它也存在一些明显的缺点。

其中最主要的一个缺点是生长过程中需要不断地遍历像素点,因此对算法的计算量提出了较高要求。

此外,该算法需要合理设置种子点,才能够得到在整个三维图像中最为有效的分割结果。

图像分割算法的原理与效果评估方法

图像分割算法的原理与效果评估方法

图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。

图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。

本文将介绍图像分割算法的原理以及评估方法。

一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。

以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。

它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。

该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。

2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。

常用的边缘检测算法包括Sobel算子、Canny算子等。

该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。

优点是对于边缘信息敏感,适用于复杂场景的分割任务。

3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。

常用的方法包括区域生长、分裂合并等。

该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。

优点是在复杂背景下有较好的分割效果。

4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。

常用的方法包括图割算法和分割树算法等。

该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。

该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。

二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。

以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。

它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。

图像处理中的图像分割算法的准确性与效率比较

图像处理中的图像分割算法的准确性与效率比较

图像处理中的图像分割算法的准确性与效率比较图像分割是图像处理领域中的重要任务之一,它的目标是将图像中的不同区域划分开来,以便进一步进行图像分析、目标识别、图像重建等操作。

图像分割算法的准确性和效率是评估一个算法性能的重要指标。

本文将对几种常见的图像分割算法进行准确性和效率的比较。

一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和常用的一种方法。

它根据像素灰度值与设定的阈值进行比较,将图像分成两个或多个区域。

这种方法的准确性和效率都相对较低。

当图像具有类似灰度的不同物体时,阈值选择变得困难,并且难以处理复杂的图像背景。

二、基于区域的图像分割算法基于区域的图像分割算法是将具有相似特征的像素划分到同一个区域的方法。

常用的算法有区域生长、分水岭算法等。

这种方法通常从种子点开始,根据像素之间的相似性逐步扩展区域。

区域生长算法在处理较小的目标时准确性较高,但在处理大型目标时可能会出现过分合并的情况。

分水岭算法通过模拟水流从最低处开始填充,直到达到分水岭为止。

该算法能够处理复杂的图像背景,但在处理具有重叠目标时准确性较低。

三、基于边缘的图像分割算法基于边缘的图像分割算法通过检测物体边缘将图像分割成不同的区域。

常见的算法有Canny边缘检测、Sobel算子等。

边缘检测算法能够准确地检测物体边界,但在处理噪声较多的图像时效果较差。

四、基于聚类的图像分割算法基于聚类的图像分割算法是将图像像素划分为多个类别的方法。

常见的算法有K-means聚类算法、Mean-Shift算法等。

这种方法可以根据像素之间的相似性将图像分割成不同的区域,准确性较高。

然而,聚类算法的计算复杂度较高,处理大尺寸图像时可能效率较低。

五、基于深度学习的图像分割算法近年来,基于深度学习的图像分割算法取得了显著的进展。

使用卷积神经网络(CNN)等技术,可以对图像进行端到端的像素级别分割。

这种方法的准确性相对较高,并且能够处理复杂的图像场景。

然而,这种方法在计算复杂度和计算资源消耗方面较高,需要较大的训练集和计算设备支持。

种子区域生长算法在图像分割中的应用研究

种子区域生长算法在图像分割中的应用研究

种子区域生长算法在图像分割中的应用研究在图像处理领域,图像分割是一个重要的研究方向。

图像分割指的是将一幅图像分成若干个互不重叠的区域,每个区域内的像素具有相似的属性,例如颜色、纹理、亮度等等。

图像分割在计算机视觉、人机交互、媒体处理等领域有着广泛的应用。

而种子区域生长算法是一种常见的图像分割算法之一,它基于像素的相似度,将像素不断合并成区域的过程。

