图像分割区域生长法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏科技大学
数字图像处理
图像分割——区域生长法专题
1 图像分割简介
图像分割( image segmentation) 就是把图像分成各具特征的区域并提取出感兴趣目标的技术和过程。这里特征可以是象素的灰度、颜色、纹理等, 预先定义的目标可以对应单个区域也可以对应多个区域。图像分割是图像处理到图像分析的关键步骤, 在图像工程中占据重要的位置。一方面, 它是目标表达的基础, 对特征测量有重要的影响。另一方面, 因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能。
图像分割是一种重要的图像处理技术, 它不仅得到人们的广泛重视和研究, 在实际中也得到大量的应用。图像分割包括目标轮廓、阈值化、图像区分或求差、目标检测、目标识别、目标跟踪等技术。
从大的方面来说,图像分割方法可大致分为基于区域的方法、基于边缘的方法、区域与边缘相结合的方法,以及在此基础上的采用多分辨率图像处理理论的多尺度分割方法。
其中基于区域的方法采用某种准则,直接将图像划分为多个区域。而基于边缘的方法则通过检测包含不同区域的边缘,获得关于各区域的边界轮廓描述,达到图像分割的目的,而区域与边缘相结合的方法通过区域分割与边缘检测的相互作用,得到分割结果。
图像分割中基于区域的方法主要有直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等。本文主要讨论基于区域分割的区域生长法。区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多
的区域。
2图像分割定义
借助集合概念对图像分割给出如下较正式的定义:
令集合R 代表整个图像区域, 对R 的分割可看做将R 分成N 个
满足以下五个条件的非空子集( 子区域)R1, R3, ……, RN:
①1N
i i R R ==
②对所有的i 和j, i ≠j, 有Ri ∩Rj ≠○;
③对i=1,2,⋯,N, 有P(Ri)=TRUE;
④对i ≠j, 有P(Ri ∪Rj)=FALSE;
⑤对i=1,2,⋯,N, Ri 是连接的区域。
其中P(Ri)对所有在集合Ri 中元素的逻辑谓词, ○代表空集。上述的五个条件分别称为完备性,独立性,相似性,互斥性,连通性。
3、图像分割方法及串行区域分割技术简述
多年来的研究使得人们对图像分割产生了高度的重视, 并且已经提出了上千种分割算法, 将算法分类就是把一个集合分成若干子集,这与分割本身有一定相似性, 因此参考分割定义, 每个算法都能被分成一类, 各类总和包括所有算法, 同类中算法有相同性质, 不同类算法有某些不同性质。参照这些条件进行分类。
拿一幅普通的人物照片来举例, 相邻象素在象素值方面有两个性质: 不连续性和相似性( 区域内的象素都具有相似性, 如人的额头和面颊的象素, 而区域边界一般具有某种不连续性, 如耳朵的边缘和紧连着耳朵的背景上的象素) 。另外由于分割过程的处理方法不同, 算法又可分为串行和并行的( 串行算法早期的结果被后来的计算所利用, 时间较长, 但抗噪声能力强, 并行算法所有的判断和决定都可独立、同时地完成。所需时间较短) 。
综上两种分类, 图像分割的算法可归入四大类
串行区域分割技术指采用串行处理的策略通过对目标区域的直接检测来实现图像分割的技术, 它的特点是将整个处理过程分解为顺序的多个步骤逐次进行, 对后继步骤的处理要对前面已完成步骤的处理结果进行判断而确定。这里的判定要根据一定的准则, 一般来说如果准则是基于图像灰度特性的, 则这个方法可以用于灰度图像分割。
基于区域的串行分割技术有两种基本的形式, 一是从单个象素出发, 渐渐合并以形成所需的分割区域, 二是从整个图出发, 分裂切割至所需要的分割区域, 第一种方法的典型技术就是区域生长法。
4 区域生长的原理
区域生长的基本思想是将具有相似性质的象素集合起来构成区域。首先对每个需要分割的区域找出一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子有相同或相似性质的象素( 根据事先确定的生长或相似准则来确定) 合并到种子象素所在的区域中。而新的象素继续做种子向四周生长, 直到再没有满足条件的象素可以包括进来, 一个区域就生长而成了。
现在给出一个区域生长的示例。给出已知矩阵A:
大写的5 为种子, 从种子开始向周围每个象素的值与种子值取灰度差的绝对值, 当绝对值少于某个门限T 时, 该象素便生长成为新的种子, 而且向周围每个象素进行生长; 如果取门限T=1, 则区域生长的结果为:
可见种子周围的灰度值为4、5、6 的象素都被很好地包进了生长区域之中, 而到了边界处灰度值为0、1、2、7 的象素都成为了边界, 右上角的5 虽然也可以成为种子, 但由于它周围的象素不含有一个种子, 因此它也位于生长区域之外; 现在取门限T=3, 新的区域生长结果为:
整个矩阵都被分到一个区域中了。由此可见门限选取是很重要的。
在实际应用区域生长法时需要解决三个问题:
1.选择或确定一组能正确代表所需区域的种子象素( 选取种子) ;
2.确定在生长过程中能将相邻象素包括进来的准则( 确定门限) ;
3.确定让生长过程停止的条件或规则( 停止条件)
利用迭代的方法从大到小收缩是一种典型的方法, 它不仅对2- D图像而且对3-D 图像也适用。一般情况下可以选取图像中亮度最大的象素作为种子, 或者借助生长所用准责对每个象素进行相应的计算, 如果计算结果呈现聚类的情况则接近聚类重心的象素可以作为种子象素。上面的例子, 分析它的直方图可知灰度值为1 和5 的象素最多且处于聚类的中心, 所以可各选一个具有聚类中心灰度值的象素作为种子。
生长准则的选取不仅依赖于具体问题本身, 也和所用图像数据种类有关, 如彩色图和灰度图。一般的生长过程在进行到再没有满足生长条件的象素时停止, 为增加区域生长的能力常需考虑一些与尺寸、形状等图像和目标的全局性质有关的准则。
区域生长的关键是选择合适的生长或相似准则, 大部分区域生长准则会使用图像的局部性质生长准则可以根据不同原理制定, 而使用不同的生长准则会影响区域生长的过程。常用的生长准则和方法有两种, 即基于区域灰度差的、基于区域内灰度分布统计性质的。
下面给出实验结果:
灰度图lena 直方图
区域生长结果三次均方值计算