一、种子区域生长算法种子区域生长算法是一种基于像素相似度的图像分割算法,它从一个或多个“种子点”开始,依次将与种子点周围像素相似的像素归为一类,形成一块区域。

种子点可以人为设定,也可以通过自动检测得到。

与其他图像分割算法相比,种子区域生长算法具有一定的实时性和较好的准确度,因此在实际应用中被广泛采用。

二、种子区域生长算法的流程1. 选取种子点。

将图像中的一个像素点作为起始点,或者多个像素点作为起始点,称之为种子点。

2. 确定匹配准则。

通常是通过像素之间的相似度来判断是否属于同一个区域。

相似度的计算方式有很多种,比如欧式距离、曼哈顿距离、余弦相似度等。

3. 执行生长过程。

将与种子点像素相似的像素归为同一区域,在此基础上继续寻找与该区域相连通的像素,并进行相似性判断,逐步扩大区域范围。

4. 结束条件。

通常是规定区域的大小、像素数量或者相似度阈值等来结束生长过程。

当达到结束条件后,算法停止生长,生成一块完整的区域。

三、种子区域生长算法的优缺点1. 优点种子区域生长算法简单易懂,对于照片、医学影像等含有复杂纹理和明显某些特征的图像具有很好的分割效果。

并且可以通过调节同一区域形态特征进行分割。

2. 缺点种子区域生长算法只能分割出固定形状的区域,对于涉及变化形态的图像分割需求相对较差。

且对于不含有显著模式的图像分割效果较差,需要较好的先验知识和参数的调整。

四、种子区域生长算法在图像分割中的应用种子区域生长算法在图像分割中被广泛应用,例如医学影像分割、地理信息系统等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)、以种子点进行区域生长:
以种子点所在位置开始遍历,当判断满足种子点条件时调用函数:
functionA=neitest(i,j,f,T);%返回当前(i,j)位置种子点的
S=Stemp;%更新当前位置的8邻域满足阈值条件的点;使S中始终加入最近的种子点。
最终循环条件截止条件:
if(sum(sum(abs(double(S)-double(sd))))==0) %当前一次的种子加入点数和本次的相同时
安康学院
学年论文﹙设计﹚
题 目基于区域生长法的图像分割
学生姓名周东阳 2012020081
所在院(系)电子与信息工程系
专业班级电子信息工程2012级2班
指导教师余顺园
2015年6月25日
基于区域生长法的图像分割
作者:周东阳
安康学院电子与信息工程系电子信息工程专业12级,陕西 安康 725000
指导教师:余顺园
B=rgb2gray(A);
f=double(B);
figure
imshow(f);
title('源图像');
(2)、以种子点对原图像二值分割:
seed=175;
S=abs(double(f)-double(seed))<70;%以初始种子点进行二值图像分割;
figure
imshow(S);
title('初始种子点');
图3灰度直方图
(3)、对图像进行种子点的选取,Seed=175,并对其进行逻辑阈值分割
Savlue=175;
S=(abs(double(f)-double(Svalue))<70);
imshow(S);
图4初始种子点
(4)、按照上图图像选出的种子点对图像进行区域生长,按照阈值T=45,每次运算只进行区域生长中的新种子点,判断生长停止条件为本次生长和上次生长后的新增种子点为0。
1基于区域生长的图像分割的实现方法
区域生长是一种根据事先定义的准则将像素或子区域聚合成更大区域的过程。基本方法是以一组种子点开始,将与种子性质相似的相邻像素附加到生长区域的每个种子上。
区域生长算法的重点是:
种子点的选取
生长准则的确定
算法流程设计:
图1:算法设计流程
(1)、图像读取:
A=imread('4.jpg');
Key words:Region growingseedssplitpixels
0引言
人们只关心在图像的研究和应用中的某些部分,这些部分经常被称为目标或前景,它们通常对应于图像的特定性质或特定领域。这就需要提取并将它们分辨识别和分析对象。在此基础上可能进一步对目标作用。图像分割是一种技术和工艺,它可以将其分为不同的区域形象特征,并提取有利的目标。这些特色可以是像素,灰度,颜色,质地等。图像分割是从图像处理到图像分析的关键步骤。一方面它是目标表达的基础,并对测量有重要影响。另一方面,作为图像分割是以分割为基础的描述,提取特征和测量参数使原始图像变得更抽象,形式更紧凑,以此来实现更高层次的图像分析和理解。
(3)、能够对每次新增的种子点进行判断其周围点的可行性,用循环方法不断将新增的种子点加入区域,并用阈值条件进行生长。
(4)、对区域生长后的图像进行膨胀操作处理,使得在对图像中灰度值较高的密集点区域变得更大。防止断线,对象图像中的瑕点更减少,视觉效果更好。
(5)、再对膨胀后的图像进行中值滤波处理,使得对象图像中的瑕点进一步减少,对象图像更加连续,几乎感觉不到瑕点的存在。
【摘要】图像分割的目的是将图像划分为不同的区域,基于区域生长是以直接找寻区域为基础的分割技术。区域生长是一种根据事先定义的准则将像素或子区域聚合成为更大的区域的过程。基本方法是以一组“种子”点开始,将与种子点性质相似(诸如灰度级等)的相邻像素附加到生长区域的每个种子上。
区域生长的一个问题是用公式描述一个终止规则。基本上,在没有像素满足加入某个区域的条件时,区域生长就会停止。在此次课程设计中,在算法的设计上充分反映了这一点。在遍历图像的过程中调用函数testnei,测试i,j点处的邻域满足条件的像素。将每次新增长的种子点作为下次遍历的中心点,直到区域不再生长。
C = medfilt2(S,[7 7]);
figure
imshow(C)
title('经过中值滤波后的图像');
图7经过中值滤波图像
4 结果分析:
通过运行程序得到上述图形结果,分析之可知用区域生长法分割图像的关键在于种子数的选取及阈值的确定,在图像的细节不是太多的情况下,我们可以通过图像的灰度直方图来确定种子数的大致范围,以及阈值的大小,然后通过运行程序,观察结果,不断调整种子数、阈值的大小,以达到分割的最佳效果。另外对区域生长后的图像进行膨胀操作处理,使得在对象图像中灰度值较高的密集点区域变得更大。防止断线,对对象图像中的瑕点更少,视觉效果更好,再对膨胀后的图像进行中值滤波处理,使得对象图像中的瑕点进一步减少,对象图像更加连续,几乎感觉不到瑕点的存在。
说明生长完毕,种子不再生长;
break;
end
(4)、对生长完毕的图像进行膨胀操作:
B=[1 1 1;1 1 1;1 1 1];
S=imdilate(S,B);
figure
imshow(S)
title('膨胀后的图像')
(5)、对膨胀后的图像进行中值滤波:
C = medfilt2(S,[5 5]);
Region growing is one of the problems with formulas describing a termination rule. Basically, no pixels when you meet the conditions for joining a regional, regional growth will stop. In the design of this course, in algorithm design fully reflects that. Traverse the image function is called duringtestneitestingi,jneighborhood at the point where pixels meet the conditions.Seeds of each new growth as the center point of the next loop, until the area is no longer growing.
figure
imshow(C)
title('经过中值滤波后的图像');
2功能描述
(1)、对图像进行种子点的选取,并进行阈值分割操作,在种子点的选取上可以借助图像的灰度直方图,看目标图像的灰度取值范围,然后取其中间值作为种子值并允许其灰度值在±70范围内。
(2)、函数function A=neitest(i,j,f,T)能够对当前(i,j)坐标点像素进行判断,在其8邻接的像素点上满足阈值条件的点坐标将通过A返回。
3 测试结果
(1)、读显原图
A=imread('4.jpg');
B=rgb2gray(A);
f=double(B);
figure
imshow(f);
title('源图像');
图2源图像
(2)、源图像的灰度直方图,可知目标区域的灰度值主要集中在120~255范围内。
Figure
imhist(B);
title('灰度直方图');
Directed byYuShunyuan
Abstract:Image segmentation aims to divide the image into different areas, based on region growing is to find region-based segmentation techniques. Criteria defined in advance by the region growing is a pixel or sub-regional aggregate into bigger regional process. Basic method is based on a set of "seed" point, with seeds similar in nature (such as grayscale) adjacent pixels on each attach to the growth region of the seed.
图5生长后图像
(5)、对区域生长后的图像进行膨胀使得在对图像中灰度值较高的密集点区域变得更大。
B=[1 1 1;1 1 1;1 1 1];
S=imdilate(S,B);
figure
imshow(S)
title('膨胀后的图像');
图6膨胀后图像
(6)、对上面的图像进行中值滤波处理,使对象图像中的瑕点大大减少,真强图像的实际效果。
【关键词】区域生长 种子点 分割像素
Image segmentatioห้องสมุดไป่ตู้ based on region growing arithmetic
Author:ZhouDongyang
Grade three ,Class two,MajorElectronic and Information Engineering,Dept.,Ankang University,Ankang 725000,Shaanxi
在实际生活中,图像分割的应用也很广泛,几乎出现在所有图像处理的相关领域并涉及各种图像类型。例如。卫星图像处理遥感应用,图像的脑部MR分析在医药的应用等。
相关文档
最新文档